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Predictive Distribution of Mass and Speed Profile to Improve
Aircraft Climb Prediction

Richard Alligier∗
ENAC, Université de Toulouse, France

Ground-based aircraft trajectory prediction is a major concern in air traffic management.

Focusing on the climb phase, we train neural networks to predict some of the unknown point-

mass model parameters. These unknown parameters are the mass and the speed intent. For

each unknown parameter, our model predicts a Gaussian distribution. This predicted distri-

bution is a predictive distribution: it is the distribution of possible unknown parameter values

conditional to the observed past trajectory of the considered aircraft. Using this distribution,

one can extract a predicted value and the uncertainty related to this specific prediction.

This study relies on Automatic Dependent Surveillance-Broadcast data coming from The

OpenSky Network. It contains the climbing segments of the year 2017 detected by the network.

The obtained data set contains millions of climbing segments from all over the world.

Using this data set, we show that despite having an error slightly larger than previously

tested methods, the predicted uncertainty allows us to reduce the size of prediction intervals

while keeping the same coverage probability. Furthermore, we show that the trajectories with

a similar predicted uncertainty have an observed error close to the predicted one.

The data set and the machine learning code are publicly available.

Keywords: aircraft trajectory prediction, BADA, mass, speed, machine learning, neural network

Introduction
Most applications in Air Traffic Control and Management (ATC/ATM) rely on a ground-based trajectory prediction.

It will be even more true with new operational concepts [1, 2] envisioning trajectory-based operations. An accurate

trajectory prediction is required for the new automated tools and algorithms implementing these concepts. Some

of the most recent algorithms designed to solve ATC/ATM problems do require to test a large number of “what-if”

alternative trajectories and it would be impractical to download them all from the aircraft. As an example, in [3]

an iterative quasi-Newton method is used to find trajectories for departing aircraft, minimizing the noise annoyance.

Another example is [4] where Monte Carlo simulations are used to estimate the risk of conflict between trajectories, in a

stochastic environment. Some of the automated tools currently being developed for ATC/ATM can detect and solve
∗Assistant Professor, ENAC; richard.alligier@enac.fr



conflicts between trajectories, using Genetic Algorithms ([5]∗), or Differential Evolution or Particle Swarm Optimization

([7]). In these conflict solving algorithms, each considered maneuver is associated to the trajectory predicted if such a

maneuver was issued. If the trajectory prediction is bad, a large safety margin around the predicted trajectories will

be taken. As a result, the only remaining conflict-free maneuvers might be the one associated to a large cost. With a

good trajectory prediction, the safety margin around the predicted trajectories will be smaller. The set of conflict-free

trajectories will be larger and might contain maneuvers of smaller cost.

Most trajectory predictors rely on a point-mass model to describe the aircraft dynamics. The aircraft is simply

modeled as a point with a mass, and the second Newton’s law is applied to relate the forces acting on the aircraft to the

inertial acceleration of its center of mass. Such a model is formulated as a set of differential algebraic equations that

must be integrated over a time interval in order to predict the successive aircraft positions, knowing the aircraft initial

state (mass, current thrust setting, position, velocity, bank angle, etc.), atmospheric conditions (wind, temperature),

and aircraft intent (thrust profile, speed profile, route). The Eurocontrol Base of Aircraft Data (BADA) project ([8])

implements such a physical model and provides default values for the models parameters.

In current operations, the trajectory is predicted by using the reference mass massref and the reference (cas1ref ,

cas2ref , Machref) values from BADA. The latter values describe the speed profile of a climbing aircraft.

This paper focuses on the climbing phase because the unknown parameters have a great impact on the trajectory

during this phase. In this paper, we apply machine learning methods to predict: the mass m and the speed profile

parameters (cas1, cas2,Mach). The predicted parameters will hopefully provide better trajectory predictions than

the default BADA values. The predictive models are trained on historical data containing a large number of past

flights collected over the first ten months of the year 2017. For each parameter, a Gaussian distribution is predicted

N (µ(x);σ(x)) where x is a vector of features embedding all the information available about the considered climbing

aircraft. Knowing x, each parameter is supposed to follow the predicted Gaussian distribution. One can interpret µ(x)

as the predicted value and σ(x) as the uncertainty on the predicted value.

The main contribution of this paper is to use machine learning on a large historical data set to predict distributions of

the unknown parameters from the past points of a climbing aircraft. To our knowledge, in previous works, the methods

used to predict distributions of the mass did not use historical data and those using historical data set were not able to

scale to large data set. This paper is an extended version of [9]. In this extended version, Sections V.D and V.E are more

detailed.

The rest of the paper is organized as follows: Section I presents the context and the approach of this study. Section II

describes the data used in this study. Section III explains how the sets of examples used in machine learning are built.

Section IV details the machine learning method used, and the results are shown and discussed in Section V, before the
∗These algorithms are at the root of the strategic deconfliction through speed adjustments developed in the European ERASMUS project ([6]). A

more recent application is the SESAR 4.7.2 (Separation Task in En Route Trajectory-based Environment) project, where lateral and vertical maneuvers
are also used.
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conclusion.

I. Context
Some studies ([10–12]) detail the potential benefits that would be provided by additional or more accurate input

data. In other works, the aircraft intent is formalized through the definition of an Aircraft Intent Description Language

([13, 14]) that could be used in air-ground data links to transmit some useful data to ground-based applications. All

the necessary data required to predict aircraft trajectories might become available to ground systems someday. In the

meantime different methods have been designed to obtain these input parameters from the data that are already available

today.

Many recent studies ([15–20]) used past trajectory points to estimate the aircraft mass using a total energy model

such as BADA. All these methods adjust the mass to fit observed values of energy variation. In [21], a mass estimate

is extracted from the down-linked Extended Projected Profile (EPP) with the aim to facilitate air-ground trajectory

synchronization. [22] fits mean thrust setting profiles using mass estimation methods described in [18] and a set of

flights. In all these studies, the methods provide only an estimate of the mass, they do not provide any information about

the uncertainty related to this estimate.

[23, 24] propose a Bayesian approach to merge several mass estimates into a refined posterior probability distribution.

It assumes that the estimates are independent and the error made on each estimate follows a given Gaussian. Then,

assuming that the true mass follows a Gaussian prior, the posterior is also a Gaussian and can be obtained through

simple calculation. In [25], the mass and the thrust setting are estimated altogether. A Gaussian noise is assumed on the

position and velocity observed. An additive Gaussian noise is also assumed concerning the states evolution equations.

Then, a numerical approximation of the posterior is computed using particle filter techniques. All these techniques do

not take advantage of historical data as opposed to machine learning techniques.

Using Flight Data Recorder (FDR) historical data and machine learning, [26, 27] build a model that predicts the

mass knowing the starting and ending speeds of the takeoff ground roll. Using Gaussian Process Regression (GPR), it

predicts a Gaussian posterior distribution. However, this technique does not scale well with large historical data. That

being said, some techniques ([28]) have been developed to perform a scalable approximate GPR.

Using millions of Automatic Dependent Surveillance-Broadcast (ADS-B) climbing segments, [29] builds models

to predict the mass and the speed profile parameters (cas1ref , cas2ref , Machref) from the past trajectory of a climbing

aircraft. Using Gradient Boosting Machines (GBM), it does not provide any information about the uncertainty related to

the computed prediction.

In this paper, using the same historical data as [29], we want to build a model that predicts a Gaussian distribution

for each parameter. These distributions will be specific to the considered climbing aircraft. The method used must be

able to process a large amount of data as opposed to GPR.
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II. Data Used in this Study
The trajectory data used in this study are from The OpenSky Network ([30]). The OpenSky Network is a

participatory sensor network of ADS-B sensors that covers mainly Europe and North-America. The data used in

this study covers the year 2017. The augmented and sampled climbing segments used in this study are available

at https://opensky-network.org/datasets/publication-data. This data set contains the 10 most frequent aircraft types

according to [31]. These 10 aircraft types cover 63 % of the European air traffic according to [31]. Actually, in a recent

ICAO 8643 document update, the E190 aircraft type designator has been split into two types namely E190 and E195.

This leads us to consider 11 aircraft types. The description of this data set is more comprehensive in [29].

A. From Raw Trajectory Points to Sampled Climbing Segments

From The OpenSky Network, we have downloaded all the raw trajectory points of the year 2017 with a vertical rate

superior or equal to 256 feet/min. These raw points are processed to obtain clean sampled climbing segments.

The points associated to the same aircraft are identified using the ICAO 24-bit values. As only positions with a

positive vertical rate were downloaded, we only have points in climb phase. However, the sequence of points associated

to one aircraft can contain several climbing segments. It may even contain different flights of the considered aircraft.

We have to split this sequence of points into climbing segments. Moreover, we have decided that each climbing segment

must contain at least one raw point every 30 seconds. The purpose of this requirement is to ensure the quality of the

climbing segments we handle in this study.

Consequently, we have split the sequence of points into sub-sequences with no time hole superior to 30 seconds.

These sub-sequences will be our climbing segments. Please note that two climbing segments can come from the same

continuous climb if somehow no position update has been received within 30 seconds during this climb. Conversely,

two different continuous climbs will give us two different climbing segments as the two continuous climbs are most

likely like than 30 seconds apart. These sub-sequences are then sampled using interpolation to obtain one point every

15 seconds.

B. Adding Relevant Information to our Data

Adding information to our data is a mandatory step as the climbing segments do not contain the aircraft type nor the

weather for example. These two information are very important in trajectory prediction.

1. Aircraft Type, Aircraft Variant and Airline Operator

The aircraft type was identified using the ICAO 24-bit address in our segments. Using this address, the aircraft type

was retrieved from several databases. For this purpose, an aircraft database was built using VirtualRadarServer† and its

database writer plugin. If this database did not contain the ICAO 24-bit we were looking for, then we searched it in the
†http://www.virtualradarserver.co.uk/
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World Aircraft Database [32].

In addition to the aircraft type, this database contains the aircraft variant and airline operator. When available, we

have also added this information to our segments.

2. Weather

The National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS)‡ was used to add the

weather to our segments. More precisely, we have used the forecast files, not the analysis files, with a 1-degree grid. We

have one weather grid every 3 hours.

3. Departure and Arrival airports

Using the callsign in our segments and the route database from FlightAirMap§, the departure and arrival airports

were identified.

C. Statistics on the Sampled Climbing Segments Used in Machine Learning

The number of climbing segments obtained for each aircraft type for the year 2017 are presented in the Table 1. It

only includes segments that last more than 750 seconds, as the others were discarded. All these segments will be used to

train or test our models.

Table 1 This table summarizes the number of climbing segments with a duration superior to 750 seconds. All
these climbing segments will be used to train or test our models.

model B738 A320 A319 A321 E195 E190 DH8D B737 CRJ9 A332 B77W

count 1,344,709 1,340,691 564,308 596,749 68,965 39,534 27,867 149,065 27,370 109,534 123,622

Figure 1 plots the sampled climbing segments on a world map. In order to produce this figure, 331 millions aircraft

positions were aggregated. With this figure, we can see that the five continents contains climbing segments. However,

most of them are located in Europe and North-America. Africa contains the fewest climbing segments.

III. Building the Sets of Examples for Our Prediction Problem
Machine learning techniques use a set of (x, y) examples to build a model predicting y from x. This section describes

how we obtain such a set of examples from the climbing segments. In our prediction problem, x is the information

available at the time the prediction is computed and y is the mass and the speed profile (cas1, cas2,M).
‡https://www.emc.ncep.noaa.gov/index.php?branch=GFS
§https://data.flightairmap.com/
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Fig. 1 Climbing segments plotted on a world map. The mean altitude can be read from the color. This figure
is reprinted from [29] with permission from Elsevier.

A. Extracting Trajectory Samples from One Climbing Segment

In this study, knowing the current position and p = 9 consecutive past points, we want to predict the future q points.

In this context, a trajectory sample is defined by the current position, the p past points and the q future points. The

trajectory samples will be used to train and evaluate our predictive models. These trajectory samples are built from the

climbing segments. Actually, we build several trajectory samples from one climbing segment.

Considering one climbing segment with n points, a trajectory sample is built from p + q + 1 consecutive points

chosen among the n segment points. Hence, from one segment we build n− p− q trajectory samples. Figure 2 illustrates

two different trajectory samples (with q = 40) extracted from the same climbing segment.

B. Building One Example from One Trajectory Sample

This subsection describes how the mass and the speed profile (cas1, cas2,Mach) can be extracted from one trajectory

sample. These values will be the “y” of one example.

1. Adding the Mass

For each trajectory sample, the mass is estimated using the q = 40 future points. The method used to extract the

mass from these future points is the one described in [18]. This method assumes a max climb thrust. The mass is

estimated by minimizing the difference between the modeled power and the observed energy variation.

We can compute the energy variation Ev on the past points using the derivative of the airspeed dVa

dt and the derivative

of the pressure altitude dHp

dt . Using a model of forces such as BADA, Power can be computed as a function of Hp , Va,

6



0

20000
H

p [
ft]

Trajectory Sample 1

past points
current point
future points
not used

0 200 400 600 800
time [s]

0

20000

H
p [

ft]

Trajectory Sample 7

past points
current point
future points
not used

Fig. 2 With q = 40, two different trajectory samples extracted from the same climbing segments. This figure
is reprinted from [29] with permission from Elsevier.

the temp T and the mass m. According to Newton’s laws, these two quantities are equal. The mass to be learned will be

the one minimizing the sum defined by equation (1) where i = 10 is the index of the current point in the trajectory

sample and ff is the BADA function modeling the fuel consumption. As described in [18], minimizing such a sum can

be done efficiently by finding the roots of a fourth degree polynomial.

m10 =argmin
m10

10+q∑
i=10

(Poweri(Hpi,Vai,Ti,mi)

mi
−

Evi

mi

)2

(1a)

with mi+1 = mi − ff
(
Va,Hp,T

)
(ti+1 − ti) (1b)

The mass parameter extracted using the equation (1) will be the “true” parameter we want to predict. We have also

applied this technique to estimate the mass on the past points. This mass estimated on past the points is added to the

explanatory variable.

2. Adding the Speed Profile

The speed profile is modeled in BADA with three parameters cas1, cas2 and Mach. This speed profile specify the

TAS Va for a given altitude Hp and a temperature T . The aircraft climbs at a constant Calibrated AirSpeed (CAS) equal

to cas1 from 3,000 ft to 10,000 ft. Then, it accelerates till it reaches cas2. It climbs at a constant CAS cas2 till it reaches

the Mach number Mach. Then it climbs at a constant Mach number.

We want to extract cas1, cas2 and Mach from the points in the trajectory sample. We can see that extracting a speed

profile requires points from low altitude to high altitude. As a consequence, to extract the speed profile, we consider

7



all the points in the climbing segment, not only the points in the trajectory sample. Hence, all the trajectory samples

coming from the same climbing segment will have the same common (cas1, cas2,Mach) minimizing the function e

given by the equation (2).

e(cas1, cas2,M) =
n∑
i=1

(
Va(cas1, cas2,M; Hpi,Ti) − Vai

)2 (2)

The (cas1, cas2,Mach) parameters extracted using the equation (2) will be the “true” parameters we want to predict.

On Figure 3, a climbing segment and the fitted speed profile are plotted. This climbing segment was selected among

the climbing segments with at least 3 points above the crossover altitude and 3 points below 10,000 ft. Among these

segments, the climbing segment selected is the one with the median error. Thus, the speed profile accuracy in Figure 3

is quite representative of what can be obtained through this fitting process.
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Hp [ft]
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Climbing Segment Points
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Fig. 3 A climbing segment and the fitted (cas1, cas2, M) speed profile. This figure is reprinted from [29] with
permission from Elsevier.

C. Explanatory Variables

This subsection describes the explanatory variables, the “x” variables, used to predict the the mass and the speed

profile. We use 68 explanatory variables summarized in Table 2.

These variables include information on the aircraft motion. They also include information on the weather: the

temperature and wind at the current point, and the temperature every 1,000 m starting from the current altitude Hp to

the altitude Hp + 11,000 m. This is useful as the temperature does not follow a temperature profile corresponding to an
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ISA atmosphere even when this temperature profile is corrected with a temperature differential ∆T . The temperature at

Hp = 0 was also added. The temperature can influence the engine performance. It also impacts the geopotential altitude

H between two given geopotential pressure altitude Hp (see BADA user manual). It also impacts the speed profile.

As a consequence, depending on the temperature gradient, different energy share factor will be used, hence different

climbing rate.

For each example, we also have categorical variables like the airline operator, the aircraft type variant, the departure

and arrival airports and the day of the week. This last variable was included to make use of a possible seasonality. The

month can also provide some insight on the seasonality however our data only covers one year so the month was not

included.

When the departure and arrival airports were known we computed the trip distance between these two airports.

This trip distance will provide information on the fuel load and hence the mass of the aircraft which affects the climb.

The departure airport is used because the constraints that apply to the climbing aircraft might depend on the airport

considered.

Table 2 A summary of the features used to predict the unknown parameters.

feature description count

ca
te
go
ric

al

departure and arrival airports 2
aircraft type variant 1
airline operator 1
day of the week 1
callsign 1
ICAO 24 bit Mode-S address 1

nu
m
er
ic
al

distance between airports 1
temperature at Hp = 0 1
mass estimated on past points and error on past points 2
track angle at the current point 1
ground velocity at the current point 1
north and east wind components 2
longitude and latitude at the current point 2
vertical speed at the current and past points 10
altitude Hp at the current and past points 10
airspeed Va at the current and past points 10
energy variation between the current and past points 9
temperature from current altitude Hp to Hp+11,000 m 12
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IV. Machine Learning
This section describes some useful machine learning notions and techniques. For a more detailed and comprehensive

description of machine learning techniques, one can refer to [33, 34].

A. Statistical inference: learning from examples

Let us consider a set of n examples S = (xi, yi)16i6n coming from independent draws of the same joint distribution

(X,Y ). We want to deduce properties on the distribution Y |X = x from the examples. This distribution is useful to

obtain knowledge on y knowing x. Let us consider the probability density function of this distribution p(y |X = x; θ)

where θ is an unknown parameter. Choosing a value for this parameter is choosing a model for Y |X = x.

We choose θ maximizing p(S | θ), the probability to generate the samples S for a given θ. It is the maximum

likelihood estimate. The expression of p(S |θ) is easy to obtain:

p(S |θ) =
n∏
i=1

p(yi |X = xi; θ)p(xi)

As the p(xi) are constants, maximizing p(S |θ) is minimizing the Negative Log-Likelihood (NLL):

NLL(θ; S) = −
n∑
i=1

log(p(yi |X = xi; θ))

Assuming Y |X = x ∼ N (µ(x; θ), σ(x; θ)), this expression becomes:

NLL(θ; S) =
n∑
i=1

1
2

(
yi − µ(xi; θ)
σ(xi; θ)

)2
+ logσ(xi; θ) + log

√
2π

The value µ(x; θ) is the predicted mean for Y and the value σ(x; θ) is the predicted variance. It provides a precious

information on the uncertainty of the prediction.

As a side note, if we assume that the variance is a constant value σ(x; θ) = σ0 (homoscedasticity), minimizing the

NLL is equivalent to minimizing the mean squared error.

B. Predictive Uncertainty

Gaussian Process Regression ([35]) is a powerful non-parametric framework that handles some sort of prior

probability over functions. Using this prior and the Bayesian formalism, this framework naturally derive a Gaussian

distribution for Y |X = x. The exact computation of such a model requires O
(
n3) operations which might be intractable

for large data set like the one we use.

With the recent successes of the neural networks in several domains, some works ([36, 37]) introduce simple

modifications to obtain both the predicted value and the predicted uncertainty. Ideally, the predicted value shall be equal
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to E[Y |X = x] whereas the predicted uncertainty shall be equal to Var[Y |X = x].

In [37], the neural network has two output vectors, the vector µ (x; θ) that shall predict E[Y |X = x] and the vector

σ2 (x; θ) that shall predict Var[Y |X = x]. This network is trained by minimizing the Negative Log-Likelihood NLL.

Actually, the final model is not a single neural network but an ensemble of m networks. These networks are obtained

by using a different random initialization with the same architecture and training set. As a consequence, with these

m networks, for a given x, we obtain m predicted values and uncertainties: µi(x) and σi(x) with i ∈ J1; mK. In

order to combine these predictions into one, we consider that Y |X = x follows a mixture of m Gaussian distributions

N (µi (x) , σi (x)) with similar mixture weights. Then the predicted value and uncertainty are the mean and variance of

this mixture and they can be computed using a simple formula combining all the predicted µi(x) and σi(x).

C. Method Used in this Study

In this study we used the method developed in [37]. We use a fully connected feed forward network with several

hidden layers. The Figure 4 depicts the architecture of this neural network (NN) where the green blocks are vectors and

the red blocks are functions applied on these vectors. The activation function is a LeakyReLU function ([38]). The

architecture of this NN is pretty standard except we have added a softplus¶ function on some components of the output

vector and we have used embeddings to encode categorical inputs.

The softplus function is used to always obtain positive values for the predicted standard deviations.

Each categorical variable such as the callsign must be encoded into a vector of floating point numbers. This is done

by using embeddings. One embedding maps each categorical value of a categorical variable to one vector of weights.

If we encode n categorical values with vectors of d components then we have nd weights for the embedding of the

considered categorical variable. These weights are randomly initialized and then trained by the optimization procedure

just like the other weights of the network. The size of the vectors d is an hyper-parameter of the NN. This approach has

been successfully used in [39] to predict the destination of a taxi based on the beginning of its trajectory.

To improve the performance, the training process uses dropout ([40]) and batch normalization ([41]) blocks.

The batch normalization blocks are inserted after the LeakyReLU blocks. The dropout blocks are inserted after the

embedding blocks.

The dropout blocks are used to prevent over-fitting. At each iteration of the training process, only a randomly chosen

sub-network is used to compute the prediction and hence receive the weights updates. Conceptually, an ensemble of

networks is trained altogether in an efficient way. After the training phase, the whole network is used to compute the

prediction on new data.

The batch normalization blocks are used as a reparametrization method improving the optimization process. The

gradient descent technique relies on a first-order approximation of the loss as a function of the weights. As a first-order
¶The softplus function is x 7→ log (1 + exp x). This function always returns a strictly positive value.
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approximation, it hides the interaction between the weights. The batch normalization block aims to reduce the interaction

between the weights of the different layers. To do so, all the weights of the layers before one batch normalization block

will have no impact on the mean and variance of the vector returned by the batch normalization block: the mean and

variance of the returned vector are only controlled by two additional weights inside the batch normalization block.

The training phase consists in finding the weights minimizing the negative log-likelihood NLL. It is done using

AdamW, a gradient descent method with adaptive learning rate and weight decay ([42]).

The initial learning rate is found via the search method described in [43]. The remaining hyper-parameters are

the learning rate decay, the embedding dimension, the weight decay, the number of hidden layers, the number of

hidden units for each hidden layers and the dropout rate. We tested 200 different sets of hyper-parameters. The tested

hyper-parameters are randomly drawn. For instance, the number of hidden layers is drawn inside J1; 10K using a discrete

uniform distribution. Such a random search is empirically and theoretically more efficient than a grid search ([44]). The

Table 3 present the hyper-parameter selected by the random search. The architecture column describes the number of

hidden layers used and the number of hidden units at each layer. The embedding dimension is the dimension of the

dimension of the vector embedding the categorical variables. The dropout rate is the rate of the dropout applied to

the embedded vector. We can see that a large dropout is always selected. Using these hyper-parameter 12 models are

trained with a different Random Number Generator (RNG) seed. These models are then ensembled.

Table 3 Hyper-parameters selected by the random search.

aircraft type architecture embedding dimension dropout rate

A319 700->500->100 6 0.59
A320 700->500->100 6 0.59
A321 700->500->100 6 0.59
A332 500->100->70 6 0.78
B737 600->500->200->40 3 0.69
B738 700->500->100 6 0.59
B77W 500->100->60->60 5 0.49
CRJ9 300->70->50->50->40 5 0.66
DH8D 400->400->70->50 7 0.53
E190 500->500->400->70->20 7 0.71
E195 500->100->70 6 0.78

For each hyper-parameter, the neural network is trained on trajectories from January to August. Then it is tested on

the trajectories from September to October, and the hyper-parameters having the best result on these trajectories will be

the chosen one. Then using this selected hyper-parameters, the final model is the one trained on the trajectories from

January to October.

All the code is implemented using the PyTorch library ([45]).

12

https://pytorch.org


callsign . . . Mode-S address

embedding

. . .

. . .

. . .

embedding

. . .

sum

. . .

. . .

Hp . . . Va

concatenate

. . .

Linear

LeakyReLU

. . .

...
. . .

Linear

µmass µcas1 µcas2 µMach

softplus

σmass

softplus

σcas1

softplus

σcas2

softplus

σMach

merged input

hidden layer 1

hidden layer n

numerical input

embedded categorical input

Fig. 4 Architecture of the neural network we used. The manipulated vectors are in green whereas the
operations applied to these vectors are in red.
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V. Results
All the results presented in this section have been computed on data not used in the model building process. These

results have been computed from all the trajectories in the months November and December of the year 2017. The ten

first months of 2017 were used to build the predictive models. The training set uses trajectories recorded from January

to August, the validation set use trajectories recorded in September and October and finally the test set use trajectories

recorded in November and December. It is a simple hold-out validation.

The k-fold cross-validation usually provides a better assessment of the generalization error than a simple hold-out

validation, nevertheless we chose the second approach here, for very specific reasons. The distribution of the trajectories

might change through time if for instance new procedures are applied at a specific airport. Using a cross-validation that

randomly places the examples in the folds will produce folds with the same distribution. It will mask the non-stationarity

of the problem we are studying and the performance evaluation obtained will be too optimistic. For this reason, we

chose a more practical approach, and decided that the model should be trained on a given period of time, and then tested

on a later period of time, as would actually happen if the method was used in operations. If this performance evaluation

is biased, it will be pessimistically biased.

All the statistics in this section have been computed on the test set, the trajectories recorded in November and

December.

A. Prediction of the Mass and Speed Profile

The predicted parameters are the predicted values (µmass(x), µcas1 (x), µcas2 (x), µMach(x)). These predicted values are

compared with the “true” parameters extracted from the future trajectory. We will compare the neural network (NN)

approach to the Gradient Boosting Machines (GBM) approach method. This latter has been tested in [29]. Compared

with mean values, the GBM method have typically reduced the Root Mean Squared Error (RMSE) by 56 %, 49 %, 39 %

and 15 % respectively for the mass, cas1, cas2 and Mach.

The Table 4 gives the RMSE obtained with the method NN presented in this paper and GBM. The RMSE relative

difference between NN and GBM do not exceed 12 %. Overall, NN performs slightly worse than GBM with a larger

RMSE. This was somewhat expected as deep neural networks typically underperform GBM on many tabular-dataset

learning tasks ([46]).

B. Prediction Interval

Alongside the predicted factor µ(x), one might want to have a value quantifying the uncertainty concerning the

predicted value. In our method, this uncertainty is quantified by the predicted standard deviation σ(x). The relevance

of this predicted uncertainty is difficult to evaluate. The “ground truth” uncertainty is not available in our data-set as

opposed to the “ground truth” value to be predicted y.
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Table 4 RMSE obtained on the test set when predicting the parameters.

factor mass [kg] cas1 [kt] cas2 [kt] Mach [-]
method GBM NN GBM NN GBM NN GBM NN

A319 2362 2387 8.31 8.76 9.50 9.58 0.0174 0.0175
A320 1929 1953 10.10 10.58 8.85 8.92 0.0197 0.0199
A321 2212 2234 8.42 8.64 9.48 9.49 0.018 0.0181
A332 8014 8241 9.66 9.92 7.35 7.36 0.0229 0.0228
B737 2511 2558 6.47 6.97 8.20 8.21 0.013 0.013
B738 2508 2532 8.44 9.17 7.84 7.89 0.0148 0.0148
B77W 10742 10621 7.11 7.50 5.47 5.51 0.0153 0.0154
CRJ9 1294 1283 9.10 9.24 7.44 7.42 0.0202 0.0205
DH8D 738 720 6.95 7.04 11.53 11.43 0.0236 0.0233
E190 2539 2604 8.22 8.61 7.09 7.00 0.0199 0.0199
E195 2126 2134 7.59 7.65 7.45 7.37 0.025 0.025

The predicted uncertainty σ(x) can be used to build a prediction interval Iγ(x) that should contain the true parameter

with a probability γ:

P
(
Y ∈ Iγ (x) |X = x

)
= γ. (3)

Assuming that Y |X = x ∼ N (µ(x), σ(x)), the prediction interval Iγ(x) can be built as an interval centered on the

mean µ(x) with a size proportional to the standard deviation σ(x). Hence the interval can be defined as:

Iγ(x) =
[
µ(x) − rγσ(x); µ(x) + rγσ(x)

]
with rγ a value that depends only on the probability γ chosen. For instance, in order to match the probability γ = 0.95,

rγ = 1.96 is chosen.

In order to test that the predicted intervals satisfy the equation (3), we can compute the Prediction Interval Coverage

Probability (PICP): PICPγ = 1
n

∑
(x,y)∈test set

1Iγ (x)(y), where 1Iγ (x)(y) = 1 if y ∈ Iγ(x) and 0 otherwise.

The obtained PICP are presented in Table 5. For γ = 0.90, the PICP is superior to γ for the vast majority of the

aircraft and parameters considered. For γ = 0.95, the situation is more complex. For the mass and cas1, the PICP is

superior to γ for most aircraft whereas for cas2 and Mach, the PICP is inferior to γ for most aircraft.

For safety purposes, having the PICP superior to γ is more desirable than the other way around. However, having

the PICP significantly smaller or larger than γ is a problem as it is not expected from the theory. In our case, this might

be explained by the fact that the prediction intervals are built using the assumption that the standardized error z = y−µ(x)
σ(x)

follows a normal law N(0, 1). However, this assumption is not true: the z distribution has a slightly thicker tail than the

normal distribution. This assertion is supported by the standardized kurtosis of z ranging from 0.2 to 42.6 depending on
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the considered aircraft and parameter.

Table 5 The statistics computed are the PICPγ for γ = 0.90 and γ = 0.95.

factor mass [%] cas1 [%] cas2 [%] Mach [%]
γ 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

A319 92.0 95.5 93.3 95.7 91.0 93.6 90.6 94.1
A320 92.1 95.7 93.4 95.8 91.1 93.8 91.5 94.4
A321 91.5 95.5 93.3 95.6 90.5 93.8 91.5 94.4
A332 92.8 95.9 93.5 95.5 91.7 94.6 91.8 94.3
B737 91.0 94.7 93.8 96.1 91.5 94.5 90.9 94.1
B738 91.8 95.3 93.7 96.1 91.7 94.7 92.2 94.9
B77W 91.9 95.5 94.5 96.8 91.6 94.0 90.9 93.9
CRJ9 90.3 94.5 92.1 94.8 90.8 93.8 92.3 95.5
DH8D 88.8 93.6 92.7 95.7 88.7 93.1 88.4 93.8
E190 88.1 92.4 92.3 94.8 91.0 94.1 91.4 94.8
E195 90.9 94.9 92.1 94.5 90.4 93.7 90.2 94.5

Roughly speaking, the PICP is competing with the interval size, the larger the interval is, the larger the PICP is. We

want PICP large and the interval small. With our method NN, the size of the interval depends on the considered x. Let

us compare this method to one for which no information are extracted from x: the interval size will be the same for all

examples (x, y). Let us consider the GBM method, for each aircraft and parameters, we compute s such that:

P(Y ∈ [yGBM − s; yGBM + s] |X = x) = PICPγ, (4)

where PICPγ is the PICP obtainedwithNNand yGBM is the predicted value byGBM.The interval [yGBM − s; yGBM + s]

will be the one predicted by GBM.

With these choices, we can compare the size of intervals that have the same PICP for NN and GBM. The intervals

computed with NN will vary in size depending on x whereas the ones computed with GBM will have the same size.

Table 6 presents the mean size of the intervals. We have seen in Section V.A that NN have a slightly larger RMSE

than GBM. Interestingly enough, the mean size of the intervals predicted by NN is smaller than the one predicted by

GBM. Compared with GBM, the interval mean size is reduced by 4 % on average for the mass. This reduction is larger

for the speed profile parameters with an average reduction of 31 %, 16 % and 6 % for cas1, cas2 and Mach respectively.

As opposed to the mass, the airspeed is a quantity directly transmitted through ADS-B. Thus, if the aircraft is in the

cas1 phase then the airspeed in the input x corresponds to the airspeed value cas1. When plotted against the altitude, the

σcas1 (x) is usually very low when the altitude is inside the cas1 phase. The same goes for the cas2 and Mach variables.

For this reason, the mean interval reduction is greater for the speed profile parameters than for the mass. The cas1 phase

is only delimited by the altitude whereas the delimitation of the cas2 and Mach phases is less clear. This might explain
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why the reduction for cas1 is larger than the one for cas2 and Mach.

Table 6 Mean size of the predicted interval for γ = 0.90. The intervals built with NN and GBM have same
PICP.

factor mass [kg] cas1 [kt] cas2 [kt] Mach [-]
method GBM NN GBM NN GBM NN GBM NN

A319 7435 7176 31.02 21.93 32.13 26.64 0.0554 0.051
A320 6435 6290 40.29 26.61 29.62 25.16 0.0644 0.0588
A321 7424 7258 29.29 20.38 32.79 26.78 0.0582 0.0543
A332 28260 26712 38.65 23.98 25.41 21.33 0.0743 0.0663
B737 7594 7617 23.47 17.11 29.07 23.63 0.0405 0.0385
B738 8202 7837 34.02 21.99 28.03 22.72 0.0468 0.0446
B77W 34892 32667 28.99 16.96 17.66 15.96 0.0452 0.045
CRJ9 4142 4039 32.17 22.13 24.49 20.46 0.072 0.0665
DH8D 2217 2129 26.06 18.11 37.30 32.99 0.074 0.0714
E190 7499 6834 29.33 22.08 24.80 20.01 0.0643 0.0621
E195 7127 6703 26.52 19.42 25.00 20.62 0.0792 0.0764

C. The Observed RMSE is Close to the Predicted σ(x)

In the previous subsection, we have computed statistics averaged over the whole test set. In this subsection, we

want to compute statistics conditionally on the predicted σ(x). Specifically, we want to empirically verify that for each

σ > 0, E[(Y − µ(X))2 | σ(X) = σ] = σ2.

Let us consider S(σ) a subset of the test set containing examples with σ(x) similar to a given σ for the considered

aircraft and parameter:

S(σ) = {(x, y) | (x, y) ∈ test set, |σ(x) − σ | < εσ}, (5)

where εσ is used to control the size of S(σ). For each σ, the εσ is chosen in order to have 1 % of the test set inside

S (σ).

The RMSE computed on the error made for the examples in S (σ) should be close to σ. The Figures 6 and 5 are

helpful to investigate this matter. Each figure contains two plots, the bottom plot is the distribution of σ(x) for x in the

test set and the top plot is the observed RMSE of the examples in S(σ) as a function of σ. This curve is, in theory, close

to the “y=x” red curve. For both figures, it is the case except for very high‖ σ. Nevertheless, for a very high σ, the

associated RMSE is also very high.

Roughly speaking, in order to be informative, the distribution of the σ(x) must be as spread as possible. If σ(x) is

the same for all the x then it will not provide any information.

Concerning the parameter cas1, with the bottom plot of the Figure 5, we can see that there is a peak of density for
‖For very high σ, εσ is very large in order to have 1 % of the data inside S(σ) and the mean of {σ(x) | (x, y) ∈ S(σ)} is close to σ − εσ and

far from σ.
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low σcas1 value. This means that, for a large number of examples, our neural network is able to identify situation where

the expected RMSE is very low, much lower than the RMSE on the whole test set. This observation is valid for cas2 and

for Mach to a lesser extent.

Concerning the mass, with the bottom plot of the Figure 6, we can see that there is a large peak around the RMSE of

the whole test set. Our neural network is less able to identify situations where the expected RMSE is low or high. Again,

as said before, the past airspeed and altitude are included in x, making the prediction of cas1 quite certain if the altitude

is in the range of the cas1 phase. For the mass, it is more difficult to identify situation where the predicted value will be

certain or uncertain.
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Fig. 5 For the A320, the bottom plot is the distribution of σcas1 (x) and the top plot is the RMSE of the examples
in S

(
σcas1

)
as a function of σcas1 .

D. Trajectories for Which a Low/High Uncertainty is Predicted

In this subsection we investigate the situations tagged as low or high uncertainty by the neural network. The Figure 7

and Figure 8 present situations associated with respectively the lowest and the highest mass uncertainty σmass for the

B738. The top plot is the energy-rate as a function of the altitude. The bottom plot is the predicted standard deviation

σmass (xt ) at time t as a function of the altitude Hp(t) where xt is a vector of explanatory variables when the prediction is

computed at time t. For instance, this vector will contain the current altitude Hp(t) but also 10 past altitude Hp(t − i∆t)

where i ∈ J1; 10K and ∆t = 15 s. In addition, we only consider date t for which there is at least 600 s of climb remaining.

For these reasons, the altitude range of the bottom plot is narrower than the altitude range of the top plot.

In Figure 7, the five trajectories associated with the lowest predicted uncertainty for the mass (σmass(x)) are the ones
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Fig. 6 For the A320, the bottom plot is the distribution of σmass(x) and the top plot is the RMSE of the examples
in S (σmass) as a function of σmass.

with an energy variation decreasing smoothly with the altitude. This is the typical energy variation profile that can be

obtained by using BADA.

In Figure 8, the five trajectories associated with the highest predicted uncertainty are much more irregular. For two

of these trajectories, the pink and the red, the energy-rate is higher than the typical trajectory. For the remaining ones,

the enery-rate follows a trend similar to a typical trajectory except the energy-rate variations around this trend are large.

These observations can also be made for the other aircraft types. The situations associated with the highest predicted

uncertainty for the mass are the ones where the energy-rate follows an irregular profile and/or the energy-rate is much

lower or much higher than the typical profile. This behaviour is in line with what one could except of a predictive

uncertainty model.

E. Trajectories for Which the Error is High Compared to the Predicted Uncertainty

In this subsection we investigate the situations for which the error made is high compared with the predicted

σ(x). These situations are the ones where the observed y have a low probability assuming that this y was drawn from

N (µ (x) , σ (x)):

P (Y = y | X = x) =
1

σ(x)
√

2π
exp−

1
2

(
y − µ(x)
σ(x)

)2
. (6)

The plots in the Figure 9 are as a function of the date t. The top plot presents the ROCD, the middle plot presents the

predicted standard deviation σmass(x) and the bottom plot presents the log of the probability P (Y = masst | X = xt ).
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Fig. 7 For the B738, the five trajectories in the test set with the lowest σmass are plotted.
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Fig. 8 For the B738, the five trajectories in the test set with the highest σmass are plotted.
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The five trajectories in this figure are the ones with lowest P (Y = masst | X = xt ) for the B738 where masst is the

“ground-truth” mass to predict.

In Figure 9, we plot the five trajectories for which the “ground-truth” mass masst is very unlikely according to the

predicted distribution.

Using the top plot of Figure 9, we can see that almost all these trajectories begin with a typical energy-rate profile

and then switch to a constant low ROCD after some time. With the middle plot, we can see that the predicted σ(x) is

low until the vector xt contains some points inside the constant low ROCD phase. With the bottom plot, we can see that

the probability decreases to its lowest point at the separation between the two phases: all the past points in xt are inside

the “typical ROCD” phase whereas all the future points are inside the constant low ROCD phase. Then, this probability

increases w.r.t. t as the predicted σ(xt ) also increases. This demonstrates that the neural network is able to modulate the

predicted standard deviation depending on the past trajectory used to compute the predicted mass µ(xt ).

This shift from a typical climb to a constant low ROCD climb has an impact to the “ground-truth” mass to be

predicted masst . The method used to extract these “ground-truth” masses from the future points assume a max-climb

thrust. However, during a low constant ROCD phase with a (cas,Mach) speed profile, this assumption is not true as the

energy rate used is much lower. Thus, using this wrong assumption on such a phase, the extracted mass is quite heavy

compared with the typical extracted mass.

The neural network does not anticipate the shift from a typical climb to a constant low ROCD climb and predicts a

typical mass with a good confidence. It is not surprising that the neural network is unable to anticipate this type of

climb shift. It is likely that there are no obvious clues inside past points that a type of climb shift will occur. In addition,

this kind of shift does not happen for the majority of the trajectories. For the B738, only 2.6 % of the trajectories have a

constant ROCD for at least 2 minutes.

All these observations can also be made for the A320, A319, B77W and B737. For the other aircraft types, it is

more difficult to analyze. Some trajectories have a temporary low constant ROCD climb phase, some trajectories have a

drop or a surge of energy rate, and these variations are difficult to explain.

Conclusion
In this study we have tested machine learning methods using millions of climbing segments coming from

The OpenSky Network. These climbing segments were completed with weather forecasts, aircraft types and

variants, departure and arrival airports, estimated masses and speed profiles. The filtered and augmented data

set is available at https://opensky-network.org/datasets/publication-data. The machine learning code is available at

https://github.com/richardalligier/atm2019. Inside the ATM trajectory prediction community, we hope that sharing the

data set and the machine learning code will enable scientifically sound comparisons based on the exact same data set.

Using this data set, we used an ensemble of neural networks to predict distributions for the parameters of a
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climbing aircraft: the mass and the (cas1, cas2,Mach) speed profile values. These predictive distributions are Gaussian

distributionsN (µ(x);σ(x))where x is all the information we have about the considered aircraft at the time the prediction

is computed.

The RMSE associated with the predicted values µ(x) are slightly larger than the one observed using GBM ([29]).

Interestingly enough, despite a slightly larger RMSE, the mean size of the prediction interval provided by the neural

networks is slightly smaller than the one built with GBM, for the same actual coverage probability. For cas1 and cas2,

the mean size is reduced by 31 % and 16 % respectively.

It has been demonstrated that the examples with a similar predicted σ(x) are associated with an observed RMSE

close to σ(x). This can be useful to decide whether a prediction can be trusted or not.

These distributions could also be used to feed a method that convert distributions on aircraft parameters to

distributions on future aircraft trajectory. Such a method is described in [47]. The obtained distribution on future

trajectory could be used for conflict detection. It could also be used to compute a distribution of possible Top Of Climb.

In future works, it could be interesting to build predictive distributions that do not assume a Gaussian distribution

nor that the unknown parameters are independent from each other.
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