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Abstract

One shows that the Feynman’s Path Integral designed for quantum mechanics has an anal-
ogous in classical mechanics, the so-called (min,+) Path Integral. This former is build on
(min,+)-algebra and (min,+)-analysis which permit to handle in a linear way non-linear prob-
lems occurring in mathematical physics. The Hamilton-Jacobi equations and their solutions
within this mathematical framework, are introduced and yield to a new interpretation expressed
in a duality between action field and particle.

1 Introduction

Path integral formalism already exists in classical mechanics[42]. In the 1920’s, N. Wiener intro-
duced his real valued functional integral for modeling diffusion and Brownian motions[8]. In 1933,
P. A. M. Dirac extended this approach to the use of the Lagrangian in quantum mechanics rather
than the Hamiltonian[45]. R.P. Feynman proposed in 1948[15, 12] a complete method to achieve
Dirac’s program and to retrieve quantum mechanics laws. He showed how the semi-classical limit
can be obtained easily within this formalism and that classical mechanics is an approximation of
the quantum one[13]. Schrödinger equation can be viewed as a diffusion equation with an imaginary
diffusion constant, and the Feynman’s Path Integral (FPI) can be thus considered as an analytic
continuation of Wiener’s Path Integral (WPI). FPI is a well-designed mathematical tool for quantum
theory that permits to generalize the least-action principle of classical mechanics[12, 42]. Instead
of the classical notion of a single and unique classical trajectory for a system, it uses a functional
integral, a sum over histories, meaning a sum over an infinity of quantum-mechanically possible
trajectories, in order to compute a quantum probability amplitude. The path integral formalism
also relates quantum and stochastic processes, and this has been the starting point and the basis in
the 1970s of the unification of Quantum Field Theory and Statistical Field Theory of a fluctuating
field near a second-order phase transition.
Tropical and idempotent mathematics find their roots in operations research, theoretical computer
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sciences, automation, and at interface between boolean algebra and real numbers arithmetic. The
term tropical has been introduced in honor of the Brazilian mathematician Imre Simon (1943-
2009). The main idea driving those new and original mathematics is to develop algebra and anal-
ysis on structures which are not fields or rings, but on dioids or semi-rings, eventually semi-fields.
Twenty years before the introduction of (min,+)-analysis by V. P. Maslov et al in 1987 and 1992
[38, 44, 16] under the name idempotent analysis, some mathematicians and computer scientists have
first defined and used (min,+)-algebra and (max,+)-algebra to solve problems in operation research
[9, 22, 43, 40, 7]. This was achieved by replacing usual operations such as + and × with min or
max. Some authors have shown that if ones extends (min,+)-algebra to some similar and com-
parable algebraic structures such as Peteanu’s semi-groups, Benzeken pseudo-lattices, and Carré’s
semi-rings, those approaches can be applied to the resolution of many path-finding problems in
graphs [25, 27, 26, 29, 30, 28].

In this article, one shows how idempotent mathematics, particularly algebra and analysis in dioids
can be the right frameworks to develop powerful and versatile tools for another approach of least
action principle in classical mechanics. This permits to reconsider the definition of action according
to the initial and final limit conditions and to summarize it in a generalization of the system physical
action. One introduces a new type of path integral which proves that this formalism already exists
in classical mechanics, and yields to a new interpretation of the duality between particle and action.
In the section (2), some interesting idempotent algebraic structures are presented in order to explain
that their deformations according to a real parameter can transform a non-linear problem described
in a real field, into a linear problem expressed within those deformed frameworks. The example
of shortest path research in a graph is exhibited and solved into a particular dioid structure, the
so-called (min,+) dioid. It yields naturally to a continuous extension which expresses nothing more
than the least action principle in physics. The section (3) introduces some elements of functional
analysis in (min,+) dioid, such as integration, scalar product, convolution and Fourier-Legendre
transform. In section (4), one reconsiders the derivation of motion equations of a system from the
least-action principle according to the initial and final conditions, and the definition of the involved
actions, making by this way distinction between Hamilton-Jacobi action, and Euler-Lagrange’s one.
The section (5) introduces a new kind of path integral, typically expressed within (min,+) dioid
and well-suited for describing the least action principle in classical mechanics. It yields to an inter-
pretation of least-action principle in terms of duality between Hamilton-Jacobi action and particle
nature. The semi-classical limits of quantum particles description are exhibited and discussed as
well. We end in the last section (6) with a conclusion summarizing results and opening perspectives
and promising developments.

2 Elements of idempotent algebra

Many fields of mathematics have been built and based on groups, rings and fields theories. Those
structures try to define inverse of elements for given operations and permit to solve some algebraic
equations. Many examples in sciences don’t allow such constructions, and one has often to deal
with restricted algebraic structures where inversions are not always possible and well-defined. Nev-
ertheless, those ”less sophisticated” mathematical frameworks are promising theoretical fields of
research since they have a huge potential of modelisation of phenomena occuring in physics, infor-
matics, economics, ... . The first three examples of such algebraic structures are Boolean Algebra
for logic, Kleene’s Algebra in theoretical informatics for formal languages and automation theory,
and (min,+) dioid for shortest path research in a graph.
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2.1 Dioids, semi-rings, and semi-fields

The term dioid takes its origin in the work of M. Gondran and was in the book of J. Kutzman
about Network Theory [23], in which he described an algebraic structure made from two monoids.
Those unconventional structures, semi-rings, semi-fields and dioids [38, 44, 46], come up in many
applications such as optimal control, graph theory, classical, quantum and statistical physics for
example. They are the basic object of the so-called idempotent mathematics. Let us remind first
some algebraic definitions and properties.

Definition 1 - A set X 6= ∅ endowed with two laws ⊕ and ⊗, (X,⊕,⊗), is called a semi-ring if
the following conditions are verified :

• ⊕ and ⊗ are associative binary operations,

• ⊕ is commutative, and ⊗ is distributive with respect to ⊕,

• ∃ e⊗ ∈ X such that e⊗ ⊗ x = x⊗ e⊗ = x, ∀x ∈ X,

• ∃ e⊕ ∈ X such that e⊕ 6= e⊗ and e⊕ ⊕ x = x, and e⊕ ⊗ x = x⊗ e⊕ = e⊕, ∀x ∈ X.

Remark 1 Those properties express the fact that (X,⊕) and (X,⊗) are respectively commutative
monöıds with neutral elements e⊕, and e⊗, besides the distributivity of ⊗ according ⊕, and the
absorbing property of e⊕ for the ⊗ operation.

Definition 2 - For a semi-ring (X,⊕,⊗), if all elements x 6= e⊕ ∈ X are invertible for ⊗, it is
called a semi-field. Moreover, if x⊕x = x for all x ∈ X the semi-ring (semi-field) will be qualified
as idempotent semi-ring (semi-field).

Definition 3 - The binary relation ©≤ defined on monöıd (X,⊕) by x©≤ y ⇔ ∃z ∈ X, y = x⊕ z is a
pre-order relation (reflexive and transitive) called canonical or standard pre-order. If ©≤ is an order
(anti-symmetric), (X,⊕) is then called (canonically) ordered monöıd.

Definition 4 - A semi-ring (X,⊕,⊗) such that (X,⊕) is a (canonically) ordered monöıd is called
a dioid.

Remark 2 If ⊕ is commutative and idempotent, then the pre-order relation ©≤ relation is a canon-
ical order.

Example 1 The set of natural numbers (N,+,×) with neutral elements 0 and 1, and with ≤ as
canonical ordered relation, is a dioid, neither a field or a ring.

Example 2 The set of positive real numbers (R+,+,×) with neutral elements 0 and 1, and with ≤
as canonical ordered relation, is a dioid, a semi-ring and a semi-field.

Example 3 Both dioids Rmax,+ = (R∪ {−∞},max,+) with neutral elements −∞ and 0, Rmin,+ =
(R ∪ {+∞},min,+) with neutral elements +∞ and 0, and endowed respectively with order relation

©≤ ≡≤ and ©≤ ≡≥ are idempotent.

Remark 3 If the dioids are Rmin,+ or Rmax,+, and even if the standard order are opposite to the
conventional ones, min and max have to be understood in the conventional sense :

• In Rmin,+, ∀x, y ∈ R, (x©≤ y)⇔
(
∃z ∈ R, y = x⊕ z = min(x, z)

)
=⇒ (x ≥ y).

• In Rmax,+, ∀x, y ∈ R, (x©≤ y)⇔
(
∃z ∈ R, y = x⊕ z = max(x, z)

)
=⇒ (x ≤ y).
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2.2 Deformation of the dioid (R+,+,×)

There are many examples of ordered monöıds, which can be built with mean of algebraic deformation
and isomorphism using a parameter h ∈ R+∗ from the monöıds (R+,+) and (R+,×). Thus, one
can go further and construct a large number of dioids from the dioid (R+,+,×) as well [34, 33].
This former is the natural set for defining and developing measure theory in general and probability
theory in particular. In order to achieve that, for any monöıd (X,⊕h) ⊂ R and any bijection
Φh : X −→ R+, one can create an isomorphism between X and R+ by transferring the ⊕h operation
through Φh

Φh(a⊕h b) = Φh(a) + Φh(b), ∀a, b ∈ X,

which leads to

a⊕h b = Φ−1
h

(
Φh(a) + Φh(b)

)
. (1)

The same procedure can be done for the ⊗h operation as well with

a⊗h b = Φ−1
h

(
Φh(a)× Φh(b)

)
. (2)

This endows (X,⊕h,⊗h) with a dioid structure, and particularly one gets for the neutral elements
: e⊕h = Φ−1

h (0) and e⊗h = Φ−1
h (1).

Remark 4 In classical mechanics, the deformation parameter h corresponds to the diffusion or
viscosity constant. It is the Planck constant in quantum physics, and its limit to zero, can be
considered as the semi-classical limit. The following example of deformation below is therefore very
important for physics applications, especially in statistical and quantum mechanics.

Proposition 1 Let’s consider the isomorphism Φh from (R,⊕h,⊗h) to (R+,+,×), with paramter
h ∈ R+∗, Φh(x) = e−

x
h and Φ−1(x) = −h ln(x).

Then ∀a, b ∈ R+, {
a⊕h b = −h ln(e−

a
h + e−

b
h ), a⊗h b = a+ b,

Φ−1
h (0) = +∞, Φ−1

h (1) = 0.
(3)

Since ⊗h is h-independent, the deformation of the dioid (X,⊕h,⊗h) for h→ 0+ leads to

lim
h→0+

(a⊕h b) = min(a, b), lim
h→0+

(a⊗h b) = a+ b.

The structure (R,⊕h,⊗h) is thus deformed into Rmin,+ = (R ∪ {+∞},min,+) when h→ 0+.

Proposition 2 In the same way, if one changes the bijective mapping to Φh(x) = e
x
h , the deforma-

tion of (R,⊕h,⊗h) gives Rmax,+ when h→ 0+.

Example 4 Let’s consider the one-dimensional heat diffusion equation

∂u(x, t)

∂t
=
h

2

∂2u(x, t)

∂x2
, (4)

with parameter h > 0. It is a linear equation since if u1 and u2 are both solutions of heat equation,
then any linear combination u = λ1u1 + λ2u2, (λ1, λ2) ∈ R2, is still a solution.
If one makes the following changes u(x, t) = Φh

(
w(x, t)

)
, and ui(x, t) = Φh

(
wi(x, t)

)
, for i ∈ {1, 2},

the equation (4) becomes a non-linear one called Bürgers equation
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∂w(x, t)

∂t
+

1

2

(
∂w(x, t)

∂x

)2

− h

2

∂2w(x, t)

∂x2
= 0, (5)

and then w = (λ1 ⊗h u1)⊕h (λ2 ⊗h u2) = −h ln(e−
w1+λ1
h + e−

w2+λ2
h ) is still a solution. One deduces

immediately that Bürgers equation is linear in the doid defined by relations (3).
At the limit h → 0, equation (5) becomes a one-dimensional Hamilton-Jacobi equation, and w =
min{λ1 + u1, λ2 + u2}[38, 34, 33].

2.3 The shortest path problem in graph theory and Bellman’s Optimal-
ity Theorem

In Operation Research, graphs can be used to represent paths, flow circulations, and pre-order re-
lations for instance. Almost all arcs or edges are valued, which means that they are endowed with
a real number which might represent physical actions, distances, time intervals, or flow capacities,
etc.
Several interesting problems occurring in this field consist to find an path in a graph with an
optimal valuation (sum of valuations). Most algorithms designed to solve such kind of problems
are based on the Bellman’s Optimality Theorem, which is the keystone of Dynamic Programming
Theory[2, 34, 33]. It states that for a given criterium in a graph, every part of an opti-
mal path, is optimal for the same criterium . Its proof is obvious with mean of contradiction
reasoning : if the sub-path is not optimal, one can replace it with a better one, and then the path
from which it is extracted is not optimal, which is contrary to the initial hypothesis. (min,+)-
analysis takes it roots from the shortest path research in a finite graph [18, 19, 34, 33]. Carré
and M. Gondran et al [34, 33] have shown that the optimality equation to determine the short-
est path is a linear equation with fixed-point solution in a particular algebraic structure : the
dioid Rmin,+ =

(
R ∪ {+∞},min,+

)
which is an idempotent semi-ring different from real numbers

field (R,+,×) [44, 38, 34, 33]. They have demonstrated that the classical resolution methods of
linear algebra on the real numbers field can be re-written into this dioid Rmin yielding to com-
putation algorithms in order to find the shortest path. In the same spirit, if one uses the dioid
Rmax,min =

(
R ∪ {+∞},max,min

)
, it is possible to solve other problems such as to find maximal

capacity path in a graph. Almost all usual concepts used in analysis for R can be transfered and
studied in dioids, in particular in Rmin,+, such as eigenvectors and eigenvalues calculations, linear
dependence, determinants computations.

Let’s consider a directed graph G = (X,U) with n ∈ N∗ , where X = {Xi, i ∈ J0, nK} and

U =
{

(Xi, Xj) ∈ X2, (i, j) ∈ J0, nK2
}

are respectively the sets of numbered vertices and arcs. A

real number aij is assigned to each arc (Xi, Xj) ∈ U , as the length between vertices Xi and Xj.

Remark 5 Without lost of generalization and for sake of simplicity, in this article, one considers a
1-graph G, which means that for any pair of vertices (Xi, Xj) ∈ X2, it exists[18] at most one arc of
the form (Xi, Xj) ∈ U . Moreover, one supposes they are no circuits with negative lengths appearing
in the graph G.

One defines i0 = 0 as the origin vertex index, and we seek the shortest path length Yj between
the vertices Xi0 = X0 and the other vertices {Xj}j∈J1,nK of the graph. The Dynamic Programming
Bellman’s theorem yields for Yj to the following relations [2, 43, 34, 33]

∀j ∈ J1, nK, Yj = min
Xi∈Γ−1

j

{Yi + aij}, with Y0 = 0,
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X1X2X0

X3

X4

a23 = 2

a01 = 9

a21 = 7a02 = 1

a34 = 8a03 = 7

a31 = 3 a14 = 4

Figure 1: Example of shortest path problem in a 5-order directed graph with positive lengths and
without circuits. The minimal length from X0 to X4 is Y4 = a02 +a23 +a31 +a14 = 1+2+3+4 = 10
and corresponds to the path (X0, X2, X3, X1, X4).

where Γ−1
j = {Xi, (Xi, Xj) ∈ U} is the set of direct predecessors of vertex Xj in G. If one sets

the length of missing arcs to +∞, the previous equations can be rewritten as

∀j ∈ J1, nK, Yj = min
i∈J0,nK

{Yi + aij}, with Y0 = 0,

which is equivalent to

∀j ∈ J1, nK, Yj = min
{

min
i∈J1,nK

{Yi + aij}, a0j

}
, with Y0 = 0.

Let us consider the dioid
(
R̄+,⊕,⊗

)
≡
(
R+ ∪ {+∞},min,+

)
, the former equations can be written

then in a linear way

∀j ∈ J1, nK, Yj =

( n⊕
i=1

Yi ⊗ aij
)
⊕ (a0j). (6)

Let A = (aij)
ᵀ the transpose of the lengths matrix, with (i, j) ∈ J1, nK2, B = (a0j), and Y = (Yj),

j ∈ J1, nK. Then the equation (6) can be written as a fixed point one

Y = A⊗Y ⊕B. (7)

Seeking for the shortest path from the origin vertex to others consists to solve the linear system (7)
in the algebraic structure Rmin,+.

Remark 6 Even if a dioid in general, and Rmin,+ in particular is an algebraic structure with re-
stricted properties compared to others such as rings, fields, or linear vector spaces, one can define and
adapt most resolution algorithms of linear systems in a field (Jacobi, Gauss-Seidel, Gauss methods,
...), and to develop some schemes specific to dioids Rmin,+[1, 34, 33]. For example, the resolution of
equations (7) can be performed with mean of the nilpotent property of matrix A, and with a gener-
alization and extension of the well-known Taylor serie development (1−A)−1 =

∑
k≥0

Ak to the dioid

Rmin,+.

Example 5 Considering the simple and pedagogical example exhibited in Figure (1), the previous
equation (7) gives


Y1

Y2

Y3

Y4

 =


0 +7 3 +∞

+∞ 0 +∞ +∞
+∞ 2 0 +∞
+4 +∞ +8 0

⊗

Y1

Y2

Y3

Y4

⊕


9
1
7

+∞

 =


min{Y1, 7 + Y2, 3 + Y3, 9}

min{Y2, 1}
min{2 + Y2, Y3, 7}

min{4 + Y1, 8 + Y3, Y4}

 .

(8)
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The Jacobi algorithm gives the exact result and consists in a finite number of iterations

Y(k+1) = A⊗Y(k) ⊕B, ∀k ∈ J1, 4K, with
(
Y(0)

)
j

= +∞, ∀j ∈ J1, 4K.

The solution of (8) is then given as Y = Y(4) as shown below

Y(0) =


+∞
+∞
+∞
+∞

 =⇒ Y(1) =


9
1
7

+∞

 =⇒ Y(2) =


8
1
3
13

 =⇒ Y(3) =


6
1
3
11

 =⇒ Y(4) =


6
1
3
10

 .

3 Elements of idempotent analysis

The starting point of idempotent analysis is based on the works of V. P. Maslov et al [38, 44, 46],
and many other authors [39, 18]. Maslov introduced (min,+)-analysis in the Chapter (8) of his
book about Linear Equations Theory in the semi-modulus and called it idempotent analysis [38].
Some mathematical objects such as integration, scalar product and Fourier-Legendre transform have
their analogous in idempotent analysis. One presents them below in the case of (min,+)-analysis .

3.1 Integration

Let’s define X = (R,+,×) and Y = Rmin,+. One considers the function f : X −→ Y , and the
Y -semi-module B(X, Y ) of all functions X −→ Y that are bounded in the sense of the standard
order on Y . The idempotent analog of a linear functional space is a set of Y -valued functions that is
closed under addition and multiplication of functions by elements of Y , or an Y -semi-module. From
a heuristic point of view, a ⊕-Riemann sum of the form

∑
i

f(xi) ·∆xi corresponds to the expression⊕
i

f(xi)⊗∆xi = min
i

{
f(xi) + ∆xi

}
.

Definition 5 - If Y = Rmin,+ or Y = Rmax,+, and ∀ϕ ∈ B(X, Y ), the idempotent analog of integra-
tion is then respectively defined by∫ ⊕

X

f(x) dx ≡ min
x∈X

f(x), or

∫ ⊕
X

f(x) dx ≡ max
x∈X

f(x). (9)

3.2 Scalar product

One can replace the classical scalar product 〈f, g〉 =
∫
x∈X f(x) · g(x) · dx with the (min,+) scalar

product [18, 32]

〈f, g〉(min,+) ≡
∫ ⊕
x∈X

f(x)⊗ g(x)⊗ dx = min
x∈X

{
f(x) + g(x)

}
.

Proof 1 One reminds below the demonstration that it is a scalar product within the (min,+) dioid
is straightforward [32].

• Symmetry : Obviously, 〈f, g〉(min,+) = 〈g, f〉(min,+).
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• Positive-definiteness

Since +∞ is the neutral element of the min operator, if 〈f, f〉(min,+) = +∞, then f(x) = +∞
for all x ∈ X. Furthermore, since ©≥ in the dioid Rmin,+ corresponds to ≤ in the field of real
numbers, and all functions are bounded by +∞, one has 〈f, f〉(min,+)©≥ +∞.

• Bi-linearity

One has to show that 〈f, g〉(min,+) is distributive according to min, which means 〈f,min{g1, g2)〉(min,+) =
min

{
〈f, g1〉(min,+), 〈f, g2〉(min,+)

}
, and linear according to the addition of a scalar λ : 〈f(x), λ+

g(x)〉(min,+) = λ + 〈f, g〉(min,+). The linearity is obvious since min
x∈X
{f(x) + λ + g(x)} =

λ + min
x∈X
{f(x) + g(x)}. Distributivity is obtained in two steps. One has first to prove this

equality with mean of two inequalities. We start first with the simple relations

〈f, g1〉(min,+) 6 f(x) + g1(x), and 〈f, g2〉(min,+) 6 f(x) + g2(x), ∀x.

This gives min{〈f, g1〉(min,+), 〈f, g2〉(min,+)} 6 min{f(x) + g1(x), f(x) + g2(x)} ∀x.
And since

min{f(x) + g1(x), f(x) + g2(x)} = f(x) + min{g1(x), g2(x)},

one has min{〈f, g1〉(min,+), 〈f, g2〉(min,+)} 6 f(x) + min{g1(x), g2(x)} ∀x, which yields to the
inequality

min{〈f, g1〉(min,+), 〈f, g2〉(min,+)} 6 〈f,min{g1, g2}〉(min,+). (10)

In a second step, one can write

〈f,min{g1, g2}〉(min,+) 6 f(x) + min{g1(x), g2(x)} 6 f(x) + g1(x) ∀x,

which becomes
〈f,min{g1, g2}〉(min,+) 6 〈f, g1〉(min,+). (11)

and in the same manner

〈f,min{g1, g2}〉(min,+) 6 f(x) + min{g1(x), g2(x)} 6 f(x) + g2(x) ∀x,

giving now
〈f,min{g1, g2}〉(min,+) 6 〈f, g2〉(min,+), (12)

and then from (11) and (12)

〈f,min{g1, g2}〉(min,+) 6 min{〈f, g1〉(min,+), 〈f, g2〉(min,+)}. (13)

From relations (10) and (13), one deduces finally the equality and thus the distributivity.

One obtains a distribution-like theory : the (min,+) scalar product is linear and continuous in the
dioid structure Rmin,+ =

(
R ∪ {+∞},min,+

)
, non-linear and continuous in the classical structure

(R,+,×). The non-linear distribution δ
(min,+)

defined on Rn as δ(min,+)(x) = {0 if x = 0,+∞ else}
is analogous in (min,+) analysis to the classical Dirac distribution. Thus, one has

〈δ(min,+), f〉(min,+) = min
x∈X

{
δ(min,+)(x) + f(x)

}
= min

{
f(0),+∞

}
= f(0). (14)

It is therefore interesting to study analog results developed in Hilbert spaces functional analysis
such as Riesz theorems, Fourier transforms, spectral analysis, and measure theory for example [44,
34, 33].
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3.3 Convolution and Fourier-Legendre transform

Let (X, �) be a group, and B(X,Rmin,+) the set of all bounded functions from X to Rmin,+.

Definition 6 - The convolution product ~ is defined as, ∀ (x, y) ∈ X2, ∀(ϕ, ψ) ∈ B2(X,Rmin,+)

(ϕ~ ψ)(x) =

∫ ⊕
X

ϕ(y)⊗ ψ(y−1 � x)⊗ dy = min
y∈X
{ϕ(y) + ψ(y−1 � x)},

Remark 7 B(X,Rmin,+) is an idempotent semi-ring with respect to the following analog ~ of the
usual convolution.

Let X = Rn, considered as a topological group with respect to the vector addition. The conven-
tional Fourier transform ϕ̃ of ϕ is defined as

ϕ̃(ξ) =

∫
X

e−iξ·xϕ(ξ) dx

where eiξ·x is a character of the group X, i.e., a solution of the following functional equation

ϕ(x + y) = ϕ(x) · ϕ(y).

The idempotent analog of this equation becomes then

ϕ(x + y) = ϕ(x)⊗ ϕ(y) = ϕ(x) + ϕ(y).

The continuous idempotent characters are linear functions of the form x 7−→ ξ · x with ξ ∈ X and
this yields to the definition given below.

Definition 7 - The analog of Fourier transform on B(Rn,Rmin,+) can be defined as

ϕ(x) 7−→ ϕ̃(ξ) =

∫ ⊕
X

−(ξ · x)⊗ ϕ(x)⊗ dx = min
x∈G

{
ϕ(x)− ξ · x

}
.

Remark 8 This transform on B(Rn,Rmin,+) is nothing but the Legendre transform [38], which
establish for instance the correspondence between the Lagrangian and the Hamiltonian formulations
in classical mechanics.

4 Euler-Lagrange and Hamilton-Jacobi actions

When one tries to find the minimal path in a continuous space, optimality equations given by
the classical variational calculus are the so-called (deterministic) Hamilton-Jacobi equations
which link the time derivative of the action S(x, t) to the Hamiltonian of the system H(x,∇S; t) ≡(
∇S(x,t)

)2

2m
+ V (x), and express mathematically the Least Action Principle (LAP){

∂S(x,t)
∂t

+H(x,∇S; t) = 0,
S(x, t0) = S0(x).

(15)
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In the case where presence probability density is defined for the particle, one has to had the con-
tinuity equations linking probability density to the action, giving thus the so-called (statistical)
Hamilton-Jacobi equations

∂
∂t
S(x, t) +H(x,∇S; t) = 0,

S(x, t0) = S0(x),
∂
∂t
ρ(x, t) +∇ ·

(
ρ (x, t) · ∇S(x,t)

m

)
= 0,

ρ(x, t0) = ρ0(x).

(16)

One reminds that the velocity field is given by v(x, t) = ∇S(x,t)
m

for particle with mass m.

Remark 9 Equations (15) are non-linear on the real numbers field (R,+,×). Maslov et al [38, 44]
have shown that this equation is linear in the dioid Rmin = (R ∪ {+∞},min,+) : thus, if S1(x, t)
et S2(x, t) are solutions of Hamilton-Jacobi equations (15,16), then min

x
{λ + S1(x, t), µ + S2(x, t)}

for all λ, µ ∈ R, is a solution of the same equations (15,16).

Definition 8 (Classical discerned particle) - A classical particle is said to be discerned pre-
pared, if one knows, at the initial time its position x0 and its velocity v0.

Definition 9 (Classical undiscerned particle) - A classical particle is said to be undiscerned
when only its initial probability density ρ0 (x) and its initial action S0(x) are defined.

Remark 10 For an undiscerned classical massive particle (m), with initial probability density of
presence ρ0(x) and initial action S0(x), the probability density ρ (x, t) and the action S (x,t) verify
the (statistical) Hamilton-Jacobi equations.

Definition 10 - For the given events (x0, t0) and (x, t), the Euler-Lagrange action SEL(x, t; x0, t0)
is the functional defined by

SEL(x, t; x0, t0) = min
u(s),s∈[t0,t]

{∫ t

t0

L(r(s),u(s); s)ds

}
, (17)

where the minimum (or more generally an extremum) is taken on the velocity u(s) which is the
control variable, for s ∈ [t0, t], with the state r(s) given by the equations{

d
ds

r(s) = u(s) for s ∈ [t0, t] ,
r(t0) = x0, r(t) = x.

(18)

This is the Least Action Principle defined by Euler [11] in 1744 and Lagrange [24] in 1755.

If the Lagrangian L is differentiable according to the position r, and L
(
r(s), ṙ(s); s

)
= 1

2
mṙ2(s)−

V (r), the solutions of (17) satisfy the Euler-Lagrange equations on the interval [t0, t]
(

d
ds

∂
∂ṙ
− ∂

∂r

)
L
(
r(s), ṙ(s); s

)
= 0 for s ∈ [t0, t] ,

r(t0) = x0, r(t) = x.
(19)

Let’s show how (min,+)-analysis can help to explain the differences between Hamilton-Jacobi and
Euler-Lagrange actions.
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Remark 11 The Euler-Lagrange action SEL is the elementary solution of the Hamilton-Jacobi
equations (15) in (min,+)-analysis with the initial condition

S0(r) ≡ S(r, t0) = δ(min,+)(r− x0) =

{
0 if r = x0,
+∞ otherwise.

(20)

Theorem 1 The (deterministic) Hamilton-Jacobi Action defined as SHJ(x, t) = min
x0

{S0 (x0)+

SEL(x, t; x0, t0)}, is solution of (deterministic) Hamilton-Jacobi equations (15).

Proof 1 According to the Bellman’s Theorem[2], Hamilton-Jacobi action SHJ(x, t) verifies the op-
timality equation on the time interval [t−∆t, t] :

SHJ(x, t) = min
u(s)

t−∆t≤s≤t

{
SHJ

(
x−

∫ t

t−∆t

u(s)ds, t
)

+

∫ t

t−∆t

L
(
x−

∫ t

s

u(w)dw,u(s); s
)
ds

}
.

If one supposes that S is differentiable in x and t, L in x, u, t and u continuous in time, then
previous equation yields to

SHJ(x, t) = min
u(t)

{
SHJ(x, t)−∇SHJ(x, t) · dx(t)

dt
∆t− ∂SHJ(x, t)

∂t
∆t+ L

(
(x, t), t

)
∆t+ ◦ (∆t)

}
,

where one uses the notation ∂
∂x
≡ ∇.

Cancelling SHJ(x, t) on both sides and dividing by ∆t, one obtains this important relation when
∆t→ 0+

∂SHJ(x, t)

∂t
= min

u

{
L(x,u, t)− u · ∇SHJ(x, t)

}
. (21)

For the Lagrangian L(x,u; s) = 1
2
mu2(s) − V (x, s), the right-hand-side term is the opposite of its

Legendre-transform, which is the Hamiltonian H
(
x,∇S; t

)
=

(
∇S(x,t)

)2

2m
+ V (x). Finally equation

(21) yields to a Hamilton-Jacobi-like equation for SHJ

∂SHJ(x, t)

∂t
+H

(
x,∇SHJ ; t

)
= 0 (22)

Remark 12 The Hamilton-Jacobi and Euler-Lagrange actions, respectively SHJ and SEL are both
solutions of Partial Differential Equations (PDE), the Hamilton-Jacobi ones. Moreover, SEL verifies
Ordinary Differential Equations (ODE), the so-called Euler-Lagrange equations. Let’s remind that
those two actions are solutions of problems with different boundary conditions :

• The Euler-Lagrange (or classical) action SEL(x, t; x0, t0) links the initial position x0 at time
t0 to the position x at time t;

• The Hamilton-Jacobi action SHJ links the initial action S0 to the position x at time t;

• While the Euler-Lagrange case entails an unknown initial velocity, the Hamilton-Jacobi one
implies an unknown initial position.

Example 6 For a particle in a linear potential V (x) = −K·x, K ∈ R3, with initial Hamilton-Jacobi
action S0(x) = mv0 · x, one deduces from (22) the Hamilton-Jacobi action :

SHJ (x, t) = mv0 · x−
(

1

2
mv2

0 −K · x
)
t− 1

2
(K · v0)t2 − K2

6m
t3.
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5 (min,+)-Path Integral and semi-classical limit

5.1 (min,+) Action Path Integral

One can write Hamilton-Jacobi action in a more elegant manner as follow

SHJ(x, t) = min
x0

{
S0 (x0) + SEL(x, t; x0, t0)

}
=

∫ ⊕
dx0 ⊗ SEL(x, t; x0, t0)⊗ S0 (x0) . (23)

The analogy between (23) and the Schrödinger’s wave function ψ with mean of the propagator G
and Feynman’s Path Integral[13] is straightforward since

ψ(x, t) =

∫
dx0 ·G(x, t; x0, t0) · ψ0(x0)

=

∫
dx0 · ψ0(x0) ·

∫ x,t

x0,t0

D[y] · e
i
~SEL(y,t|x0,t0), with ψ0(x0) = ψ(x0, t0). (24)

It is easy to check that SEL verifies a Chapman-Kolmogorov-like formula[12, 42]

Theorem 2 For given space-time points (x0, t0), (x′, t′) and (x, t) with t0 < t′ < t, one has the
following relation

SEL(x, t; x0, t0) =

∫ ⊕
dx′ ⊗ SEL(x, t; x′, t′)⊗ SEL(x′, t′; x0, t0).

Proof 2 With mean of the Feynman-Dirac formula[12] and ∀τ ∈ [t0, t],

SEL(x, t; x0, t0) = min
u(s),s∈[t0,t]

{∫ t

t0

L(r(s),u(s); s)ds

}
= min

u(s),s∈[t0,t]

{∫ τ

t0

L(r(s),u(s); s)ds+

∫ t

τ

L(r(s),u(s); s)ds

}
= min

r(τ),τ∈[t0,t]

{
SEL(r(τ), τ ; x0, t0) + SEL(x, t; r(τ), τ)

}
=

⊕∫
r(τ),τ∈[t0,t]

dr SEL(r(τ), τ ; x0, t0)⊗ SEL(x, t; r(τ), τ), (25)

and one states that SEL is the propagator of the action for the Hamilton-Jacobi equations (15) in
(min,+)-algebra . The Euler-Lagrange action SEL can be potentially written as functional integral
within this algebra, namely a (min,+) -path integral.

Definition 11 For time interval [t0, t] divided into N equal parts, N ∈ N∗, with length ∆t = t−t0
N

,
τi = t0 + i∆t , i ∈ J0, N − 1K, and ri = r(τi), r0 = x0, rN = x, if the Hamiltonian H is time-
independent, then dH

dt
= ∂H

∂t
= 0 and the equations (15) give the propagator which can be written as

a (min,+) path integral

SEL(x, t; x0, t0) =

{
lim

N→+∞

N−1⊗
i=0

(∫ ⊕
r(τ),τi≤τ≤τi+1

dr

)}(
−
∫ t

t0

H(x,∇S; s)ds

)
≡

∫ x,t

x0,t0

D⊕[x(·)]
∫ t

t0

−H(x,∇S; s)ds,

(26)

where D⊕[x(·)] defines the (min,+) -action functional measure.
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This yields obviously to the fact that it exists a duality between the usual representation of
a particle, and its action, with mean of the Euler-Lagrange action, which is the propagator of
Hamilton-Jacobi equations (15).

5.2 Semi-classical convergence

Let us consider the semi-classical case where the evolution of the wave function ψ(x, t) of a massive
particle m verifies the Schrödinger equation{

i~ ∂
∂t
ψ(x, t) =

(
−~2

2m
∆ + V (x)

)
ψ(x, t), ∀t > t0, ∀x ∈ R3,

ψ(x, t0) = ψ0(x).
(27)

With the variable change ψ(x, t) =
√
ρ(~)(x, t)ei

S(~)(x,t)
~ , the Schrödinger equation can be splitted

into real and imaginary parts, giving thus the so-called Madelung equations [36],
∂S(~)(x,t)

∂t
+ 1

2m

(
∇S(~)(x, t)

)2

+

(
V (x)− ~2

2m

∆
√
ρ(~)(x,t)√
ρ(~)(x,t)

)
= 0,

∂ρ(~)(x,t)
∂t

+∇ ·
(
ρ(~)(x, t)∇S

(~)(x,t)
m

)
= 0,

ρ(~)(x, t0) = ρ
(~)
0 (x) and S(~)(x, t0) = S

(~)
0 (x).

(28)

One considers below two cases depending on the preparation of the particles [20, 21].

Definition 12 (Semi-Classical undiscerned particle) - A quantum particle is said to be semi-

classical undiscerned if its initial probability density ρ
(~)
0 (x) and its initial action S

(~)
0 (x) are regular

functions ρ0(x) and S0(x) not depending on ~.

Example 7 It is the case of non-interacting particles set, all prepared in the same way : a free
particle beam in a linear potential, an electronic or C60 beam in the Young’s slits diffraction, or an
atomic beam in the Stern-Gerlach experiment.

Definition 13 (Semi-Classical discerned particle) - A quantum particle is said to be semi-
classical discerned if its initial probability density ρ~0(x) converges, when ~→ 0, to a Dirac distribu-
tion and if its initial action S~

0(x) is a regular function S0(x) not depending on ~.

Example 8 This situation occurs when the wave packet corresponds to a quasi-classical coherent
state, introduced in 1926 by Schrödinger [41]. The field quantum theory and the second quantification
are built on these coherent states [17]. The existence for the hydrogen atom of a localized wave packet
whose motion is on the classical trajectory (an old dream of Schrödinger’s) was predicted in 1994
by Bialynicki-Birula, Kalinski, Eberly, Buchleitner and Delande [3, 5, 6], and discovered recently by
Maeda and Gallagher [37] on Rydberg atoms.

Theorem 3 For semi-classical undiscerned quantum particles, the probability density ρ(~)(x, t) and
the action S(~)(x, t), solutions to the Madelung equations (28), converge when ~→ 0, to the classical
density ρ(x, t) and the classical action SHJ(x, t), which are solutions of the statistical Hamilton-
Jacobi equations (16).
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Proof 3 Let us write the wave function ψ(x, t) = ρ(~)(x, t)e
i
~S

(~)(x,t) with mean of ψ0(x) using the
Feynman path integral formalism[13, 42, 12]. Expression (24) becomes then

ψ(x, t) =

∫
dx0 · ψ0(x0) ·

∫ x,t

x0,t0

D[y] · e
i
~SEL(y,t|x0,t0),

=

∫
dx0 ψ0(x0) · F(~)(t, t0) · e

i
~SEL(x,t;x0,t0),

=

∫
dx0 F(~)(t, t0) ·

√
ρ

(~)
0 (x0) · e

i
~

{
S

(~)
0 (x0)+SEL(x,t;x0,t0)

}
,

where F(~)(t, t0) is a function independent of x and x0 and ~-parameterized.
Since the quantum particle is undiscerned, the density and initial action are ~ independent and then

ψ(x, t) = ρ(~)(x, t)e
i
~S

(~)(x,t) =

∫
dx0 F(~)(t, t0) ·

√
ρ0(x0) · e

i
~

{
S0(x0)+SEL(x,t;x0,t0)

}
.

When ~→ 0, the stationary phase approximation yields to[13, 14]

S(~)(x, t)
~→0∼ min

x0

{
S0(x0) + SEL(x, t; x0, t0)

}
= SHJ(x, t). (29)

That is to say that the quantum action S(~)(x, t) converges to the Hamilton-Jacobi action SHJ(x, t),
already defined in (23), and solution of equations (16).
Moreover, since the quantum probability density ρ(~)(x, t) satisfies the continuity equation, and since
S(~)(x, t) tends towards SHJ(x, t), one deduces that ρ(~)(x, t) converges to the classical probability
density ρ(x, t), which satisfies the continuity equation as well. One obtains thus both announced
convergences[20].

Semi-classical undiscerned quantum particle is described by the Madelung equations (28) which con-
verge to statistical Hamilton-Jacobi equations (16), corresponding to undiscerned classical particle.
In this case, the density and the action are not sufficient to describe a classical particle. To know
their positions at time t, it is necessary to know its initial positions x0. It is therefore logical to do the
same in quantum mechanics. One considers this undiscerned quantum particle as a classical particle
and concludes that a semi-classical undiscerned quantum particle is not completely described by its
wave function. It is necessary to add its initial position and it becomes natural to introduce the de
Broglie-Bohm interpretation [10, 4]. In this interpretation, the two first postulates of quantum me-
chanics, describing the quantum state and its evolution, must be completed. First, at initial time t0,
the state of the particle has to be given by the initial wave function ψ(x, t0) = ψ0(x) (a wave packet)
and its initial position r(t0); Second, the evolution of the wave function and the particle position
are described respectively by the usual Schrödinger equation (27) and d

dt
r(t) = 1

m
∇S(~)(x, t)|x=r(t).

6 Conclusion

One has shown in this article how some tools from tropical and idempotent mathematics, the so-
called (min,+)-algebra and (min,+)-analysis , which were originally devoted to practical problems
in operation research, graph theory, non-linear functional analysis, have permitted to develop a cal-
culus framework, well-suited for the study and re-interpretation of Least Action Principle in classical
mechanics. Moreover, many non-linear problems occurring in physics can be treated as linear within
this (min,+) framework.
Some elements of (min,+)-algebra and (min,+)-analysis have been introduced in order to exhibit
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some useful techniques for solving non-linear Partial Differential Equations (PDE) with mean of al-
gebraic deformations, and to develop Distribution Theory and Functional Analysis based on (min,+)
integration, scalar product and Fourier-Legendre transform. Some applications to multi-resolution
analysis of fractal and multi-fractal signals [32, 35], and complex variational calculus have already
been explored in a previous paper[31].
The Bellman Theorem gives a very relevant approach to understand the underlying fractality struc-
ture guiding the Least Action Principle. The fact that the well-known shortest path research problem
in a graph can be related at the continuous limit to this principle in classical mechanics, has permit-
ted in a first step to use (min,+) calculus to distinguish two kinds of actions, the Euler-Lagrange
and the Hamilton-Jacobi one, depending on initial and limit conditions. In a second step, it has
been shown that each action verifies different PDEs, and that the Hamilton-Jacobi action can be
expressed as a (min,+) path integral while Euler-Lagrange action is the propagator or the singular
solution of the Hamilton-Jacobi equations. Moreover, this implies that it exists a duality between
particle and its action.
An important result is that the semi-classical limit of an undiscerned quantum particle action con-
verges to the Hamilton-Jacobi one, which is a relevant quantity in classical mechanics. One has
used at the end of this paper those previous developments, to justify that the de Broglie-Bohm
interpretation of quantum mechanics can keep coherent semi-classical convergences of undiscerned
quantum particle action with the existence of trajectories and duality particle-action.
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[7] Benzaken C., Structure algébrique des cheminements : pseudotreillis, gerbier de carré nul, in :
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Recherche, EDF, Série C, pages 1, 25–32, 1975.

[27] Gondran M., Path algebra and algorithms. B. Roy (Ed.), Combinatorial Programming :
Methods and Applications, Reidel, Dordrecht, pages 137–148, 1975.

16



[28] Gondran M., Valeurs propres et vecteurs propres en classification hiérarchique. RAIRO-
Theoretical Informatics and Applications, pages 10 (1) 39–46, 1976.
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