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Abstract—An Air Traffic Management (ATM) Surveillance Sys-
tem is used to provide services to perform Air Traffic Control
(ATC) (e.g., horizontal separation between aircraft). This sytem
carries messages containing aircraft’s position from a collection
of radars of an Air Navigation Service Provider (ANSP) through
its network. Then Radar traffic is one of the most important
sources of information for this system. The format of the
radar messages is defined by a specific application-layer proto-
col entitled ASTERIX. The evolution of the security policy and
technologies used makes existing radar systems, once considered
safe, now potentially open to attack. Both safety and security
of ATM system could be impacted by any kind of attack into
the network traffic, who could maliciously modified information
about aicrafts, in particular thanks to Spoofing Attack. To
counter this risk, there is need to detect intrusion and then to
have anomaly detection modules for this safety-critical network
traffic, that can be deployed in a security appliance.

In order to design this module, we did a statistical analysis to
have an overview of the traffic to better know what we need to
protect. Specifically, we studied radar network traffic in order
to extract high level statistic characteristics of normal radar
traffic. This allowed us to identify a trend in the evolution of
this traffic. We were then able to inject a spoofing attack (when
a malicious party impersonates another device or network user
for the purpose of altering the data) into this traffic to modify
the nominal traffic. Thereafter, we were able to detect this
attack using our method, which consists of the use of a machine
learning detection method, using a Long-Short Term Memory
(LSTM) mechanism.

This is the subject of our paper, an overview of radar traffic and
a method to detect spoofing attack in this traffic. This would
help to develop an ATM IDS especially as this type of attack
could remain invisible for air traffic controller.
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1. INTRODUCTION

Surveillance information is the key data of the air navigation
service providers, which has the goal to assure the safety of
the air passengers and the functioning of Air Traffic Control
(ATC). Consequently, in the ATM Surveillance System, the
Radar System is one of the most important components. For
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Figure 1. Schema of the ATC system.

doing that, an air traffic controller relies on an Air Traffic
Control system which relies on radar. Airborne Control
Radars are remote-sensing sensors used to locate, track and
guide aircraft in the flight space around an aerodrome or in
larger areas. They collect information about aircraft including
its position, its speed, its identifier, the type of aircraft and
everything that can be useful to a controller. When an aircraft
enters a given area, it is detected by a sensor, the radar.
The radar sends this information over a private network. On
this network several SIRs (Server of Radar Information) send
these packets to different navigation centers. In this center
the track of the aircraft is rebuilt, and is displayed on a screen
facing the controller to guide the planes. All these elements
form the ATC system which is described in Figure 1.

By processing and correlating the information from multiple
radars and flight plans in calculators in navigation centers the
system provides more precise real-time positions of each air-
craft and allows an air traffic controller to ensure the safety of
passengers by avoiding possible collisions, and guaranteeing
horizontal separation.

To transmit radar data, ATC systems use an open-source
protocol to transport the radar informations, ASTERIX [1].
The informations about aircraft measurement are encapsu-
lated in an Asterix message which is sent from the radar
to the operations center. It was designed as an Application
protocol of the TCP/IP model for communication media with
limited bandwidth. This is why it is able to transmit all
the information needed, with the smallest overhead possible.
ASTERIX messages are commonly transported into either IP
packets or Ethernet frames. Figure 2 depicts an overview of
an Asterix message format.
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Figure 2. An overview of ASTERIX message format.

ASTERIX is an extensible format with different data cate-
gories. Each of them carries one type of information, such as
target reports from radars, aircraft tracks, and various system
status messages.

Despite the widespread use of ASTERIX messages to trans-
port safety-critical ATM information [2], this protocol does
not specify any security mechanism, which exposes the entire
system to vulnerabilities. In fact, this lack of security has
already been exploited by Casanovas et al. [3] who developed
a tool that makes a Man In The Middle attack to manipu-
late ASTERIX messages. Moreover, the dependence of the
global civil aviation on computer systems on a daily basis
is growing as more and more modern airport and aircraft
are commissioned and stakeholders are seeking to meet the
growing demand for digital and computer service [4]. On
the one hand, digitalization technology tools and systems
enhance interoperability, but on the other hand their uses can
pose serious risks to aviation cyber security. Therefore, it is
necessary to maintain a high level of attention to the possible
future developments of cyber-threat in this area [5]. This sit-
uation shows us that cyber-attacks are eventually possible to
maliciously change the information about aircraft, especially
with spoofing attacks [3]. The modification of information
from a spoofing attack can be fine enough to be invisible by
a human. Therefore, there is an increasing need to provide
additional security mechanisms for radar data, by detecting
anomalies in the system.

Despite being a open-source ASTERIX protocol, ASTERIX
messages transporting ATM information are unknown by
the off-the-shelf Intrusion Detection System (IDS), they are
handled as conventional traffic. It is therefore necessary to
learn more about these kind of messages to detect anoma-
lies. However, to our knowledge, the literature has not yet
addressed the issue. It is therefore essential to study the radar
network traffic itself to have characterization of radar traffic
useful for an IDS.

The paper aims to highlight characteristics from radar traffic
data and to show that detecting a spoofing attack in this
traffic is possible. We work with real radar traces collected
inside the operational network of the French ANSP (DSNA -
Direction des Services de la Navigation Aérienne).

The paper is organized as follows: a State of the art related
to ATM/radar system is presented in Section 2, specificities
of the radar operation are described in Section 3. In Sec-
tion 4, an overview of radar traffic with the description of the
dataset and a coarse-grained analysis of radar information is
presented. In Section 5 an example of a spoofing attack and
a method of detection is shown. Final remarks, and a word
about future work conclude this paper.

2. STATE OF THE ART

In the literature, we find little work on radar data and the AS-
TERIX protocol itself. Standards developed by Eurocontrol

can be found on its website?>. The control authority presents
there the protocol itself and its specification.

In the ATM field, the major research has been focused on air
traffic delay or trajectory by using radar data, but less on radar
network itself, as it is investigated by Bosson et al. in their
paper “’Supervised Learning Applied to Air Traffic Trajectory
Classification” [6]. Moreover, according to Bosson et al. [6],
other works focused on the anomaly detection are focused on
aircraft behavior more than on the network traffic, thanks to
methods based on machine learning. Bosson et al. [6] show
that Gariel et al. [7] applied trajectory clustering techniques
to GPS radar tracks in order to identify operational aircraft
behaviors and their variability. Conde et al. [8] developed
a data mining framework for air traffic flow characterization
to identify aircraft trajectories and ensemble-based methods
to detect flight non-conforming behaviors. Evans et al. [9]
applied various data mining techniques to flight plan amend-
ment data to train a predictor of operational acceptability for
airborne reroute advisories.

Regarding air traffic data itself, there is little work about
anomaly detection. In his thesis, Nanduri [10] deals with
this type of anomaly detection, as detecting atypical flights
and anomalies based on statistical signatures or detecting
anomalies in the data in the vector space. In their docu-
ment Using ASTERIX in accident investigation [11] Farrel
and Schuurman explain that radar data are often used for
investigation of air accidents, and discuss ASTERIX data for
safety use. Nevertheless, Casanovas et al. [12] present a proof
of concept about the vulnerability of the ASTERIX protocol.
They were able to do Man In the Middle attack dedicated to
this traffic in order to delete, modify or add aircraft in traffic.
This study highlights the fact that there is a need to have
additional level of security against of an attack from inside
the network.

To the best of our knowledge, ours is the first study of a
characterization of radar network traffic focusing on protocol
itself in order to identify characteristics of traffic radar data in
order to develop a security module dedicated to ASTERIX.

In this paper, we focus on a spoofing attack. A spoofing
attack, is a type of Man In The Middle attack which is a
type of attack in which the attacker manages to get between
the transmitter and the receiver. Thereby he has the ability
to read, insert and modify the messages that are being sent
between the two hosts without them knowing that the link has
been violated. Once the attacker is in the middle of the link,
he has the capacity of sniffing and intercepting the messages
that are exchanged between the victims. When he uses this
position to impersonate another device or user on a network,
by sending a packet in their place, by modifying or not the
information, it is called a spoofing attack. There are several
different types of spoofing attacks that malicious parties can
use to accomplish this. Some of the most common methods
include IP address spoofing attacks, ARP spoofing attacks
and DNS server spoofing attacks.

2https://www.eurocontrol.int/services/asterix



3. ATC NETWORK OPERATION

Figure 1 shows schematically the operation of an ATC net-
work. The information about aircraft is retrieved by two types
of radar :

o Primary Radar: The signals are the echoes due to the
reflection on the aircraft. There is no more information than
the presence of the aircraft, or other physical target, on the
controller’s Plan View Display (PVD)

o Secondary Radar : The signals are obtained from the
transponder carried on the aircraft. The radar emits several
impulsions and the transponder answers to this interrogation.
Depending on the mode, the transponder will give infor-
mation as the position, the time, the id or other about the
aircraft. Then, the radar will emit two types of messages
in the network : detection messages, the information (hor-
izontal/vertical location, time, id ...) given by the aircraft and
service messages specific to its operation.

The radar encapsulates this information in an ASTERIX
Packet and sends it in the operational network. From this
network, the ACC retrieves radar packets about their sectors.
Thanks to a calculator, they concatenate the information of
the different radars visualizing the aircraft, and they obtain an
accurate measurement of the aircraft. This accurate measure
is sent to control working positions where they are displayed
on the radar screen of the controller. Using data from flight
plans, it allows the controller to do control en-route. To do
control in approach, the tracks are sent from ACC to the
airport, where the control is done after a passage in a new
computer that compiles different data, which allows for more
accurate information.

As we explain in the Introduction, an Asterix message is
composed of one or more blocks of data, it is the base of
ASTERIX messages. Each message contains the type of
information transmitted, and the detail of the information sent
by the radar.

The type of data transmitted by the protocol is standardized
and classified into ASTERIX categories. The CAT identifier
defines what category is used and allows us to know what
kind of information is transmitted. For our case of ATC
use, only two types of categories are used: the detection
categories and the service categories.

o The detection categories, are for tracked plots that represent
the traces of an airplane. The information transmitted in
the block with these types of categories are recordings about
aircraft to define a map of the sky.

o The message of service categories transmit information
about the radar itself. They send information for each end
of a sector (it is the coding of the antenna rotation).

With the use of Primary Surveillance Radar (PSR) and Sec-
ondary Surveillance Radar (SSR), only four categories are
used:

« Two for detection: category 01 for PSR and 48 for SSR ).
« Two for messages of service: category 02 for PSR and 34
for SSR).

The specifications for the ASTERIX data categories (CAT)

form part of the ASTERIX Standard Document (available
through the EUROCONTROL website?).

Shttps://www.eurocontrol.int/services/asterix
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Figure 3. Distribution of Service (red) and Detection
(green) data in our dataset.

4. OVERVIEW OF RADAR NETWORK TRAFFIC
Dataset

For this work, our dataset is a set of real radar data collected
in the French ATM/ATC System. These data are data from
twenty-three Secondary Surveillance Radar (SSR) and nine
Primary Surveillance Radar (PSR) collected before they are
processed by the calculators of the control center. We capture
this data, in pcap format, from April 19, 2019 until today
which represents around 200GB compressed data. The traces
that can be observed, thanks to this data, are Asterix on IP or
encapsulated on Ethernet.

With the ASTERIX protocol, the identifiers of the radars are
represented by destination addresses, and source addresses
are the last SIR (Server of Radar Information identifier),
so we used Ethernet destination address to distinguish the
different radars of our collection.

Measurement methodology

The traffic was captured with a TCPDump tool and saved in
PCAP format. We used these raw files for our analysis.

We used the libpcap library to read the raw files and the
ASTERIX python module developed by Damir Salantic for
Croatia Control Ltd. to parse EUROCONTROL ASTERIX
protocol data.

Coarse-grained analysis of radar information

This analysis is a coarse-grained level of analysis of our
network traces. The goal of this study is to highlight the
idea that there exists a recognizable trend away from our
network traces which will help us to define rules/signatures
about normal radar traffic.

In the radar data that we are studying, we know that there
are categories of services that will regularly send messages
on the operation of the radar (02 for PSR and 34 for SSR)
and detection categories that will allow providing information
about aircraft (01 for PSR and 48 for SSR). In our dataset, we
have both PSR and SSR. When we look at the distribution
of service categories and detection categories, as shown in
Figure 3, we can see that the detection category is in majority.
The ratios are of the order of 55% detection for 45% of
services for PSR radar and of 75% detection against 25% of
services for SSR radar.

Since the detection messages represent aircraft information
and service messages, operating messages on the radar, we
expect the proportion of the detection categories to be higher
than that of the service categories, and that the data radar will
contain more messages on the aircraft than on their operation.
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Figure 4. Evolution of services and detection data in a
day.

The results of Figure 3 thus confirms this hypothesis that the
detection data represent a majority of the radar traffic.

For the rest of the paper, we will focus mainly on the study
of SSR radars because they represent a majority share in the
French ATM. We will therefore be dealing with category 48
as detection data and category 34 for services data.

We have seen that the detection data were majority in our
data. Nevertheless, we are interested in the impact that
these data can have on evolution of the traffic. We have
differentiated the evolution over time of detection data and
services data for one day. The results are shown in Figure 4.

In red is represented the evolution in time of services data and
in green the detection. We can see that for the services data,
we have a continuous evolution whereas for detection data
we have variation in time. This is because service messages
are sent regularly. Indeed, a radar zone is divided into thirty-
two sectors and each time the radar finished a zone, it sends
a service message to say in which zone it observes. For our
case, the radars have a rotation time of 4 sec. So, every 4 sec.,
we observe 32 messages of services data. If it is not the case,
there is an anomaly somewhere.

With this observation for the rest of the section, we will focus
on the evolution of the detection data in times which have
variations.

Since network radar data represent the airspace network
image at a specific point in time, we had the idea that the
radar data traffic flow will follow the trend of air traffic. It has
been seen in numerous papers [13], [14], [15] that in a normal
day, the air traffic sees a peak of activities at the beginning
of the day, at the end of the morning, at the beginning of the
afternoon and in the evening, then it has a lull during the night
to then resume the same trend. Thus, for radar data network
flows, we expect to observe a trend that will be repeated over
the days and the different radars that we can observe. To try
to observe this trend, we were interested the evolution of the
number of packet radars during a day.

We observed the evolution of detection packet for the first 15
days of May for a given radar. The result is given in Figure 5.
We can visually observe that the radar traffic seems to follow
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Figure 5. Evolution of detection data during the first 15
days of May.
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Figure 6. Evolution of detection data during one day the
first 15 days of May simultaneously.

the same trend as the air traffic flow, with a drop in activity
during the night, a peak high at 2 am, a rather stable variation
during the day with peaks of activity and a drop in activities
in the evening. This result is due to the fact that the radar
data correlates with the aerial activity. Thus, if the air traffic
follows a trend, we must find the same trend in the flow of
radar packets.

The visualization of this trend is clearer in Figure 6, where we
traced simultaneously over a period of 24 hours the evolution
of detection packets in time for the first fifteen days of May.

Figure 6 reinforces the idea that indeed, we have a trend that
seems to follow the same trend as air traffic with a drop in
activity during the night and peaks during the day, and that,
moreover, this trend will be similar in time since we find
similarities through time.

Visually, we observe a trend that seems to be similar depend-
ing on the day. Figure 7 compares the evolution of the number
of packets for a duration of one day for two days to one week
apart, after normalization of the data. It confirms that the two
curves overlap and have similar peaks. The cosine similarity
for these two data is 0.97, which confirms to us that the two
evolutions are very close. This reinforces our hypothesis of a
trend that would be repeated every day.

Thus, the evolution in time for a radar will be similar through
the days, because the state of the sky will be similar every day
for this radar. However, we wondered if this was the case for
all the radars for which we have data and if this model will be
similar between the different radars.

To answer this question, we used Min and Max measurements
as well as Mean. We measured the min and max of the
number of detection data for each day over a period of two
months, and we also averaged for each radar. This gives us,



<

S

T ;
N2 —— April 27
g m April 20
2 1

: J "W

+

s

| 0

<]

fa]

£

=

€1

I

@

ks T T T T T T T
5 oW R IR I SR

o P G P P P P
S O O N ¢
SRS N T U S

Figure 7. Comparaison of two days.

0O 1 2 3 456 7 8 9 101112 13 14 15 16 17 18 19 20 21 22

Cosine similarity score

ONOU A WN RO

Figure 8. Heatmap of cosine similarity score between the
mean of the trend for the 23 radars.

for a given radar, three different curves: a curve of the Min, a
curve of the Max and a curve of the Mean. We have compared
these twenty-three data among them, for the twenty-three
SSR radars for which we have data, and we have measured
the cosine similarity of the averages. The results are given in
Figure 8 and we can see that the value of the cosine similarity
is close to 1 each time, which means that the averages are
similar to each other for the different radars.

Therefore, the trend that we observe from the beginning is
a trend that will be repeated over time and that we will be
able to find for the different radars. It is characterized by the
average of this evolution through time that we were able to
draw with a tolerance threshold which is defined by the Min
and Max that we could observe.

With the help of these average values, we are able to define
a trend that we will be able to find every day on all radars
and that will allow us detect anomalies. In building this
trend over a large time value and from a dataset that has
been characterized without any anomaly, we can say that from
the moment we move away from this trend, more or less the
values of threshold of MIN and MAX, we can consider that
there is potentially an anomaly.
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Figure 9. Visualization of a normal traffic.
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Figure 10. Visualization of a spoofed traffic.

5. SPOOFING ATTACK DETECTION

In this section, we will consider the spoofing attacks, that is,
artificially modify data in the dataset.

Methodology of attack

We used a python module: pygame which, coupled with an
ASTERIX parser, allowed us to visualize the radar traffic. To
manipulate radar data, we used an internal Scapy (a packet
manipulation tool for computer networks) module. To oper-
ate the attack, we replayed a radar dataset from our dataset,
with the TCP replay tool. Then, we visualized this dataset
with our tool. We placed ourselves between the transmission
and the visualization as an attacker (as an attack Man In the
Middle). We received all the data from the transmitter and
we re-transmitted it as is to the receiver. So we had at first a
normal visualization of the dataset, with the representation
of the planes in the sky, as shown in Figure 9. At some
point, we decided to change the trajectory of an aircraft, for
this example it is the one with the TPN (Track Plot Number)
121 to divert it to the West (offset by about 45 degrees). So
we launched a scapy script that will modify in real time the
position (Rho and Theta coordinates) of the aircraft, and sent
this new data to the receiver. The result is a visual deviation,
on the screen, of the aircraft identified with the TPN 121 to
West, as shown in Figure 10.

Our goal is to detect such spoofing attacks. The idea of our
system of detection is to predict the time series and compare
the predicted value with the received value.

Method of detection

Because the Recurrent Neural Network (RNN) has a certain
short-term memory advantage, it is often used as the preferred
neural network for training time series. However, when the
length of the sequence data exceeds a certain range, the data
trained by the RNN will have a serious problem of gradient
disappearance, which will lead to the training stop. That is
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four interacting layers

to say, the RNN can only learn the time series information of
a certain interval. On the other hand, the Radar series sent
by the aircraft can be regarded as a time series with context.
It is difficult for RNN to effectively use this long history
information because of its long length. This, RNN cannot
learn the characteristics of long-term dependence. To solve
this problem, Hochreiter and Schmidhuber first introduced
the Long-Short Term Memory (LSTM) mechanism in [16].
Since then, researchers have also proposed a number of
variants of LSTM, the most popular of which is described
by Graves and Schmidhuber [17] in 2005.

The LSTM architecture consists of memory cells used to
learn long-term modes, each cell containing its current state
and three non-linear gates: the forget gate, the input gate, and
the output gate. The forget gate is responsible for determining
how much memory information to forget. It is determined by
a nonlinear function that outputs a number between 0 and 1,
where 0 means forgetting all information in memory, and 1
means retaining all information in memory. The input gate
is responsible for deciding how to update the old cell state,
ie, the new information is selectively recorded in the cell
state. The output gate is responsible for deciding how much
memorable information to pass to the next cell. The structure
of the LSTM unit is shown in Figure 11.

Detection

In this paper, we use the LSTM neural network to predict the
radar time series. After the model is trained, the correct data
set is used to obtain the residual of the predicted value and
the true value, and then calculate the statistical characteristics
of the residual (the mean is denoted as y and the variance is
denoted as o). The abnormal score is defined as the difference
between the test dataset residual and p, and the abnormal
threshold is defined as 30. During the test phase, if the input
time series contains an abnormal sequence, the abnormal
score may exceed the threshold, thereby achieving the effect
of anomaly detection.

We use the form of sliding window to predict the radar
sequence. Specifically, we choose a window with a length
of 10, and the training input and output forms are shown
in Table 1. Use the first 10 data to predict the 11th data, 2
to 11 to predict the 12th data, and so on. The input time
series is a window composed of 4-dimensional vectors, each
of which contains the TPN, TIME, RHO, and THETA (RHO
and THETA are measured positions of an aircraft in local
polar coordinates) information of the aircraft.

We have taken the case of 10 different aircraft and injected
them with abnormal data. In particular, we modified the
position information of these aircraft at [100, 105], 45 degrees
for THETA and 25 nautical miles for RHO respectively.

Table 1. Example of sliding window

Input data number | Forecast data number
[1,10] [11]
[2,11] [12]
[n,n+9] [n+10]
THETA modified RHO modified
0.7 —— Abnormal score 25 ‘ —— Abnormal score
L 0.6 Threshold o ] Threshold
o G 20
0 0.5 Iv] ‘
[} n
E 0.4 E 15]
0.3
= = 10
202 2
201 g5
0.0 — 0| —
0 100 200 300 400 500 0 100 200 300 400 500

Serial number Serial number

Figure 12. Example of an aircraft after injecting a
spoofing attack.

Figure 12 represents the abnormal score of an aircraft (the
situation of the remaining aircraft is similar) after injecting
the attack. Modified sequences are marked in red.

As can be seen from the Figure, the method can effectively
detect abnormal sequences, and the visualization effect is
remarkable.

6. CONCLUSION AND FUTURE WORK

The work that we conducted allowed us to highlight charac-
teristics of radar network traffic that we will be able to find
over time after the radar, which is a normal data signature
basis. From these characteristic signatures, we will be able to
set thresholds, based on statistical measures. As a result, we
are taking a first step towards the development of a detection
system dedicated to radar data. In addition, these characteris-
tics allow us to better know the radar traffic, which will allow
us, thereafter, to have an anomaly injection tool that will
take into account these characteristics. Nevertheless, with
our tool, we are already able to inject anomalies by making
a spoofing attack, which will modify the measurements of an
aircraft. Thus, we have developed a machine learning method
that is able to detect this attack in a radar traffic. This is
a first step to move towards the development of a dedicated
detection module for ATM networks.

Several difficulties have arisen to develop our tools. Es-
pecially for the injection tool, because there are no data
manipulation tools in ASTERIX, we had to develop our own,
the same for the visualization tools, as we do not have on-site
screen radar control, we had to develop our own visualization
tool. Moreover, since the ASTERIX traffic was not studied
in itself, it was necessary to find what elements could be
characteristic of this traffic and which elements it would be
relevant to modify. Finally, as we rely on real traces, we had
to take into account all the errors that we can encounter in the
traces.

For future work, we intend to develop other dedicated attacks
to test our methods. The idea is to make the finest possible
attacks and develop them with the controller partnership, in
order to be closer to an operational context and expectations
on the ground. To do this, we will work closely with ATM



professionals and we will test our tools of injection and
detection on networks and machines close to an operational
context in a real-time context. This will enable us to better
characterize the actual traffic and to be able to test the reaction
of the tools already in place on the operational network, as
well as to test the controllers’ response to an unknown attack.
This will allow us to refine our rules for the development of
the dedicated detection system.
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