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Abstract—Moving object analysis is a constantly growing
field with numerous concrete applications in terms of traffic
understanding, prediction and simulation. While many algo-
rithms and analytic processes exist, there are still areas of
investigation with novel trajectory analysis methods. As such, the
geometric information analyses data with respect to its statistical
distribution along extracted dimensions. This opens new ways of
gaining a better understanding of large and complex trajectory
data sets while providing flexible data manipulations. In this
paper, we report our investigations with the development of
an interactive methodology based on the geometric information
analytic process where users can analyze trajectories sets, cluster
and deform them maintaining the actual statistical properties
of the investigated trajectories. As a contribution, this paper
shows how geometric information can provide novel support for
trajectory analyses taking into account the statistical properties
of the investigated clusters. We also provide recommendations of
good usage of such techniques with actual examples validated by
a a domain expert of air traffic flow analysis.

Index Terms—Geographic/Geospatial Visualization, Data Ag-
gregation, Data Cleaning, Data Clustering, Data Transformation
and Representation, Data Editing, Manipulation and Deforma-
tion, Multidimensional Data, Geometry-based Techniques

INTRODUCTION

Our society has entered a data-driven era, in which not
only enormous amounts of data are being generated every day,
but also growing expectations are placed on their analysis [1].
Trajectory data (i.e. flows of cars, airplanes or people) are
collected every day and analyzing these massive and complex
data sets is essential to making new discoveries and creating
benefits for people. Processing such data is a challenging task
due to their intrinsic, time-dependent nature. While machine
learning heralds a solution to address the issues of big data
and efficient knowledge extraction, alternatives do exist where
humans play a central role with the usage of interactive
visualization systems [2].

In this regard, this paper investigates a novel analytic
method for trajectory processing using information geometry
[3]. While general trajectory analysis relies on distance and time
algorithms, information geometry uses differential geometry
and probability theory [4]. Such analytic tools capture the
intrinsic statistical properties of the investigated trajectories.
Previous work [5] showed its potential to support visual
simplification and visual flow modeling. Geometry information
deserves further investigation which goes beyond its usage for
visualization purposes.

Considering trajectory input data as a set of Rd curves,
the standard multivariate statistical representation of a set of
curves γ would be a set of d-dimensional samples [6]–[8].
However, this representation may not capture all relevant curve
characteristics - e.g. its shape or smoothness. Functional data
analysis [9] enables a better representation of multivariate data
functions like curves. A curve is then modeled as a point in
an infinite-dimensional space, usually the L2 space of square-
integrable functions [9]. Geometry information can then be
used to obtain a finite representation of the data by means
of Functional Principal Component Analysis (FPCA). This
tool captures the data variability around the mean curve while
estimating the Karhunen-loève expansion [9]. In other words,
FPCA yields a finite basis describing the main variability modes
contained in the data. Learning the distribution of the data on
this basis enables two powerful applications: the generation
of new samples with the same behavior, and the creation
of samples with a user-deformed mean consistent with the
collected data.

This paper applies geometry information for analytic pur-
poses and proposes an analytic pipeline to support trajectory
processing. This pipeline handles trajectory clustering, data
cleaning, flow simplification, flow generation and flow transfor-
mation. This methodology was built with the help of air traffic
experts to ensure the accuracy of the processed information.
This paper’s contributions rely on the analytic pipeline and
its guidelines to leverage trajectory analysis with geometry
information tools.

The article is structured as follows: Section I presents related
works on existing trajectory processing algorithms. Section II
lays the mathematical foundations for trajectory analysis limited
to flow understanding and management. The following section
gives the basis of the information geometry. Next, we detail the
pipeline followed by its use cases. Next, we discuss this paper
with an extract recommendation for good usage of the tools.
Finally, we conclude the paper with possible work extension.

I. RELATED WORK

There is abundant literature concerning the analysis of
moving object trajectories. Even if it is a well-explored topic, it
remains a popular area of research where geometry information
has barely been used [5]. This paper fills this gap with a
thorough usage of geometry information-based algorithms for
trail set analysis and deformation. This section presents the
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main research challenges encountered in the fields of trajectory
analysis, trajectory deformation and interactive exploration of
trajectories.

A. Functional modeling

When manipulating objects that have a functional nature or
are raised from a functional model, it is advised to preserve this
model by using appropriate tools. Functional Data Analysis
(FDA), [9] is a tool that aims to precisely preserve the
functional nature of data by expanding it into an appropriate
finite functional basis. The input object is transformed into a
coefficient vector, which can then be used in a multivariate
framework. This enables the use of traditional multivariate
statistics but with the insurance of keeping the functional
behavior of the underlying objects. The choice of the basis is
important since an appropriate basis choice can better capture
some data features such as smoothness. Nevertheless, the
main applications of FDA are real-valued functions such as
spectrometric data [10] or weather data [11]. Nevertheless,
there are few applications on vector-valued functions, such as
the 2D or 3D curves considered in [12], and [13], [14] or trail
set brushing [15].

B. Trajectory clustering, simplification, and generation

Trajectory analysis often relies on clustering algorithms.
Clustering can be performed on the geographical space [16]
with density maps [17], with pattern similarities [18] or with
time clustering [19]. It is also possible to define distances
between trajectories to enable clustering [20], or to use
dimensional reduction processes [12]. Using the Functional
Principal Component Analysis for trajectory clustering has
barely been investigated yet, which makes this study a precursor
in the area.

New methods such as Generative Adversarial Networks allow
to generate trajectories. A recent publication [21] proposes the
use of GANs for the generation of aircraft trajectories and the
detection of atypical approaches.

C. Trajectory Exploration tools

Exploring, analyzing and visualizing temporal data such
as trajectories has a long history. Time series analysis [22]
helps the extraction of relevant information. Frameworks [23]
are available to gain a better understanding of such complex
time-varying data sets thanks to aggregation techniques [24]. A
recent visualization framework has been provided to structure
efficient temporal data representations [25].

Many interactive tools and systems for trail-set exploration
and manipulation exist. Selection boxes help to filter objects
of interest [26] [27], particle systems help to understand
flow directions [28]. More recently, image based techniques
[29] have been applied for trajectory analysis [30]. Boolean
operation can be performed to combine selections of trajectories
[31] on a 2D screen or in virtual reality [32]. Overall, no
previous system used the FPCA tools in a unified framework
for trajectory analysis and this paper provides the first of the
kind.

II. MATHEMATICAL FOUNDATIONS

This section provides the mathematical foundations to
understand the Functional Data Analysis process. Section II-A
underlines the representation of discrete trajectories in a
function space. Section II-B explains how principal curves help
to represent a set of trajectories. Section III-A shows how to
generate a new distribution using these principal coefficients.
Finally, Section IV illustrates how to modify curves thanks to
controlled deformations.

A. Curve functional modeling

Functional Data Analysis considers curves as objects in
an infinite dimensional space. This enables certain curve
behaviours such as their shape or smoothness to be taken
into account. To retrieve the functional model from discrete
data, curves must be reconstructed in a dedicated functional
space. It is mandatory that curves have two continuous first
derivatives and thus belong to the L2 space of square-integrable
functions. Before applying functional decomposition, curves
must belong to this space, so called Sobolev [33].

W2 =

{
f ∈C1([0,1],R), f ′ abs. cont.,

∫ 1

0
f (x)2 + f ′′(x)2dx <+∞

}
.

(1)
To obtain a functional representation of the discrete curves,

the choice of a cubic spline kernel K is made based on [5]. A
set of curves P = {γi} is then represented by a matrix A where
each row ai represents γi in terms of spline coefficients.

B. Functional Principal Component Analysis modeling

Let C = {γ1, . . . ,γN}⊂P be a set of N curves. The Functional
Principal Component Analysis (FPCA) process consists in
modeling C with its mean curve γ̄ and the variance around it.
A classic hypothesis is that C comes from an underlying hidden
stochastic process γ : Ω× [0,1], where Ω is the probability space
of all possible outcomes. The empirical covariance estimator
Ĥ enables the capturing of the variability of C around its mean
γ by using the Karhunen-Loève expansion [34]:

Γ(t,ω) = γ +
+∞

∑
j=1

b j(ω)φ j(t) (2)

where b j are real-valued random variables called principal
component scores. φ j are the (vector-valued) eigenfunctions of
the covariance operator with eigenvalues λ j. For the discrete
implementation of such functional decomposition see [5]. With
this model and knowing the mean curve γ̄ and the principal
component functions φ j, a group of curves can be described and
reconstructed (Inverse FPCA) with the matrix of the principal
component score b j of each curve. Usually, a finite vector (fixed
dimension d) of b j scores is selected such that the explained
variance is more than a defined percentile.

To sum up, each trajectory can be represented through the
FPCA process by the Mean plus the sum of the Principal Com-
ponent Functions weighted by the Principal Component Score.
The Inverse FPCA (IFPCA) process consists in reconstructing
the trajectory from the Principal Component Scores knowing
the Mean and the Principal Component Functions
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III. TOOLS

This section is divided into two parts. Section III-A explains
the curve generation process, and Section III-B presents the
clustering task.

Fig. 1: This figure illustrates the different generation processes
for the principal component score distribution. In red, a Simple
Gaussian model is illustrated. In blue, the Mixture Gaussian
model is represented. Finally, in green, the neighbourhood
model is shown

A. Curve generation

In [5], Hurter et al. generated curves with a random selection
of principal coefficient scores with a centered independent
simple Gaussian distribution hypothesis. Usually, coefficients
are not simply Gaussian. Consequently, curves generated with
this model do not present realistic behavior. Two alternatives
are proposed in the following.

1) Neighborhood generation: To ensure the generated
curves are sufficiently realistic, a neighborhood generation
was developed in this study. The curve regeneration process
needs to take into account an important number of principal
coefficients (typically more than 60% of the total principal
components). The process is as follows: First, each principal
coefficient of the dimension variance is computed using a
Gaussian centered model. Then, a curve is randomly selected
and its principal component scores are kept. Finally, a new
score is randomly generated in the neighborhood of the selected
sample. The range of the neighborhood is defined with the
variance among each dimension. In addition, the user is able to
tune a α coefficient between 0 and 1 that is multiplied to the
range of the neighborhood. This coefficient enables the user to
modify the similarity between the original and the generated
trajectory.

2) Multivariate Gaussian mixture model generation: An
alternative to the neighborhood generation model consists in
applying a multivariate Gaussian Mixture model, i.e. an EM
algorithm [35], on the principal component scores that concen-
trate more than a user-defined percentage of the explained
variance. This process does not assume the independence
of the principal component scores and enables a richer

representation with a Gaussian Mixture instead of a simple
Gaussian Distribution. With this generation, it is usually more
difficult or even impossible to properly estimate the distribution
for a large number of components. This is the well known
problem referred to as the curse of dimensionality [36]. In high
dimensional space, the volume of space increases rapidly and
samples are usually isolated. The choice was made in this study
to estimate only the distribution of the first components that
explain most of the variance with the dependence hypothesis.
The last components, which mostly correspond to the noise,
are then assumed to be independent.

Figure 1 illustrates the three models for curve generation.
The red circle corresponds to the Simple Gaussian model, the
blue ones to the Gaussian Mixture Model, and the green ones
to the neighborhood model.

B. Clustering

1) Clustering for regeneration: Clustering is a very im-
portant initial step before applying the FPCA process. To be
efficient, FPCA must operate on clusters with representative
mean curves. A two step clustering process was derived for
this study. A cutting down clustering, which aims at reducing
large data-sets, is applied in a first step. For example, one can
use a k-means clustering (or other simple literature algorithms)
on arrival or departure trajectory locations. For the study of
aircraft landing trajectories, the initial clustering is here done
on the destination runways. The second step is to apply a
refinement clustering based on the FPCA decomposition score.
Displaying first coefficient dimension, the user is able to apply
another clustering algorithm in order to group together similar
trajectories. The choice of the Esperance-Maximization (EM)
algorithm [35] is made here but other algorithms such as k-mean
[37], or HDBSCAN [38] are also applicable. The choice of the
algorithm and/or the number of clusters should be guided by
the visualization of the FPCA score and by expert knowledge
of the investigated data-set. In addition, the user is able to
select the number of dimensions of the principal component
score to use for the clustering and visualize the clustering result
on the trajectory to decide which clustering method produces
the most representative clusters (i.e. mean curve dissimilarity).

2) Clustering for Classification: The distribution of the
principal component score can be used to cluster data. Indeed,
the finite dimension representation enables the computation
of distance. Besides, the euclidean norm of the principal
component score is equal to the L2-norm in the Sobolev Space
[9]. In a situation where the behavior of the group of trajectories
to classify is known, this knowledge can be used to define a
classification process using unsupervised learning techniques.
First, trajectories are decomposed using the FPCA process.
Then, the HDBSCAN [38] clustering algorithm is applied
to all the trajectories principal component scores. Since the
FPCA process clusters together similar data, it means that
similar trajectories will be grouped together. HDBSCAN is
really highly efficient in determining density-based clusters with
irregular shapes, i.e. clusters that are generated from the same
distribution with no assumptions on the type of distribution.
In addition, the HDBSCAN algorithm gives the probability of
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being in a cluster. Knowing the behavior of the group to be
detected, it is possible to identify to which cluster it corresponds.
Finally, the user defines a probability value above which the
trajectory is attributed to a cluster. This enables the user to
choose the characteristics of their classification algorithm in
terms of accuracy or specificity.

Fig. 2: This figure illustrates examples of good and poor
usage of curve modifications for aircraft approach trajectory
altitude profile. At the top, both the mean and the principal
components were modified. At the bottom, only the mean was
modified. The behavior observed while modifying only the
mean curve presents artifacts. Level-off flight was expected,
but the trajectories present descent phases. These behaviors are
not nominal and underline that the process was not executed
properly.

IV. CURVE SHAPE MODIFICATION

While simple trajectory deformations can be performed with
Cartesian dimensions, it become more complex with additional
data dimensions such as altitude. Furthermore, deformation
becomes cumbersome when it has to be applied to many
trajectories. FPCA can help solely with the deformation of the
cluster mean curve and its principal components to modify
every trajectory of the investigated cluster. Hurter et al. [5] only
modified the mean curve to perform trajectory modifications,
which leads to many visual artifacts. Indeed, the mean curve
modification is not sufficient, the principal components also
have to be modified to correctly model the temporal behavior
which was embedded in the undistorted original FPCA model.
Modifying the trajectory behavior implies being sure that the
principal components, and therefore their underlying variation

on the mean curve behaviour, are applied at the right time-
stamp. Modifying the mean curve without insuring that the
role of the principal components was not modified, resulted in
most cases, with aberrant curve behaviors.

In figure 2 good and poor usage of curve modifications
are illustrated. This shows aircraft vertical profiles (altitude
function of the distance) modifications, where the landing
procedure was increased in altitude (1000ft higher for noise
sustainability issues). This use case will be further detailed
in section VI-B1. The top figure 2, shows the result of the
solely mean curve modification. In this case, the principal
components are no longer aligned with the mean curve and
result in an unrealistic trajectory with artifacts around the level-
off flight (red circle in figure 2). The bottom figure 2 shows
more realistic results where both the mean and the principal
components were modified.

The mean curve modification and its principal component
modifications are not an easy task. First, a curve registration
is needed to align curve landmarks. Then, the key idea is
to apply the same temporal modifications to both the mean
and the principal components. By doing so, we ensure that
the variation induced by the principal component function is
correctly located.

Curves translation: The translation operator of a curve γ is
defined as v the translation vector for any t ∈ [0,1] as :

Translationγ(v)(t) = γ(t)+ v (3)

This is the sole operator that can be applied only to the
mean curve since it does not affect landmark time position.

Curves 2D rotation: The 2D rotation of a curve γ = (γx,γy)
at time t1 with angle θ for any t ∈ [0,1] as is defined as:

Rotγ(t1,θ)=


γ(t), if t < t1

γ(t1)+

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(γ(t)− γ(t1)) else

(4)

Temporal compression and dilatation: Temporal compres-
sion/dilatation operator of a curve γ between t1 and t2 with
the compression coefficient α ∈R+ with tCD = t2−(1−α)·t1

α
, the

temporal compression/dilatation is defined for any t ∈ [0,1] as
:

TCDγ(t1, t2,α)(t) =


γ(t), if t < t1
γ(α · t +(1−α) · t1), if t1 ≤ t < tCD

γ(t− (tCD− t2)), if t ≥ tCD
(5)

Curve temporal cut or extension: The cutting or extending
operator of a curve γ at t1 with width δt ∈ [−t1,1− t1], for any
t ∈ [0,1−δt ] is defined as :



5

Fig. 3: Illustration of our pipeline. On the left, the input curve data-set passes through an initial clustering step. After this,
trajectory registration based on landmarks is applied. Then, the FPCA process is computed for the first time for each cluster.
This FPCA process gives two pieces/elements of information: the principal component scores (top figure) and the mean curve
with the principal component functions (bottom figure). The principal component scores are used in two situations: First for
clustering refinement and data cleaning, second for the generation process. Generation consists in estimating the principal
component score distribution and in generating new samples following the estimated distribution. During the modification
operations, the mean and the principal component functions are processed. It consists in applying modification operators
(rotation, translation, dilatation) in order to obtain the desired distortion. Finally, the Inverse FPCA process enables the trajectory
to be reconstructed with the new distribution (i.e. increase or decrease in trajectory number) and behavior.

CEγ(t1,δt)(t)=

{
γ(t), if t < t1
γ(t +δt)+ γ(t1)− γ(t1 +δt), if t1 ≤ t < 1−δt

(6)
In addition, this operator modifies the definition interval of

the curve. A good use consists in applying the TCD (Eqn. 5)
operator between 0 and 1− δt with compression coefficient
α = 1−δt .

Smoothness: The three last operators (Eqn. 6, Eqn. 5, Eqn. 4,
only insure the continuity but do not ensure the smoothness
of the obtained curve. Nevertheless, it may be restored for an
operational or visual purpose by using an additional filtering
algorithm (Laplacian filtering or other).

V. PIPELINE

The figure 3 shows the pipeline with a trajectory data-set
as input data. The first step performs an initial clustering to
reduce the data-set size into clusters with similar trajectories.
This initial clustering is data-set dependant. For instance, with
aircraft trajectories, it can be performed on departure or arrival
airport. The FPCA process can then be applied to each cluster
to compute the mean curve, the principal component functions
and the principal component scores.

Then, a clustering refinement step can be computed based
on the principal component scores as previously explained.
User input is needed at this clustering step: with the suggested
EM algorithm, the user has to define the number of clusters
and the number of principal components to use.

The following step shows different possible trajectory
processing. The Inverse FPCA produces size varying trajectory
with respect to their shape and statistical properties. Two
different types of trajectory generation are available (III-A). The
neighborhood process produces trajectories close to the original
one (tuning the variability around it), the Gaussian mixture
allows more variability. Finally, trajectory deformations can be
applied to distort the final result. Thanks to modifications
operators (IV) applied on the mean and on the principal
component functions, trajectory shape can be adjusted. These
final data processing techniques (curves generation, deformation
and simplification) can be combined to to adjust end user final
results.

VI. USE CASES

This section is divided into two parts. Each part illustrates
a specific feature of the pipeline (Figure 3). The first part
illustrates the clustering process, the second one the trajectory
modification operator through concrete examples.

A. Clustering and Classification

In this section we will apply the unsupervised classification
process defined in section III-B2 to the identification of landing
procedure at Bordeaux Merignac airport (one of the major
airports in France). When landing on runway 05, aircraft
follow four kinds of trajectory (RNAV,Visual-RNAV, VOR,
Conv). The RNAV approaches, are GNSS paths. They are
very characteristic since they follow a path from defined way-
points (geographical points on a map). It also means that this
type of approach will be very similar in the FPCA space. We
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recorded 2597 suitable landing sequences (one record every 4
seconds, 995963 points in total) during a three month period
in 2018 (summer time). We fixed the probability threshold of
each cluster in order to minimize the false positive samples.
Indeed, we know the behaviour of these approach trajectories,
so we fixed the threshold such that all the detected trajectories
correspond to this behavior.

Figure 4 shows the result of the clustering algorithm where
classes of landing sequence are clearly separated within
four clusters. Figure 4 bottom shows the first four principal
components with the identified cluster.

Fig. 4: This figure illustrates the clustering task of the
landing trajectory at Bordeaux airport. On the top image is
illustrated the result of the classification of the Bordeaux airport
approaches from the 2017 data records. At the bottom, the first
four principal component score distributions are represented.

B. Curve modification and generation

1) Interception Altitude modification: After The Grenelle de
l’environnement 2018 annual meeting to discuss sustainability
issues, landing procedures at Charles de Gaulle airports were
raised by 1000ft (around 300m) to reduce noise emission. In

this regard, we worked in collaboration with the Environmental
Office of the French Civil Aviation Authority. In this section, we
report the simulation results where we processed traffic before
the rise and modified them with the Grenelle 300 meter rise.
We then computed the resulting noise emission and compared
it with the actual trajectories after the rise. This comparison
provides a good assessment of the accuracy of the trajectory
generation and modification pipeline.

The process is the following. First, curves were registered
with their landmarks defined along the longitudinal turning
points of the curve. Second, the FPCA decomposition and a
clustering refinement of the trajectories with the EM algorithm
[35] were applied.

Then, for each cluster, curves were modified to follow the
300 meter pull-up: extension operator from 1000ft to 2000ft
with t1, the time shift at 1000ft (300m), t2 the time shift at
2000ft (600m), and δt = t2− t1.

Figure reffig:noiseSimu top illustrates the noise level for
the real traffic (after the altitude rise), and at the bottom, the
noise generated from the pipeline with the modified traffic.
The noise indicator is the NA62 indicator which is computed
over one day of traffic. This indicator is mainly used by the
environmental office. It corresponds to the number of aircraft
emitting noise above 62dB during the period. The area for 5
to 20 events above this threshold is represented here.

Fig. 5: At the top, the noise NA62 indicator map of the real
aircraft traffic (aircraft noise above 62dB). At the bottom,
the same indicator map for the simulated traffic obtained
with the pipeline. The modification consists in raising by
1000ft (300m) the level-off flight of landing aircraft before
landing. This modification was applied following the Grenelle
de l’environnement for noise reduction purposes.

The result shows that this noise computation is close to the
actual recorded noise with main identical parts even if a few
differences in terms of areas can be observed. The simulation
covers 92% of the area because the real noise map is slightly
more extended on the left side. This is due to the fact that in
the real context, approaches tend to have a longer level-off
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flight before starting the final descent. Nevertheless, this shows
that the pipeline can produce valuable simulated trajectories
and can be used for realistic flow simulation.

2) New departure flow investigation: Before building a new
aircraft departure air flow, it is valuable that it is simulated
and its noise impact assessed. This study’s pipeline assists
in this matter. To test such a possibility, we considered a
novel departure air flow at Nantes-Atlantic Airport (one of the
major airports in France) using an existing flow at Bordeaux-
Merignac Airport as a reference model. Such flow duplication
is not straightforward since the original air flow (i.e. Bordeaux)
has to be modified to follow mandatory way points at the
destination airport (i.e. Nantes).

As a result, figure 6 represents at the topthe original flow of
trajectories at Bordeaux and at the bottom the generated and
distorted air flow with the pipeline after its modification to fit
Nantes airport landing procedure. A rotation and translation
were applied to align the runway approach with the runway
in Nantes. The new procedure follows different aeronautical
way-points and is illustrated in red in figure 6.

Fig. 6: This figure illustrates the departure procedure deforma-
tion. On top, the original trajectories at Bordeaux Airport are
represented. At the bottom, the modified trajectories at Nantes
Airport. In addition, the expected procedure following different
aeronautical way points is shown in red.

VII. DISCUSSION AND FPCA GOOD PRACTICE

This section discusses the paper outcomes (clustering,
trajectory distortion, trajectory generation) and provides a

summary of FPCA good practice.
The objective of clustering refinement is to compute cluster

with consistent mean curve. As previously explained, the FPCA
process is efficient when groups of curves have similar shapes
to correctly capture their variability around a mean curve.
In addition to the clustering refinement, it is also important
to remove outliers which may impact the mean curve and
potentially induce weak results in the next FPCA processing
steps.

The system, derived from the pipeline, contains a set of
specific tools for trajectory modifications. Modifying the mean
curve without keeping the principal components aligned will
generate artifacts. Users need to visually assess the modification
results and fine tune the regenerated curves. Currently, the
methodology has predefined modification presets, but in our
future work, the user will be given the ability to choose the
modifications and interact on the mean and on the principal
components to directly see the effect on the regenerated curves.

For the generation process, the user has to select which
kind of generation process they wish to apply and define how
many curves to generate. The size of the original data-set
can be adjusted while keeping a consistent distribution or
extending the data-set in number in order to simulate traffic
growth or decrease. The choices in the generation process
and in the parameters are guided by the visualizations of the
principal component score and the desired proximity in shape
to the original trajectories. Besides, the user can also adapt the
generation process with the visualization of the reconstructed
trajectory and ensure that the generated curves have the shape
expected.

As a summary, recommendations for efficient usage of FPCA
tools for trajectory analysis are provided here:
• Trajectory registration: This initial step is mandatory to

efficiently capture the variance around the mean curve of
the considered clusters,

• Initial clustering: An initial clustering is mandatory to
have a meaningful mean trajectory,

• trajectory deformation: trajectory deformation only oper-
ates with the mean curve deformation associated with the
principal component function modifications,

• Trajectory generation: many possible methods exist to
increase or decrease the number of trajectories. We
proposed three methods taking into account the global,
local and neighbor variance.

VIII. CONCLUSION

In this paper, we propose a new approach to analyze
trajectories from a functional decomposition perspective for
the underlying data-set. Thus, we developed a functionally
based pipeline to support the following trajectory processing:
clustering, trajectory deformation and trajectory generation.
Thanks to the pipeline, trajectories can be clustered taking
into account trajectory curvature and their variability around
the mean curve. This provides another clustering tool which
mainly considers trajectory shapes as a grouping parameter.
Through concrete examples, an aircraft path deformation and
the corresponding noise computation, we show that the pipeline
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can produce reliable solutions for trajectory simulation. The
results seem to be relevant regarding operational metrics. Rather
than processing every trajectory to deform it and make it
compliant with new air traffic flow constraint, the pipeline
enables the deformation of a single mean curve to produce an
equivalent result. Furthermore, this pipeline is flexible, since
the user can also increase or decrease the number of trajectories
while keeping a coherent distribution around the mean curve.

While we show quantitative and accurate results with this
pipeline, many improvements can be considered. Firstly, FPCA
tools need some fine tuning and the underlying parameters
require some prior knowledge in statistical tool manipulations.
Secondly, the pipeline provides trajectory deformations applied
to the mean curve and the principal component of the
considered cluster. We currently provide simple transformation
like rotation, stretching and bending. some additional work is
needed to make this transformation applicable to any kind of
trajectory.
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