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Abstract—The Aircraft Landing Problem (ALP) consists in
sequencing aircraft on available runways, and scheduling their
landing times taking into consideration various operational con-
straints. It is an NP-hard problem and an ongoing challenge for
both researchers and air traffic controllers. A straightforward
solution widely used in practice consists in scheduling aircraft
using the simple “First-Come First-Served” (FCFS) sequence.
However, it rarely provides optimal solutions, especially in large
congested airports.

In this work, we propose a heuristic approach based on
optimistic planning to solve the problem. We model the ALP
as an environment of states, actions, transitions and costs, then
explore the resulting search tree so as to identify a near-optimal
sequence of actions within a limited time budget. In a previous
contribution, we used the “First-Come First-Served” (FCFS) rule
in the computation of the costs, to estimate the cost of the
cheapest path (sequence of actions) from a given state. Now,
we investigate a baseline model based on linear regression, and
two different machine learning (ML) models trained on a large
number of optimized solutions. These models can quickly and
accurately estimate the cheapest-sequence cost, which helps the
search to identify a near-optimal branch more efficiently.

Numerical experiments are performed on our publicly avail-
able data set, and show that using machine learning models in our
heuristic search does not only ameliorate the previous results in
terms of percentage improvement, but also reduces the optimality
gap within a computation time that is compatible with on-line
operations.

Keywords: Aircraft landing problem; Mixed integer linear
programming; Optimistic planning; Machine learning

I. INTRODUCTION

According to the International Air Transport Association
(IATA), air passengers are expected to double by 2036 [1];
this increasing demand on air transportation exposes the
available infrastructure to a risk of saturation. Constructing
new infrastructures (runways, airports) is a solution to increase
the capacity; however, it may not always be the best solution
due to its investment costs. The alternative is to optimize the
use of current infrastructures, especially runways, which are
recognized to be one of the main bottlenecks of the whole Air
Traffic Management (ATM) system.

Several research works focus on in the optimization of
runway sequences, which correspond in the literature to the
following problems:
• The Aircraft Landing Problem (ALP) aims at sequencing

arriving aircraft on available runways and scheduling their

landing times taking into consideration several opera-
tional constraints.

• The Aircraft Take-off Problem (ATP) consists in schedul-
ing take-off slots to departing aircraft.

When scheduling both landings and take-offs, the problem
is then called the Aircraft Scheduling (or Sequencing) Problem
(ASP).

Several methods are proposed in the literature for the three
above-mentioned problems, and can be classified in two main
categories:

• Exact approaches, mainly Mixed Integer Programming
(MIP) and Dynamic Programming (DP). MIP-based ap-
proaches formulate the problem as a MIP model, and
solve it using optimization solvers such as CPLEX [2],
[3], [4], [5] or GuRoBi [5]. DP approaches usually
model the problem as a modified shortest path problem,
and solve it using DP techniques [6], [2], [7]. Exact
approaches provide optimal solutions, but they may be
inefficient to solve large-scale instances in reasonable
computation time.

• Metaheuristics. Three types of metaheuristics are pro-
posed in the literature for the ALP: evolutionary-based
algorithms such as genetic algorithms [8], [9], swarm-
based optimizers such as ant colony optimization [10],
[11], and local-search based algorithms such as simulated
annealing [12], [13], [14], [15].

In this work, we are interested in scheduling aircraft land-
ings (ALP) at the runway threshold. Each aircraft has a target
landing time and a landing time window, expressed as an
earliest and a latest acceptable landing times based on fuel
considerations. Deviations from the target times incur a cost
that depends on the type of each aircraft, and the aim is to
minimize the total deviations from target times.

We first review an exact solution approach based on Mixed-
Integer Linear Programming (MILP), that takes into consid-
eration safety constraints by means of separation constraints
between aircraft imposed at the runway threshold. We then
show the limits of such an approach to solve large realistic
instances. Therefore, we recourse to a heuristic approach
originally introduced in [16], based on Optimistic Planning
(OP) algorithm [17], [18]. This approach models the ALP as
an environment of states, actions, transitions and costs, then
explores the resulting search tree so as to identify a near-
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optimal sequence of actions within a limited time budget. In
the original paper [16], it is the “First-Come First-Served”
(FCFS) rule that is used in the computation of the costs to
estimate the cheapest path (sequence of actions) cost from
a given state. The main contribution of the present work is
the investigation of different Machine Learning (ML) models
which can quickly and accurately estimate the cost of the
cheapest sequence. Using ML models in our heuristic search
helps identifying a near-optimal branch more efficiently: this
ameliorates previous results in terms of both percentage im-
provements (with respect to the traditional FCFS solution) and
the gap to best-known solutions.

The remainder of this paper is organized as follows. In
Section II we describe the ALP, highlighting operational con-
straints, and we revisit a Mixed-Integer Linear Programming
(MILP) formulation that incorporates these constraints. In
Section III we explain how machine learning models can be
used in our heuristic approach to guide the search for near-
optimal solutions. Section IV presents computational results
that show the benefit of using ML models in our heuristic
search. Finally, Section V summarizes the contributions of this
work and suggests some future tracks of research.

II. PROBLEM DESCRIPTION AND FORMULATION

This section introduces some basic concepts related to the
ALP, and highlights the most important constraints that must
be taken into consideration when addressing such problems.
The MILP formulation introduced in [16], which incorporates
these constraints is then recalled. It will be used to evaluate
the performance of the ML heuristic introduced in this paper.

A. Basic concepts

Given a set of aircraft near the terminal maneuvering area
(TMA) of an airport, the ALP consists in mapping each aircraft
to a landing time such that a given criterion is optimized while
operational constraints are satisfied. When the airport has more
than one runway, a decision with respect to the landing runway
has to be made by controllers; the runway assignment depends
on several factors such as the airport configuration and the
direction of arriving aircraft [19].

A straightforward solution usually implemented by air
traffic controllers is the First-Come First-Served rule, where
aircraft land according to the order of the estimated times
of arrival at the runway: controllers only ensure the mini-
mum separation requirements. However, this FCFS sequence
is rarely optimal in terms of runway throughput, especially
in congested airports [6]. This motivates the development
methods to compute optimal sequences satisfying several op-
erational constraints such as minimum separation, authorized
time windows, and constrained-position shifting.
• The minimum separation constraint guarantees that no

aircraft is affected by the wake-vortex turbulence gener-
ated by a leading aircraft, especially during take-offs and
landings. The International Civil Aviation Organization
(ICAO) classifies aircraft in three main categories, namely
Heavy (H), Medium (M) and Light (L), and the separation

TABLE I: FINAL-APPROACH SEPARATION MATRIX (IN SECONDS) ACCORD-
ING TO ICAO’S BASIC WAKE-TURBULENCE CATEGORIES (SOURCE [6])

Following aircraft
H M L

H 96 157 196
Leading aircraft M 60 69 131

L 60 69 82

requirements are defined depending on the category of
both the leading and the following aircraft. Separation
requirements between landings are presented in Table I.

• Time-window constraints are defined by an earliest and
a latest possible landing times, based on fuel availability
or possible speed-ups.

• The Constrained-Position Shifting (CPS) constraint en-
sures that an aircraft is not deviated from its initial posi-
tion in the FCFS order by more than a given number of
positions called maximum position shifting and denoted
by m, which is usually small: m = 3 or 4 [6].

The next section presents MILP formulation that incorpo-
rates these operational constraints.

B. Mathematical formulation

Runway assignment and aircraft scheduling is formulated as
an MILP model, that assigns a landing time to each aircraft,
while satisfying the above-mentioned constraints.

Input data
Let K = {1, 2, ..., R} be an index set of available runways,

and A = {1, 2, ..., N} be an index set of arriving aircraft.
Without loss of generality, we assume that each aircraft index
i ∈ A represents its position in the FCFS sequence. Then, for
each flight i ∈ A, the given input data of the ALP is:

• Ti : Target landing time
• [Ei, Li] : Landing time window ( Li > Ei)
• Sij : minimum separation time (≥ 0) between

aircraft i and j, where i lands before j
• c−i : Penalty cost (≥ 0) per time-unit for landing

before the target time Ti
• c+i : Penalty cost (≥ 0) per time-unit for landing

after the target time Ti

Decision variables
Two types of optimization variables are involved in our

model (Table II): binary variables for runway assignment and
sequencing, and continuous variables for assigning landing
times at the runway threshold.

Formulation
The objective function aims at minimizing the total de-

viation cost from target times (Ti). The complete MILP
formulation is given by (1)–(12).
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TABLE II: OPTIMIZATION VARIABLES

Type Variable

Binary

aik =

{
1 if aircraft i is assigned to runway k,
0 otherwise,

δijk =


1 if aircraft i and j are assigned to
runway k, and i lands before j,
0 otherwise,

yij =

{
1 if aircraft i lands before aircraft j,
0 otherwise,

Continuous ti landing time
t−i , t

+
i deviations from the target landing time Ti

(before and after Ti, respectively)

min
a,δ,y,t

∑
i∈A

c−i t
−
i + c+i t

+
i (1)

ti = Ti − t−i + t+i i ∈ A (2)
Ei ≤ ti ≤ Li i ∈ A (3)
yij + yji = 1 i, j ∈ A : i < j (4)∑
k∈K

aik = 1 i ∈ A (5)∑
k∈K

δijk + δjik ≤ 1 i, j ∈ A : i < j (6)

δijk + δjik ≥ aik + ajk − 1 i, j ∈ A : i < j, k ∈ K
(7)

2(δijk + δjik) ≤ aik + ajk i, j ∈ A : i < j, k ∈ K
(8)

tj ≥ ti −M1(1− yij) i, j ∈ A : i 6= j (9)
tj ≥ ti + Sij −M(1− δijk) i, j ∈ A : i 6= j (10)

i−m ≤ N −
∑

j∈A,j 6=i

yij ≤ i+m i ∈ A (11)

δijk, yij , aik ∈ {0, 1} i, j ∈ A : i 6= j, k ∈ K (12)

Constraints (2) are introduced to linearize the piecewise-
linear objective function. Constraints (3) represent the time
window restrictions. Constraints (4) enforce the order prece-
dence relationship between flights i and j at landing; con-
straints (5) ensure that an aircraft is assigned to exactly one
runway. Constraints (6) enforce the order precedence relation-
ship between flights landing on the same runway. Constraints
(7) and (8) translate the logical relationship between δijk and
aik. Constraints (9) relate precedence relationships between
landings and landing time-order. Constraints (10) ensure the
separation requirements between aircraft landing at a same
runway. Constraints (11) impose the CPS constraint, and
constraints (12) stipulate the binary restrictions of our discrete
variables.

Several techniques can be used to improve this MILP
formulation, such as the variable-fixing strategies explained
in [5], which consists in fixing the order of some aircraft
that belong to a same class (e.g. a wake-vortex category),
based on their time windows. Valid inequalities can also be

added to strengthen (improve) MILP formulations. We refer
the interested readers to [20] for details on these techniques.

III. SOLUTION APPROACHES

After reviewing the exact solution approach used to solve
the ALP, this section explains how ML models are trained
and used in our heuristic search, so as to guide efficiently the
search for near-optimal solutions.

We compute exact solution by solving the MILP formula-
tion (1)–(12) with IBM CPLEX 12.8. Results of implementing
this approach are reported in Section IV-A.

Given the complexity of the problem (this problem is NP
hard), exact approaches may fail to solve large instances within
reasonable computing times. For this reason, we recourse to
heuristic approaches.

We originally introduced a heuristic approach in [16], in
which we proposed a new model for the ALP, inspired from
Markov Decision Process (MDP). The ALP is modeled as an
environment defined by states, transitions, actions, and costs
where:
• a state is a partition of the set of aircraft A into two

subsets: aircraft having already landed, denoted Ī , and
aircraft which have not landed yet, denoted I;

• an action is an aircraft index i ∈ I that we decide to
land;

• a transition is an update of the two sets Ī and I , which
generates a unique next state, denoted I ′, where
I ′ = I \ {i}, and Ī ′ = Ī ∪ {i} (aircraft i landed);

• the estimated cost c of the the new state is defined by:

c(Ī , I) = f(Ī ′) + g(I ′),

where f(Ī ′) is the delay cost of the (landed) sequence
Ī ′, and g(I ′) is an estimate of the lowest cost among all
possible ordering of I ′ that satisfy the CPS constraints.

This model results in a tree, in which nodes are labeled by
states and arcs are labeled by actions and costs. In [16] we
propose a tree-search method, based on Optimistic Planning
(OP) algorithm [17], [18]. This method starts from the initial
state where the set Ī is empty, and I = A. At each iteration, it
seeks which aircraft to land based on an optimistic evaluation
of the state cost (c). This evaluation involves two functions f
and g defined above. The first one computes the delay of the
landed sequence, i.e., the cost of the path from the initial state
to the current state; the second function estimates the lowest
cost among all possible sequences of the subset of aircraft that
remain to land. The algorithm keeps exploring the tree guided
by the costs c, until a stopping criteria is met: all aircraft are
landed or a time limit is reached.

In [16], we use the FCFS rule as the estimation g. In the
present work, we propose training different ML models on a
large number of previously solved instances of the ALP, so as
to obtain an estimate of the lowest cost of the subset of aircraft
that remain to land, which we shall use as the estimation g. A
similar idea is used in [21] to predict the optimal production
of an offshore wind park.
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We describe below how training and testing sets are gener-
ated, and we detail the inputs and outputs of these ML models.

A. Generation of data

Training and testing sets are generated from four
data sets of [22]: alp_7_11.csv, alp_11_15.csv,
alp_15_19.csv, and alp_19_23.csv. The first file
(alp_7_11.csv) is used to generate the testing set; the
remaining files are used to generate the training set.

B. Definition of features

The optimal cost of an instance depends on several factors
such as the congestion of the instance, and the mixture of the
different types of aircraft. To be able to use ML models, it
is important to select significant features, in order to predict
accurately optimal costs. In Fig. 1, the relation between some
characteristics of an instance and the optimal (lowest) cost is
plotted.

First, we observe that the optimal cost increases with the
number of heavy aircraft (Fig. 1a). A possible explanation is
related to the fact that deviating Heavy aircraft cause larger
costs than deviating Light or Medium aircraft.

Moreover, the optimal cost depends on the number of
conflicts (i.e., the number of aircraft pairs that violate the
separation requirements presented in Table I) in an instance
(Fig. 1b). Indeed, as the number of conflicts increases, more
aircraft are to be deviated from their target times, which results
in an increased cost. On the other hand, the optimal cost
decreases when the ratio between instance length and the total
number of aircraft increases (Fig. 1c).

The optimal cost is also correlated to the FCFS-sequence
cost (Fig. 1d). Indeed, if an instance is congested and have a
large number of Heavy aircraft, both the FCFS sequence and
the optimal solutions will have high cost values.

Based on these observations, we select the following fea-
tures to be passed as inputs to the ML models:
• the total number of aircraft of type Heavy;
• the total number of conflicts in the instance;
• the ratio between the length of the instance (in seconds)

and the total number of aircraft: this captures how con-
gested the instance is;

• the cost of the FCFS sequence.

C. Machine learning models

We use Linear Regression (LR) as a baseline model and two
other machine learning models, namely Neural Networks (NN)
and Support Vector Regression (SVR). The four attributes
defined above are given as an input vector, denoted x, to
these models. The output is a lowest-cost estimation denoted
ĝ, which is modeled by a function denoted f , that depends
on some unknown weights w (to be determined), such that
ĝ = f(x,w) approximate g as much as possible in the least-
square sense. In other words, these weights are learned by
the ML models during the training phase, by minimizing
the Root Mean Squared Error (RMSE) over the training set:
{(x1, g1), .., (xnt , gnt)}, where xi is an attribute vector and gi

(a) Optimal vs. number of heavy aircraft

(b) Optimal vs. number of conflicts in the instance

(c) Optimal cost vs. ratio length of the instance (seconds) / total
number of aircraft

(d) Optimal cost vs. the FCFS-sequence cost

Fig. 1: A visualisation of the relation between the selected features
and the exact (optimal) cost. The red dashed line is the line of identity.

is the corresponding optimal cost to be estimated, and which
is obtained using the MILP model (1)–(12) and CPLEX.

The three above-mentioned models are implemented in the
Scikit-learn Python ML library, and their hyperparameters are
obtained through a simple a grid search.

IV. RESULTS AND DISCUSSION

In this section we first report computational results obtained
when solving MILP formulation (1)–(12). Then, we compare
the results obtained with the heuristic search presented in the
previous section using:

1) FCFS rule (previous contribution [16])
2) LR, NN, and SVR

as an estimate g of the optimal cost (of the subset of aircraft
that remain to land).
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TABLE III: MILP APPROACH PERFORMANCE ON THE TEST DATA, FOR
MAXIMUM POSITION SHIFTING VALUES m = 3 AND m = 4

|A| 3-CPS 4-CPS
% improv (MILP) CPU (s) % improv (MILP) CPU (s)

20 41.81 4.55 50.47 10
22 37.8 31.73 48.4 70.76
24 33.56 830.23 43.73 1398.4
26 31.18 1800 40.91 1800
28 32.43 1800 41.04 1800
30 32.43 1800 40.73 1800
32 32.49 1800 40.52 1800
34 32.68 1800 40.71 1800
36 33.72 1800 43.38 1800
38 34.11 1800 43.33 1800
40 33.71 1800 43.07 1800

min 31.18 4.55 40.52 10
max 41.81 1800 50.47 1800

average 34.17 1387.86 43.29 1443.56

All experiments are run on a personal computer under
GNU/Linux operating system, processor Intel(R) Core(TM)
i7-4700M with 8 GB of RAM. The MILP model is imple-
mented in DoCplex and solved with CPLEX 12.8.

All instances used in this section are generated from the
test data set: alp_7_11.csv. Recall that the LR, NN and
SVR models were trained on the data sets: alp_11_15.csv,
alp_15_19.csv, and alp_19_23.csv.

A. MILP approach

Table III exhibits the performance of the MILP approach on
test instances of size |A| = 20, 22, ..., 40, obtained by simply
considering the first |A| lines of the test data set. Columns m-
CPS represent results for two values of the maximum position
shifting: m = 3 and m = 4. Results are reported in terms
of percentage of improvement with respect to the traditional
FCFS solution sequence and of computing time in seconds,
with a time limit of 30 minutes (1,800 seconds) under CPLEX.

The percentage of improvement obtained by a method M
(here M = MILP) is computed with respect to the FCFS
solution as:

%improv (M) =
CFCFS − CM

CFCFS
× 100, (13)

where CFCFS and CM are the costs of the traditional FCFS
sequence and of method M , respectively.

Fig. 2 illustrates the growth of the computing time with
respect to the size of the instance, for different values of the
maximum position shift (m = 2, 3, 4, 5, 6). The growth is as
expected, exponential due to the complexity of the ALP; the
saturation effect observed is due to the time limit (1,800 s).

To summarize, prohibitive computational times required
by the exact MILP approach, even for small values of the
maximum position shifting, make it unsuited to the dynamic
nature of the practical ALP.

B. Heuristic approach

1) Performance of ML models to estimate the cost: Before
reporting the results of our heuristic search method, using
FCFS, LR, NN and SVR as estimation heuristics, we first

Fig. 2: Computating time of the MILP approach for different maxi-
mum position shifting values

visualize results of cost predictions with the baseline model
LR and with the two ML models (NN and SVR). Tests are
performed on different instances from the test data set, ranging
from 5 to 40 aircraft, obtained again by considering the first
|A| lines of this data set.

Fig. 3 compares the best-known (exact) cost with the pre-
dicted costs from the baseline model (Fig. 3a), neural network
(Fig. 3b), and support vector Regression (Fig. 3c). Each point
corresponds to a test instance. The red dashed line represents
the ideal identity-line.

Fig. 4 displays an alternative visualisation. It shows the best-
known cost values (red dashed line), the FCFS-sequence cost
(black), and the predicted optimal cost using the LR, NN and
SVR models. These plots reveal clearly that the three models
(LR, NN, SVR) are better estimates of the best-known cost
than the traditional FCFS rule.

2) Performance of the heuristic with ML models: We report
the results of the OP algorithm described in Section III on the
same instances used in Table III, involving a single runway,
and for a maximum position shifting m = 3, and imposing
this time a more realistic limited time budget of 5 seconds.

The percentage improvements defined by (13) are reported
in Table IV. The first column presents the size of the instance,
the second column reports the percentage of improvement
of the OP algorithm using the FCFS as estimation heuristic,
and the third column shows the percentage improvement
using LR, NN, and SVR as estimation heuristics in the OP
algorithm. Best improvements are in bold. One observes that,
for some instances, the OP algorithm (with FCFS, LR, NN,
and SVR as estimation heuristics) significantly ameliorates the
traditional FCFS sequence. In particular, SVR gives slightly
better improvements on average (27.45%).

To further assess the quality of the solutions obtained with
our OP algorithm using the FCFS, LR, NN and SVR as
estimation heuristics, we report results in terms of the gap (in
percent) between these solutions and the best-known reference
solutions. These best-known solutions are obtained via the
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Fig. 3: Comparing the predicted optimal cost (y-axis) with the
exact cost (x-axis) using linear regression (Fig. 3a), neural network
(Fig. 3b), and support vector regression (Fig. 3c)

MILP approach within a time limit of 30 minutes under
CPLEX. The gap is calculated as follows:

%Gap (M) =
CM − Cbest

Cbest
× 100, (14)

Fig. 4: Comparing the predicted optimal costs (by linear regression
and two ML models) with the exact cost. The traditional FCFS-
sequence cost is also plotted (black)

where CM and Cbest are the cost of the solution obtained with
method M, and of the best-known solution respectively.

One observes in Table V that, within the time limit of 5
seconds, the gap is always the best with the LR, NN and SVR
models, as they involve more accurate cost estimations, which
help the search to identify rapidly the most promising nodes.

The computational experiments therefore show that, using
LR or ML models as the heuristic estimation function g in an
OP algorithm outperforms the simple estimation provided by
the FCFS rule, introduced in [16]: LR and ML estimates yield
better results in terms of solution quality.

V. CONCLUSION

The aircraft landing problem consists in sequencing and
scheduling arriving aircraft on runways, taking into consider-
ation several operational constraints. It represents an ongoing
challenge for both researchers and air traffic controllers, due
to its dynamic nature, and the different operational constraints
that must be considered.

TABLE IV: PERCENTAGE IMPROVEMENT OF THE DIFFERENT METHODS
(OP ALGORITHM TOGETHER WITH AN ESTIMATE OBTAINED VIA FCFS,
LR, NN OR SVR) FOR A TIME LIMIT OF 5 SECONDS. PERCENTAGES ARE
WITH RESPECT TO USING THE SIMPLE FCFS RULE

|A| % improv % improv
(OP-FCFS) (OP-LR) (OP-NN) (OP-SVR)

20 38.91 38.91 38.91 38.91
22 34.62 34.62 34.30 34.03
24 29.83 29.76 30.37 29.76
26 27.82 27.72 28.45 28.29
28 27.82 27.72 28.92 27.67
30 22.59 24.94 22.93 25.05
32 22.13 21.49 22.57 24.88
34 19.79 23.15 24.51 23.41
36 19.15 22.56 23.12 22.75
38 18.96 22.77 23.23 25.10
40 18.59 24.89 22.01 22.11

min 18.59 21.49 22.01 22.11
max 38.91 38.91 38.91 38.91

average 25.25 26.90 27.17 27.45
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TABLE V: OPTIMALITY GAPS YIELDED BY THE DIFFERENT ESTIMATES,
FOR A TIME LIMIT OF 5 SECONDS

|A| % Gap % Gap
(OP-FCFS) (OP-LR) (OP-NN) (OP-SVR)

20 4.98 4.98 4.98 4.98
22 5.11 5.11 6.06 6.06
24 5.61 5.72 4.80 5.72
26 4.88 5.03 3.97 4.20
28 10.45 10.73 5.19 7.04
30 14.56 11.08 14.06 10.92
32 15.35 16.29 14.69 11.27
34 19.15 14.16 12.14 13.77
36 21.98 16.84 15.99 16.55
38 22.99 17.21 16.51 13.67
40 22.81 13.31 17.65 17.50

min 4.88 4.98 3.97 4.20
max 22.99 17.21 17.65 17.50

average 13.44 10.95 10.54 10.15

In this work, we proposed an optimistic planning algorithm
relying on machine learning heuristics to address the problem,
instead of the simple firs-come first-served rule, proposed
in [16]. These heuristics are: a baseline linear regression,
and two different machine learning models trained on a large
number of optimized solutions, provided by a mixed-integer
linear programming method.

Computational experiments show that using ML models in
the heuristic search of the optimistic planning algorithm does
not only ameliorate results in terms of percentage improve-
ment, but also reduces the optimality gap within a computation
time that is compatible with on-line operations (5 seconds).

Future tracks of research include the expansion to the
multiple-runway case, and taking into consideration uncer-
tainty on the arrival times.
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