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Abstract—In this paper, we detail the steps that lead to optimized 

trajectories according to a selected criterion, in a low 

dimensional space. After presenting the main techniques for 

optimizing flight paths, as well as methods for reducing the size 

of the state space, we precise the modeling of our problem. We 

use the Karhunen-Loève transformation, or Functional Principal 

Components Analysis (FPCA), as our main tool to model the 

state space. We also select the constraints undergone by our 

airplane: here, we decide only to consider the impact of the wind. 

For its simplicity, the Simulated Annealing (SA) is chosen in 

order to find the optimized trajectory. Thus, once the modeling is 

finished, we launch our simulations and proceed to an analysis of 

our results.  

Keywords-FPCA; Simulated Annealing; Monte-Carlo; Flight 

path; Approach procedure 

I.  INTRODUCTION 

Air Traffic Management (ATM) ensures the safety of flight by 

optimizing flows and maintaining separation between 

aircrafts. Optimizing flight paths is also a crucial issue for an 

airline, in order to save fuel and / or flight time. Most of the 

time, aircrafts positions are represented as radar plots so that 

many trajectory statistics conducted in ATM are spatial and 

do not consider the time dependence anymore. Moreover, the 

collection of radar plots describing the same trajectory can 

have a lot of redundant samples. From the trajectory design 

point of view, this redundancy is real handicap for the 

optimization process. Our idea is to find an alternative 

trajectory representation to eliminate this redundancy. 

Considering the work of Delahaye et al. [1], we choose the 

FPCA method to represent our state space. FPCA consists in 

decomposing the trajectory on a space where each dimension 

maximizes the variance, so that one can recreate a faithful 

approximation of the trajectory thanks to only a few 

components. This method is used in [2] to develop models for 

Monte Carlo simulations. While this paper also presents a 

Monte Carlo algorithm, it intends to go a little further by using 

SA, a powerful optimization tool. SA is one of the best known 

and simplest metaheuristics, which is widely used for real-life 

applications. Its interest regarding trajectory optimization is 

studied in [3]. Coupling FPCA with SA seems a really good 

idea, knowing that we must generate neighboring states at 

each iteration of the SA algorithm, process which would have 

been quite long if we had not diminished the size of our state 

space in the first place. 

II. STATE OF THE ART 

A. Optimization methods 

1) Fast Marching 

The Fast Marching method, introduced in [4], is a classic 

optimization method which suits particularly well to the study 

of flight paths. The principle consists in studying a wave front, 

monitoring its evolution and determining the minimum cost to 

reach any point in space. As a reminder, in our study, the cost 

corresponds to the time and / or fuel consumed. 

This method is applicable if the speed of propagation of 

the front only depends on the position and remains of the 

same sign. Therefore, the case of fuel is more difficult to 

manage because the speed of propagation of the front would 

depend on the position and the direction of the wind. 

Algorithms, called Ordered Upwind, have been developed to 

deal with this situation, but their algorithmic complexity is 

higher. 

In the case where the method is applicable, the calculation 

of the minimum cost C to reach any point in space from a 

starting point consists in solving the eikonal equation |C(x)| 

= 1 / F(x) with F(x) ≥ 0 and C(xinit) = 0, where x  ℝ2 

represents the position in space, C(x)  ℝ the minimum cost 

to arrive in x from xinit and F(x)  ℝ the known propagation 

speed at any point x. This equation is a partial differential 

equation and can be easily solved with classical techniques. 

Finally, the gradient descent method allows us to obtain 

the optimal trajectory between the arrival point and the 

departure point. 
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2) Dynamic programming 

Dynamic programming was developed by Bellman, in [5], to 

solve problems of optimal paths. The principle of the method 

is to associate a notion of state for each problem. Each state is 

associated with an optimal value, and the dynamic 

programming equation links the value of a state at a given 

instant to those of the states that can be accessed at the next 

instant. 

Bellman introduces the following principle of optimality 

which is at the basis of the method: An optimal solution for 

the problem contains the optimal solutions for all the sub-

problems. For example, in the context of finding the shortest 

path, this principle is illustrated as follows: if (C) is an optimal 

path going from A to B and if C  (C) then the (C) sub-paths 

from A to C and from C to B are optimal. Thus, if a path is 

optimal, then it is formed of optimal sub-paths. 

In the end, the problem is divided into sub-problems 

sequentially, and the resolution is performed recursively in 

order to produce the solution to the global problem. An 

example of an algorithm using the principle of dynamic 

programming is the Dijkstra algorithm. 

3) Simulated annealing 

The simulated annealing algorithm is a special algorithm. 

Indeed, it is an empirical algorithm, strongly inspired by the 

physical phenomenon of annealing [6]. 

To build this algorithm, we imagine that the function to be 

optimized is assimilated to the energy of a fictive physical 

system. At initialization, our physical system is in the state x0 

and has an energy Einit at temperature Tinit. The energy of the 

system corresponds to the function for which the minimum is 

sought (cost function). The temperature is a parameter of the 

algorithm, which is initially set quite high. 

Subsequently, we generate a neighboring state x1 = x0 + δx 

of energy E1, with δx a random variation. This state is 

accepted according to the Metropolis criterion. According to 

the laws of statistical physics, the probability of finding our 

system in the state x1 is exp[− (E1 – E0) / kBT] with kB the 

Boltzmann constant. Therefore, we accept our new state if it 

decreases the energy of our system, but also if it increases it 

with a non-zero probability: we agree to degrade our solution, 

to avoid falling into a local minimum. We carry out this 

operation until the thermal equilibrium for the given 

temperature. Once equilibrium is reached, the temperature is 

lowered and the search for thermal equilibrium is restarted 

with the new temperature. The algorithm stops after a certain 

number of iterations, or when a minimum temperature Tfinal is 

reached. Thus, we reach the minimum energy state of the 

fictive physical system and find the minimum of our function. 

This algorithm is both powerful and complex, because of 

the multitude of parameters to be taken into account. In 

particular, it is necessary to choose the initial temperature of 

the system, its law of decay, the final temperature or the 

number of iterations, but also the definition of a neighboring 

state and thermal equilibrium. 

B. Dimension reduction 

The principle of dimension reduction of our state space 

consists in expressing our trajectories on a basis of small 

dimension, of the form γ(t) = n
i=0 ai hi(t). 

1) B-Splines approximation 

Bézier curves are parametric polynomial curves described by 

Pierre Bézier in [7]. They require the introduction of n+1 

points of the plane or space, called control points which we 

note P0, P1, P2, …, Pn. 

We define the Bézier curve associated with these control 

points by S(t) = n
k=0 Bn

k(t)Pk with 0 ≤ t ≤ 1. The Bn
k(t) = 

Cn
ktk(1 − t)n−k  are the polynomials of the Bernstein basis. The 

Bézier curve has multiple properties, it is in particular of class 

C∞ and is located in the convex envelope of the control points. 

In addition, we have PiPi+1 as the tangent vector to the curve 

in Pi, i  [[0, n]]. 

To generalize this concept, we introduce the notion of 

nodes, noted ti, such as 0 ≤ t0 ≤ … ≤ ti ≤ … ≤ tm ≤ 1. We 

define the B-Spline curve of degree i (presented in [8]) 

associated with the control points P0, P1, P2, …, Pn, with m ≥ n 

+ 1 + i, by S(t) = n
k=0 Bk,i(t)Pk with ti ≤ t < tn+1, composed of 

B-Spline functions of degree i defined by recurrence :  

• for 0 ≤ k ≤ m – 1, Bk,0(t) = 1 if t  [tk , tk+1[, 

Bk,0(t) = 0 otherwise ;  

• for i ≤ 1 and 0 ≤ k ≤ m − i – 1, Bk,i(t) = [(t – tk) / 

(tk+i – tk)] Bk,i–1(t) + [(tk+i+1 – t) / (tk+i+1 – tk+1)] 

Bk+1,i–1(t). 

The Bézier curve associated with n+1 control points 

corresponds to the B-Spline curve of degree n having for 

nodes the points t0 = t1 = … = tn = 0 and tn+1 = tn+2 = … = t2n+1 

= 1. 

To approximate a function f of class C2 on [a, b] by a B-

Spline curve, we can introduce the nodes tk so that t0 = t1 = … 

= ti = a < ti+1 ≤ … ≤ tn < b = tn+1 = … = tn+1+i. We have γ(t) = 

n
k=0 f(t*

k)Bk,i(t) with t*
k = (tk+1 + … + tk+i) / i. 

 

 

 

 



3 

 

2) FPCA - Karhunen-Loève theorem 

The Karhunen-Loève transformation is a method which 

consists in transforming correlated variables into new 

variables, our hi(t) called principal components, decorrelated 

from each other. 

This transformation is mainly used to describe and 

visualize data. This transformation allows each component to 

maximize the available variance, which is extremely 

interesting for the study of flight paths because it allows us to 

have the most faithful approximation of the path by 

minimizing the number of coefficients to consider. The 

mathematical principle is quite simple: first, you must 

calculate the average of each dimension of the data set. It is 

also necessary to extract the covariance matrix, as well as its 

eigenvectors and its eigenvalues. Then we simply have to sort 

the eigenvectors in decreasing order of eigenvalues and to 

choose the n first eigenvectors, which constitute our matrix of 

passage towards the basis of Karhunen-Loève [9]. 

This analysis is suitable for small data tables, but do not by 

itself allow the generation of acceptable trajectories due to 

problems of data regularity. It is necessary to make this 

analysis functional, that is to say by no longer considering 

data tables, but functions: this analysis is called FPCA. In this 

continuous case, we have the expression of the following 

Karhunen-Loève theorem: 

If the stochastic process Xt is centered and of continuous 

covariance KX, then Xt admits a decomposition of the form Xt 

= Σ∞
k=0 Zkek(t) with ek(t) the eigenfunctions of TKx, where T is 

the integral operator. We notice that by sorting the 

eigenvectors and keeping only the first ones until n, we have a 

decomposition of γ(t). 

III. MATHEMATICAL MODELING 

A. Space State 

We have at our disposal a fairly substantial database made of 

tens of thousands descent trajectories. Our goal is to manually 

generate similar trajectories: several problems then arise, in 

particular the choice of the approach procedure. Indeed, 

airport approach procedures allow airplanes to use one or 

more IAFs (Initial Approach Fix), and trajectories of our 

airplanes can be different depending on the approach 

considered. Therefore, a clustering phase is necessary: it 

makes discrimination of descent trajectories possible 

according to the chosen IAF. Thus, all of our trajectories 

behave more or less the same way and we can generate a state 

space that makes sense. 

Another problem concerns the implementation of our 

principal component analysis. As explained above, it is 

mandatory to have our analysis functional. A prior conversion 

of our trajectory data into splines is a good idea to allow us to 

apply the Karhunen-Loève transformation. Therefore, we 

must fix the cumulative variance that we wish to obtain, that is 

to say the level of fidelity of curves generated compared to our 

data. With too low a fidelity, we create inflexible trajectories 

and the optimization is of little interest. With too much 

fidelity, not only do we dwell on details that slow down our 

algorithm, but we take into account unconventional trajectory 

behaviors, which we seek to avoid. 95% is a value which is 

acceptable a priori, which we keep for our simulations. 

In Fig.1, we decompose our trajectories (nearly 20000 

trajectories after clustering) on the Karhunen-Loève basis. 

Only 15 components are sufficient to describe 95% of the 

data. We show the probability densities linked to the first four 

coefficients, as well as 1000 random variates within the 

densities. 

 

Figure 1. Probability Density Functions 

We have seen that the Karhunen-Loève transformation 

makes it possible, from a set of data, to generate a space of 

small dimension. Indeed, by fixing the cumulative variance, 

we determine the number of components of our 

decomposition. Each component has its own probability 

density, and a trajectory is generated by a random realization 

of each coefficient. By randomly choosing a large number of 

coefficients in each probability density, we generate a 

multitude of random trajectories and we find the state space in 

which our functions live. 

In Fig. 2, on the left, we have the database on which our 

study is based. On the right, we reconstruct 50000 trajectories 

on the Karhunen-Loève basis. We note that the state space is 

faithful and that we get rid of "unconventional" trajectories. 
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Figure 2. State Space 

B. Constraints 

After generating our "free" flight paths, we decide to constrain 

them. Optimization without constraints could be considered, 

but in reality our planes are subjected to several types of 

constraints of different natures. At first, we could force our 

trajectories to go through certain waypoints. In reality, an 

approach procedure is characterized by the IAF, but the 

aircraft must also pass through the IF and the FAF, 

intermediate and final approach marks. However, these 

requirements are not very restrictive because all of our 

generated trajectories have the same behavior as the initial 

trajectories, and consequently they naturally pass through the 

waypoints. Obstacle constraints can also be studied. A quick 

and effective solution to avoid obstacles is to adapt our state 

space, by removing the trajectories that pass through the 

obstacle. Finally, we decide not to study the constraints 

aiming to separate the aircrafts from each other for complexity 

reasons. 

The constraint used in this paper is the wind field. Indeed, 

this constraint is an important factor in minimizing the fuel 

consumed, and significantly modify our approach. 

C. Objective 

The energy of our trajectory, or our objective function, is the 

criterion that we seek to optimize. In the case of descent 

trajectories, the criterion retained can be the shortness of the 

trajectory (case without constraints) or the fuel consumed 

(case with constraint of wind field). The fuel consumption can 

be easily linked with the wind by a proportionality 

relationship. In our simulations, the constraint retained is the 

opposite of the scalar product between the wind vector and the 

tangent vector to our trajectory at a spatial point considered. 

When cruising, to optimize the fuel consumed, we put the 

airplane in effective rear wind (this allows us to reduce our 

flight speed while keeping the maxi range constant). Wind 

forecasts can be found in WINTEM maps. Trends are issued 

every 3 hours for France, and every 6 hours for the European 

domain. We imagine that our plane seeks to save fuel on 

approach, in the same way as it would on a cruise. 

By using a Monte-Carlo type approach, that is to say by 

simulating random trajectories in the state space and by 

evaluating their energy at each iteration, we can easily 

determine the shapes of the trajectories that optimize our 

criterion.  

In Fig. 3, we simulated 10000 flight paths in the state 

space. Note that the purple curves (the most concise) are the 

ones that take the shortest turns on approach. 

In Fig. 4, we simulated 10000 flight paths in the state 

space. On the left, we notice that the curves are not very 

different in energy: planes take the wind in the same way. On 

the right, gusts of wind on final approach encourage the pilot 

to take the shortest turn, to save fuel.  

 

 

Figure 3. Flight paths ranked according to their shortness 

 

 

Figure 4. Flight paths ranked according to their fuel saving 

 

However, this method is not perfect. It can be quite costly 

in time if we are looking for a precise solution, and only gives 

us an imprecise approximation of the optimal trajectory if we 

are looking for a quick solution. A well-known optimization 

technique will allow us to extract the optimal trajectory by 

combining these two criteria: speed and precision. 
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D. Simulation 

Our simulation consists in generating a flight path in our state 

space. The coefficients of this trajectory constitute the input of 

our simulated annealing. The initial temperature is fixed in a 

way that the first neighboring state is accepted in 99% of the 

cases. We choose a geometric decrease of the temperature, 

parameter 0.99. In addition, a maximum number of iterations 

of 4000 has been chosen to ensure that the thermodynamic 

equilibrium is reached at each level. To generate the 

neighboring state, we choose to make a small Gaussian 

variation of each coefficient, taking care to remain in the state 

space. 

IV. RESULTS 

Results are shown in Fig. 5. We generated in about 2000 

iterations of the simulated annealing algorithm the optimal 

trajectory for the favorable (left) and unfavorable (right) wind 

field. 

We note that the simulated annealing method is faster, we 

only needed 2000 iterations of the algorithm to generate the 

optimal trajectory, against 10000 iterations of generation of 

random trajectories. An iteration of one or the other algorithm 

takes the same time to execute (around 15ms), which mainly 

consists in generating a new trajectory and evaluating its 

energy. 

It is also more precise, since the trajectories generated are 

much lower in energy (123% better than the one given by the 

Monte-Carlo method on the left, and 452% better on the 

right). In addition, they have the expected behavior: the 

trajectory is perfectly collinear to the wind when it is 

favorable, and is almost orthogonal to it when it is 

unfavorable. 

A criticism that we could make is that our trajectories 

leave our state space, or more precisely they are at the limit of 

our state space: the random draw in our probability densities is 

mainly marginal. If we want to force our optimized 

trajectories to remain in our "classic", that is to say non-

marginal, state space, it is possible to constrain our probability 

densities by forcing our annealing to generate probable 

trajectories only. Another solution would be to directly alter 

our state space, by modifying the cumulative variance we 

wish to obtain. If we set the cumulative variance at 80% 

instead of 95%, we have fewer variable trajectories and 

therefore better inserted trajectories in our state space. 

In Fig. 6, we generated in about 2000 iterations of the 

simulated annealing the optimal trajectory for the unfavorable 

wind field. On the left, we cut the lower and upper 10% of 

each probability density. On the right, we reduced the state 

space to 80% of the cumulative variance (only 6 components 

describe 80% of the data). Results are better: we managed to 

find more realistic trajectories, with a lower energy than those 

found with the Monte-Carlo method. Thus, we can validate 

the method using a revised state space to compute our 

trajectories. 

What would happen if, instead of constraining our 

probability densities, we extended them? 

 

Figure 5. Optimal fuel flight paths 
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So far, we have searched for an optimal trajectory in our 

state space. Let's look at what happens when we are not 

seeking to optimize a trajectory, but optimize a state space. 

For this to work, we modify the average trajectory of our 

initial state space, which we control using a Monte-Carlo type 

method or a simulated annealing. This trajectory can move in 

an enlarged space, by a factor of 5 compared to our initial 

state space (that is to say that the limits of the probability 

densities have been extended by a factor of 5, around their 

median). Our optimization criterion is the direction of the 

entry point of our trajectories. For example, we no longer 

want our trajectories to come from the South West, but from 

the North West. 

In Fig. 7, on the left, we have represented the new state 

space generated by moving the average trajectory using the 

Monte-Carlo method, and in the center thanks to the simulated 

annealing. On the right, we have generated 100 average 

trajectories within our enlarged state space. 

We note that we manage to modify the entry of our flight 

paths at the cost of a U-turn to reach the runway, regardless of 

the algorithm chosen. In reality, the space of our average 

trajectories is quite limited, and that is why we cannot 

generate any trajectory. We note that no average trajectory 

comes from the North East, therefore it would have been 

impossible to generate a state space which comes from it. To 

be able to generate any approach procedure, it would be 

necessary to be able to modify the structure of our Karhunen-

Loève basis. 

Nevertheless, this study is quite interesting because it 

shows the robustness of our transformation: a state space 

naturally forms around any average trajectory. 

 

Figure 6. Optimal fuel flight paths (revised state spaces) 

 

Figure 7. Flight paths from the North West 
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V. CONCLUSION 

The interest of this study was to highlight the robustness of 

the FPCA in its application to flight paths. Only based on a 

sample of trajectories already flown, we were able to extract 

trajectories optimized according to the external wind 

constraints. 

Multiple applications can now emerge from our study. We 

could imagine that the pilot downloads the wind maps at the 

end of the cruise, before the approach, and that the algorithm 

returns the optimal trajectory that should be followed to save 

fuel for his company. Our study can also very easily extend to 

climb or cruise trajectories. 

Our algorithms can also be reused to solve other problems. 

Indeed, by taking up the idea discussed at the end of our 

paper, a new application could be the shifting of the approach 

procedure. By analyzing all the procedures generated, we can 

extract the procedure that minimizes noise for residents near 

the airport. 

Therefore, our study consists in creation of more 

economical and more ecological flight paths, topics which are 

part of the major challenges of the twenty-first century. 
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