
HAL Id: hal-02873412
https://enac.hal.science/hal-02873412

Submitted on 18 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPCA applied to flight paths optimization
Lucas Ligny

To cite this version:
Lucas Ligny. FPCA applied to flight paths optimization. ICRAT 2020, 9th International Conference
for Research in Air Transportation, Jun 2020, Tampa, United States. �hal-02873412�

https://enac.hal.science/hal-02873412
https://hal.archives-ouvertes.fr

1

FPCA applied to flight paths optimization

Lucas Ligny

Ecole Nationale de l’Aviation Civile (ENAC)

Toulouse, France

ligny.lucas9@gmail.com

Abstract—In this paper, we detail the steps that lead to optimized

trajectories according to a selected criterion, in a low

dimensional space. After presenting the main techniques for

optimizing flight paths, as well as methods for reducing the size

of the state space, we precise the modeling of our problem. We

use the Karhunen-Loève transformation, or Functional Principal

Components Analysis (FPCA), as our main tool to model the

state space. We also select the constraints undergone by our

airplane: here, we decide only to consider the impact of the wind.

For its simplicity, the Simulated Annealing (SA) is chosen in

order to find the optimized trajectory. Thus, once the modeling is

finished, we launch our simulations and proceed to an analysis of

our results.

Keywords-FPCA; Simulated Annealing; Monte-Carlo; Flight

path; Approach procedure

I. INTRODUCTION

Air Traffic Management (ATM) ensures the safety of flight by

optimizing flows and maintaining separation between

aircrafts. Optimizing flight paths is also a crucial issue for an

airline, in order to save fuel and / or flight time. Most of the

time, aircrafts positions are represented as radar plots so that

many trajectory statistics conducted in ATM are spatial and

do not consider the time dependence anymore. Moreover, the

collection of radar plots describing the same trajectory can

have a lot of redundant samples. From the trajectory design

point of view, this redundancy is real handicap for the

optimization process. Our idea is to find an alternative

trajectory representation to eliminate this redundancy.

Considering the work of Delahaye et al. [1], we choose the

FPCA method to represent our state space. FPCA consists in

decomposing the trajectory on a space where each dimension

maximizes the variance, so that one can recreate a faithful

approximation of the trajectory thanks to only a few

components. This method is used in [2] to develop models for

Monte Carlo simulations. While this paper also presents a

Monte Carlo algorithm, it intends to go a little further by using

SA, a powerful optimization tool. SA is one of the best known

and simplest metaheuristics, which is widely used for real-life

applications. Its interest regarding trajectory optimization is

studied in [3]. Coupling FPCA with SA seems a really good

idea, knowing that we must generate neighboring states at

each iteration of the SA algorithm, process which would have

been quite long if we had not diminished the size of our state

space in the first place.

II. STATE OF THE ART

A. Optimization methods

1) Fast Marching

The Fast Marching method, introduced in [4], is a classic

optimization method which suits particularly well to the study

of flight paths. The principle consists in studying a wave front,

monitoring its evolution and determining the minimum cost to

reach any point in space. As a reminder, in our study, the cost

corresponds to the time and / or fuel consumed.

This method is applicable if the speed of propagation of

the front only depends on the position and remains of the

same sign. Therefore, the case of fuel is more difficult to

manage because the speed of propagation of the front would

depend on the position and the direction of the wind.

Algorithms, called Ordered Upwind, have been developed to

deal with this situation, but their algorithmic complexity is

higher.

In the case where the method is applicable, the calculation

of the minimum cost C to reach any point in space from a

starting point consists in solving the eikonal equation |C(x)|

= 1 / F(x) with F(x) ≥ 0 and C(xinit) = 0, where x ℝ2

represents the position in space, C(x) ℝ the minimum cost

to arrive in x from xinit and F(x) ℝ the known propagation

speed at any point x. This equation is a partial differential

equation and can be easily solved with classical techniques.

Finally, the gradient descent method allows us to obtain

the optimal trajectory between the arrival point and the

departure point.

2

2) Dynamic programming

Dynamic programming was developed by Bellman, in [5], to

solve problems of optimal paths. The principle of the method

is to associate a notion of state for each problem. Each state is

associated with an optimal value, and the dynamic

programming equation links the value of a state at a given

instant to those of the states that can be accessed at the next

instant.

Bellman introduces the following principle of optimality

which is at the basis of the method: An optimal solution for

the problem contains the optimal solutions for all the sub-

problems. For example, in the context of finding the shortest

path, this principle is illustrated as follows: if (C) is an optimal

path going from A to B and if C (C) then the (C) sub-paths

from A to C and from C to B are optimal. Thus, if a path is

optimal, then it is formed of optimal sub-paths.

In the end, the problem is divided into sub-problems

sequentially, and the resolution is performed recursively in

order to produce the solution to the global problem. An

example of an algorithm using the principle of dynamic

programming is the Dijkstra algorithm.

3) Simulated annealing

The simulated annealing algorithm is a special algorithm.

Indeed, it is an empirical algorithm, strongly inspired by the

physical phenomenon of annealing [6].

To build this algorithm, we imagine that the function to be

optimized is assimilated to the energy of a fictive physical

system. At initialization, our physical system is in the state x0

and has an energy Einit at temperature Tinit. The energy of the

system corresponds to the function for which the minimum is

sought (cost function). The temperature is a parameter of the

algorithm, which is initially set quite high.

Subsequently, we generate a neighboring state x1 = x0 + δx

of energy E1, with δx a random variation. This state is

accepted according to the Metropolis criterion. According to

the laws of statistical physics, the probability of finding our

system in the state x1 is exp[− (E1 – E0) / kBT] with kB the

Boltzmann constant. Therefore, we accept our new state if it

decreases the energy of our system, but also if it increases it

with a non-zero probability: we agree to degrade our solution,

to avoid falling into a local minimum. We carry out this

operation until the thermal equilibrium for the given

temperature. Once equilibrium is reached, the temperature is

lowered and the search for thermal equilibrium is restarted

with the new temperature. The algorithm stops after a certain

number of iterations, or when a minimum temperature Tfinal is

reached. Thus, we reach the minimum energy state of the

fictive physical system and find the minimum of our function.

This algorithm is both powerful and complex, because of

the multitude of parameters to be taken into account. In

particular, it is necessary to choose the initial temperature of

the system, its law of decay, the final temperature or the

number of iterations, but also the definition of a neighboring

state and thermal equilibrium.

B. Dimension reduction

The principle of dimension reduction of our state space

consists in expressing our trajectories on a basis of small

dimension, of the form γ(t) = n
i=0 ai hi(t).

1) B-Splines approximation

Bézier curves are parametric polynomial curves described by

Pierre Bézier in [7]. They require the introduction of n+1

points of the plane or space, called control points which we

note P0, P1, P2, …, Pn.

We define the Bézier curve associated with these control

points by S(t) = n
k=0 Bn

k(t)Pk with 0 ≤ t ≤ 1. The Bn
k(t) =

Cn
ktk(1 − t)n−k are the polynomials of the Bernstein basis. The

Bézier curve has multiple properties, it is in particular of class

C∞ and is located in the convex envelope of the control points.

In addition, we have PiPi+1 as the tangent vector to the curve

in Pi, i [[0, n]].

To generalize this concept, we introduce the notion of

nodes, noted ti, such as 0 ≤ t0 ≤ … ≤ ti ≤ … ≤ tm ≤ 1. We

define the B-Spline curve of degree i (presented in [8])

associated with the control points P0, P1, P2, …, Pn, with m ≥ n

+ 1 + i, by S(t) = n
k=0 Bk,i(t)Pk with ti ≤ t < tn+1, composed of

B-Spline functions of degree i defined by recurrence :

• for 0 ≤ k ≤ m – 1, Bk,0(t) = 1 if t [tk , tk+1[,

Bk,0(t) = 0 otherwise ;

• for i ≤ 1 and 0 ≤ k ≤ m − i – 1, Bk,i(t) = [(t – tk) /

(tk+i – tk)] Bk,i–1(t) + [(tk+i+1 – t) / (tk+i+1 – tk+1)]

Bk+1,i–1(t).

The Bézier curve associated with n+1 control points

corresponds to the B-Spline curve of degree n having for

nodes the points t0 = t1 = … = tn = 0 and tn+1 = tn+2 = … = t2n+1

= 1.

To approximate a function f of class C2 on [a, b] by a B-

Spline curve, we can introduce the nodes tk so that t0 = t1 = …

= ti = a < ti+1 ≤ … ≤ tn < b = tn+1 = … = tn+1+i. We have γ(t) =

n
k=0 f(t*

k)Bk,i(t) with t*
k = (tk+1 + … + tk+i) / i.

3

2) FPCA - Karhunen-Loève theorem

The Karhunen-Loève transformation is a method which

consists in transforming correlated variables into new

variables, our hi(t) called principal components, decorrelated

from each other.

This transformation is mainly used to describe and

visualize data. This transformation allows each component to

maximize the available variance, which is extremely

interesting for the study of flight paths because it allows us to

have the most faithful approximation of the path by

minimizing the number of coefficients to consider. The

mathematical principle is quite simple: first, you must

calculate the average of each dimension of the data set. It is

also necessary to extract the covariance matrix, as well as its

eigenvectors and its eigenvalues. Then we simply have to sort

the eigenvectors in decreasing order of eigenvalues and to

choose the n first eigenvectors, which constitute our matrix of

passage towards the basis of Karhunen-Loève [9].

This analysis is suitable for small data tables, but do not by

itself allow the generation of acceptable trajectories due to

problems of data regularity. It is necessary to make this

analysis functional, that is to say by no longer considering

data tables, but functions: this analysis is called FPCA. In this

continuous case, we have the expression of the following

Karhunen-Loève theorem:

If the stochastic process Xt is centered and of continuous

covariance KX, then Xt admits a decomposition of the form Xt

= Σ∞
k=0 Zkek(t) with ek(t) the eigenfunctions of TKx, where T is

the integral operator. We notice that by sorting the

eigenvectors and keeping only the first ones until n, we have a

decomposition of γ(t).

III. MATHEMATICAL MODELING

A. Space State

We have at our disposal a fairly substantial database made of

tens of thousands descent trajectories. Our goal is to manually

generate similar trajectories: several problems then arise, in

particular the choice of the approach procedure. Indeed,

airport approach procedures allow airplanes to use one or

more IAFs (Initial Approach Fix), and trajectories of our

airplanes can be different depending on the approach

considered. Therefore, a clustering phase is necessary: it

makes discrimination of descent trajectories possible

according to the chosen IAF. Thus, all of our trajectories

behave more or less the same way and we can generate a state

space that makes sense.

Another problem concerns the implementation of our

principal component analysis. As explained above, it is

mandatory to have our analysis functional. A prior conversion

of our trajectory data into splines is a good idea to allow us to

apply the Karhunen-Loève transformation. Therefore, we

must fix the cumulative variance that we wish to obtain, that is

to say the level of fidelity of curves generated compared to our

data. With too low a fidelity, we create inflexible trajectories

and the optimization is of little interest. With too much

fidelity, not only do we dwell on details that slow down our

algorithm, but we take into account unconventional trajectory

behaviors, which we seek to avoid. 95% is a value which is

acceptable a priori, which we keep for our simulations.

In Fig.1, we decompose our trajectories (nearly 20000

trajectories after clustering) on the Karhunen-Loève basis.

Only 15 components are sufficient to describe 95% of the

data. We show the probability densities linked to the first four

coefficients, as well as 1000 random variates within the

densities.

Figure 1. Probability Density Functions

We have seen that the Karhunen-Loève transformation

makes it possible, from a set of data, to generate a space of

small dimension. Indeed, by fixing the cumulative variance,

we determine the number of components of our

decomposition. Each component has its own probability

density, and a trajectory is generated by a random realization

of each coefficient. By randomly choosing a large number of

coefficients in each probability density, we generate a

multitude of random trajectories and we find the state space in

which our functions live.

In Fig. 2, on the left, we have the database on which our

study is based. On the right, we reconstruct 50000 trajectories

on the Karhunen-Loève basis. We note that the state space is

faithful and that we get rid of "unconventional" trajectories.

4

Figure 2. State Space

B. Constraints

After generating our "free" flight paths, we decide to constrain

them. Optimization without constraints could be considered,

but in reality our planes are subjected to several types of

constraints of different natures. At first, we could force our

trajectories to go through certain waypoints. In reality, an

approach procedure is characterized by the IAF, but the

aircraft must also pass through the IF and the FAF,

intermediate and final approach marks. However, these

requirements are not very restrictive because all of our

generated trajectories have the same behavior as the initial

trajectories, and consequently they naturally pass through the

waypoints. Obstacle constraints can also be studied. A quick

and effective solution to avoid obstacles is to adapt our state

space, by removing the trajectories that pass through the

obstacle. Finally, we decide not to study the constraints

aiming to separate the aircrafts from each other for complexity

reasons.

The constraint used in this paper is the wind field. Indeed,

this constraint is an important factor in minimizing the fuel

consumed, and significantly modify our approach.

C. Objective

The energy of our trajectory, or our objective function, is the

criterion that we seek to optimize. In the case of descent

trajectories, the criterion retained can be the shortness of the

trajectory (case without constraints) or the fuel consumed

(case with constraint of wind field). The fuel consumption can

be easily linked with the wind by a proportionality

relationship. In our simulations, the constraint retained is the

opposite of the scalar product between the wind vector and the

tangent vector to our trajectory at a spatial point considered.

When cruising, to optimize the fuel consumed, we put the

airplane in effective rear wind (this allows us to reduce our

flight speed while keeping the maxi range constant). Wind

forecasts can be found in WINTEM maps. Trends are issued

every 3 hours for France, and every 6 hours for the European

domain. We imagine that our plane seeks to save fuel on

approach, in the same way as it would on a cruise.

By using a Monte-Carlo type approach, that is to say by

simulating random trajectories in the state space and by

evaluating their energy at each iteration, we can easily

determine the shapes of the trajectories that optimize our

criterion.

In Fig. 3, we simulated 10000 flight paths in the state

space. Note that the purple curves (the most concise) are the

ones that take the shortest turns on approach.

In Fig. 4, we simulated 10000 flight paths in the state

space. On the left, we notice that the curves are not very

different in energy: planes take the wind in the same way. On

the right, gusts of wind on final approach encourage the pilot

to take the shortest turn, to save fuel.

Figure 3. Flight paths ranked according to their shortness

Figure 4. Flight paths ranked according to their fuel saving

However, this method is not perfect. It can be quite costly

in time if we are looking for a precise solution, and only gives

us an imprecise approximation of the optimal trajectory if we

are looking for a quick solution. A well-known optimization

technique will allow us to extract the optimal trajectory by

combining these two criteria: speed and precision.

5

D. Simulation

Our simulation consists in generating a flight path in our state

space. The coefficients of this trajectory constitute the input of

our simulated annealing. The initial temperature is fixed in a

way that the first neighboring state is accepted in 99% of the

cases. We choose a geometric decrease of the temperature,

parameter 0.99. In addition, a maximum number of iterations

of 4000 has been chosen to ensure that the thermodynamic

equilibrium is reached at each level. To generate the

neighboring state, we choose to make a small Gaussian

variation of each coefficient, taking care to remain in the state

space.

IV. RESULTS

Results are shown in Fig. 5. We generated in about 2000

iterations of the simulated annealing algorithm the optimal

trajectory for the favorable (left) and unfavorable (right) wind

field.

We note that the simulated annealing method is faster, we

only needed 2000 iterations of the algorithm to generate the

optimal trajectory, against 10000 iterations of generation of

random trajectories. An iteration of one or the other algorithm

takes the same time to execute (around 15ms), which mainly

consists in generating a new trajectory and evaluating its

energy.

It is also more precise, since the trajectories generated are

much lower in energy (123% better than the one given by the

Monte-Carlo method on the left, and 452% better on the

right). In addition, they have the expected behavior: the

trajectory is perfectly collinear to the wind when it is

favorable, and is almost orthogonal to it when it is

unfavorable.

A criticism that we could make is that our trajectories

leave our state space, or more precisely they are at the limit of

our state space: the random draw in our probability densities is

mainly marginal. If we want to force our optimized

trajectories to remain in our "classic", that is to say non-

marginal, state space, it is possible to constrain our probability

densities by forcing our annealing to generate probable

trajectories only. Another solution would be to directly alter

our state space, by modifying the cumulative variance we

wish to obtain. If we set the cumulative variance at 80%

instead of 95%, we have fewer variable trajectories and

therefore better inserted trajectories in our state space.

In Fig. 6, we generated in about 2000 iterations of the

simulated annealing the optimal trajectory for the unfavorable

wind field. On the left, we cut the lower and upper 10% of

each probability density. On the right, we reduced the state

space to 80% of the cumulative variance (only 6 components

describe 80% of the data). Results are better: we managed to

find more realistic trajectories, with a lower energy than those

found with the Monte-Carlo method. Thus, we can validate

the method using a revised state space to compute our

trajectories.

What would happen if, instead of constraining our

probability densities, we extended them?

Figure 5. Optimal fuel flight paths

6

So far, we have searched for an optimal trajectory in our

state space. Let's look at what happens when we are not

seeking to optimize a trajectory, but optimize a state space.

For this to work, we modify the average trajectory of our

initial state space, which we control using a Monte-Carlo type

method or a simulated annealing. This trajectory can move in

an enlarged space, by a factor of 5 compared to our initial

state space (that is to say that the limits of the probability

densities have been extended by a factor of 5, around their

median). Our optimization criterion is the direction of the

entry point of our trajectories. For example, we no longer

want our trajectories to come from the South West, but from

the North West.

In Fig. 7, on the left, we have represented the new state

space generated by moving the average trajectory using the

Monte-Carlo method, and in the center thanks to the simulated

annealing. On the right, we have generated 100 average

trajectories within our enlarged state space.

We note that we manage to modify the entry of our flight

paths at the cost of a U-turn to reach the runway, regardless of

the algorithm chosen. In reality, the space of our average

trajectories is quite limited, and that is why we cannot

generate any trajectory. We note that no average trajectory

comes from the North East, therefore it would have been

impossible to generate a state space which comes from it. To

be able to generate any approach procedure, it would be

necessary to be able to modify the structure of our Karhunen-

Loève basis.

Nevertheless, this study is quite interesting because it

shows the robustness of our transformation: a state space

naturally forms around any average trajectory.

Figure 6. Optimal fuel flight paths (revised state spaces)

Figure 7. Flight paths from the North West

7

V. CONCLUSION

The interest of this study was to highlight the robustness of

the FPCA in its application to flight paths. Only based on a

sample of trajectories already flown, we were able to extract

trajectories optimized according to the external wind

constraints.

Multiple applications can now emerge from our study. We

could imagine that the pilot downloads the wind maps at the

end of the cruise, before the approach, and that the algorithm

returns the optimal trajectory that should be followed to save

fuel for his company. Our study can also very easily extend to

climb or cruise trajectories.

Our algorithms can also be reused to solve other problems.

Indeed, by taking up the idea discussed at the end of our

paper, a new application could be the shifting of the approach

procedure. By analyzing all the procedures generated, we can

extract the procedure that minimizes noise for residents near

the airport.

Therefore, our study consists in creation of more

economical and more ecological flight paths, topics which are

part of the major challenges of the twenty-first century.

ACKNOWLEDGMENT

I would like to express my very great appreciation to Pr.

Daniel Delahaye for his support and his constructive ideas

during the development of this research work. His interest in

my work and his willingness to give his time have been very

much appreciated.

I would also like to thank Gabriel Jarry and Alexis

Bernard for their relevant advices and knowledge sharing.

REFERENCES

[1] Daniel Delahaye, Stéphane Puechmorel, Panagiotis Tsiotras, Eric Féron,
“Mathematical Models for Aircraft Trajectory Design: A Survey”,
EIWAC 2013, 3rd ENRI International Workshop on ATM/CNS, Tokyo,
Japan. pp 205-247, Feb 2013.

[2] A. Eckstein, “Data driven modeling for the simulation of converging
runway operations”, Proceedings of the 4th International Conference on
Research in Air Transportation (ICRAT), 2010.

[3] Daniel Delahaye, Supatcha Chaimatanan, Marcel Mongeau. “Simulated
annealing: From basics to applications”, Handbook of Metaheuristics,
Springer, pages 1–35, 2019.

[4] J.A. Sethian, “Fast marching methods”. SIAM review, vol. 41, no. 2,
pages 199–235, 1999.

[5] R. Bellman, “On the theory of dynamic programming”, Proceedings of
the National Academy of Sciences of the United States of America, vol.
38, no. 8, page 716, 1952.

[6] S. Kirkpatrick, C. D. Gelatt & M. P. Vecchi, “Optimization by
Simulated Annealing”, Science, vol. 220, no. 4598, pages 671–680,
1983.

[7] P. Bézier, “Courbes et Surfaces”, Hermès, 1986.

[8] C. de Boor, “A practical guide to Splines”, Applied Mathematical
Sciences 27 - Springer-Verlag, 1978.

[9] R. A. Johnson and D. W. Wichern, “Applied Multivariate Statistical
Analysis 5th Ed”, Upper Saddle River, NJ, Prentice Hall, 2002.

