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The Service Evolutions Sub-Group (SESG) of Working Group C, the joint technical committee formed from U.S and E.U public bodies for the purpose of promoting GPS-Galileo applications, has spent the past years working on a number of topics relating to Advanced RAIM development and its early stages of standardization. This paper addresses the mapping of integrity and continuity requirements from the operational (i.e. per hour) to the algorithmic (per sample). It provides a method to rigorously account for the impact on integrity risk of multiple exposures to hazardously misleading events over time, and for the impact on false alert probability of multiple detection tests over time. This analysis leads to the estimation and bounding of the "number of effectively independent samples", or more concisely the "number of effective samples (NES), for integrity and continuity within their respective exposure windows.

I. INTRODUCTION

This paper presents a framework for the treatment of the number of effectively independent samples over an exposure window is developed. The paper is split into three parts.

Section II of this paper describes a generic process to determine the number of effective samples without assumptions regarding the temporal correlation properties of the errors and without assumptions regarding the actual implementation of the airborne algorithm. Like RAIM, the initial baseline ARAIM airborne algorithms (e.g. in the ARAIM Milestone 3 report) assumed a single sample, allocating the full continuity and integrity risks required at the operational level to the algorithm at each sample. While this approach is a reasonable approximation for some phases of flight given the observed error margins, it may underestimate the effect of temporal exposure, especially for long exposure times. In Section II, key definitions are given of the critical events, namely that a false detection event occurs when, under the fault-free state, starting at any sample within the exposure window, the false detection condition is true for at least the time to alert (TTA) duration. Similar, a hazardously misleading information (HMI) event occurs when, under the fault hypothesis, starting at any sample within the exposure window, both the no detection condition and the positioning failure condition are true sequentially for the TTA duration. The number of effective samples (NES) is then defined as: (a) for continuity, the ratio of the probability of false alert (FA) during an operation over the probability of FA at a single epoch (b) for integrity, the ratio of the risk of hazardously misleading information (HMI) during an operation over the risk of HMI at a single epoch. Following these definitions, upper bounds on NES are developed.

Section III provides refinements of the NES analysis accounting for the temporal behavior of the error sources and variability of the receiver algorithm implementation. The impact of temporal correlation of the input measurements is addressed through simulation employing a First Order Gauss Markov Process, followed by analysis of a real data collection.

Section IV discusses the consequences of this work for the Airborne Definition Document (ADD) and a performance evaluation is presented.

II. GENERIC ANALYSIS

A. Framework and Definitions 1) Requirements Interpretation

In order to proceed, it is necessary to clarify our interpretation of the requirements, both at the SARPs level (SARPs stands for ICAO's Standards and Recommended Practices) and at the constellation service provider (CSP) commitments level.

2) SARPs This section will treat the definitions and statements relating to integrity and continuity as made in the SARPs [START_REF]Annex 10: Aeronautical Communications[END_REF]. Integrity is a measure of the trust that can be placed in the correctness of the information supplied by the total system. Integrity includes the ability of a system to provide timely and valid warnings to the user (alerts). Continuity is the capability of the system to perform its function without unscheduled interruptions during the intended operation. Time-To-Alert (TTA) is the maximum allowable time elapsed from the onset of the navigation system being out of tolerance until the equipment enunciates the alert.

We make the following interpretations. Loss of integrity occurs when trust is lost for a period that exceeds TTA within the period of operation (see Figure 1). Loss of continuity occurs when an alert condition persists for a duration exceeding TTA. For an approach, the period of operation, here equivalent to the exposure time, is 150s for integrity purposes and 15s for the final approach segment critical to continuity. For en-route flight and non-precision approach (NPA), we assume that the exposure period for both integrity and continuity is fixed at one hour. We made this assumption considering two possible interpretations of the requirements:

1 -The period of operation is taken to be fixed at one hour, therefore fixing the exposure window over which to assess integrity, or 2 -The requirement expresses a risk rate, such that a variable period of operation can be considered, and the risk requirement is proportional to the exposure window length i.e. for rate 𝑟 and window length 𝑇 the risk is then is then 𝐼(𝑇) ≈ 𝑟 × 𝑇.

Interpretation 1 captures the intent of the requirement in the SARPs Table 3.7.2.4-1. Interpretation 2 becomes impractical when accounting for non-monitored latent faults.

With regard to Interpretation 2, consider the example of a GPS constellation fault, which is assumed a rate of occurrence of 10-8/h. Firstly, take the case of values of 𝑇 larger than 1 hour. To evaluate 𝑃 𝑐𝑜𝑛𝑠𝑡 , we must account for the probability of the fault being present at the start of the operation or of it occurring during the operation. The first is the product of its rate of occurrence and its mean time to notify or MTTN (10-8 × 𝑀𝑇𝑇𝑁), and the second is the product of the rate of occurrence and the exposure window length 𝑇. The total probability (10-8) therefore is 10-8( 𝑀𝑇𝑇𝑁 + 𝑇). However, as the exposure window increases in length, the ratio of this value and 𝐼(𝑇) approaches a constant, since 𝑀𝑇𝑇𝑁 become insignificant against 𝑇 . Secondly, consider the case of values of 𝑇 smaller than 1 hour e.g. 0.1 hours. The requirement is then reduced to 𝐼(𝑇) < 𝐼(1 ℎ𝑜𝑢𝑟) whilst the probability of a GPS constellation fault can never be inferior to 10-8 × 𝑀𝑇𝑇𝑁 . Under this case, it therefore becomes impractical to interpret the requirement using short exposure windows to handle non-monitored faults.

To conclude, it is proposed to fix the exposure window to a practical value of 1 hour thereby adopting Interpretation 1 above. Once the length of the exposure window is determined, then, by definition, the integrity requirement must be met for each and every such exposure window. Loss of integrity occurs throughout the exposure window if a hazardous condition is present without alert for a duration longer than one TTA as illustrated in Figure 1 and Figure 2. 

3) Service Commitments a) GPS Service Commitments

The GPS service commitments also provide similar definitions [START_REF]Global Positioning System Standard Positioning Service Performance Standard[END_REF] for the SPS SIS Integrity in terms of a Major Service Failure (MSF), expressed as the probability that the SPS SIS's instantaneous URE exceeds the SIS URE NTE tolerance (be 4.42 times the upper bound on the 𝜎 𝑈𝑅𝐴 ) without a timely alert being issued.

The GPS service commitment for this value is currently 10-5 per satellite per hour, which is employed here as a rate 𝑟 𝑠𝑎𝑡 . Commitments are also made on the CSP's mean time to notify (MTTN) of 1 hour [START_REF]Global Positioning System Standard Positioning Service Performance Standard[END_REF]. For a fault hypothesis 𝑘, these quantities may be related to the state probability as follows:

𝑃 𝑓𝑎𝑢𝑙𝑡,𝑘 ≅ 𝑟 𝑘 ∫ 𝑒 -𝑡 𝑇 𝑚 𝑑𝑡 0 -∞ ≅ 𝑟 𝑘 × 𝑇 𝑚,𝑘 (1) 
where 𝑟 𝑘 is the fault rate and 𝑇 𝑚,𝑘 is the MTTN for fault hypothesis 𝑘. The rate fault 𝑟 𝑘 = 1 𝑀𝑇𝐵𝐹 ⁄ , where MTBF is the Mean Time Between Failure (MTBF). For composite faults, both the rate and MTTN may be derived from their counterparts broadcast within ISM and derived in Appendix C. A more precise computation of the state probability may be given as follows, accounting for MTBF and MTTN:

𝑃 𝑓𝑎𝑢𝑙𝑡,𝑘 = 𝑀𝑇𝑇𝑁 𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑁 = 𝑇 𝑚,𝑘 1 𝑟 𝑘 +𝑇 𝑚,𝑘 = 𝑟 𝑘 𝑇 𝑚,𝑘 1+𝑟 𝑘 𝑇 𝑚,𝑘 ≅ 𝑟 𝑘 𝑇 𝑚,𝑘 (2)

b) Galileo Service Commitments

Integrity is to be developed in future issues of the Galileo Service Definition Document (SDD) [START_REF]Galileo Open Service -Service Definition Document (SDD)[END_REF].

B. Temporal Parameters

A number of time intervals must be expressed which relate to the system requirements, receiver requirements and ISM contents [START_REF] Tsg | WG-C ARAIM TSG Reference Airborne Algorithm Description Document (ADD)[END_REF], [START_REF] Rtca | Mininum Operational Performance Standards for Global Positioning System/Wide Area augmentation System Airborne[END_REF]. The operation exposure time and required TTA are taken from the requirements along with the receiver measurement processing and position, velocity, and time (PVT) estimation output interval. The CSP monitoring MTTN is set here at the default value of GPS, since it is well established, but may differ for other constellations. The exposure timeline is shown in Figure 3. Additional terms are provided in Table II Fault-Free Hypothesis: The condition of no satellite or constellation fault being present, denoted by 𝐻 0 and by 𝐻 0,𝑖 for specifically at epoch 𝑖

False Alert (FA):

The detection of a fault under the fault-free hypothesis 𝐻 0 .

False Alert (FA) event: Sequential FA over all 𝑛 𝑑𝑎 FDE samples within a period of length 𝑇 𝑎 given 𝐻 0 .

A receiver may meet the above 'FA event' definition by only alerting if the FA condition remains true for the 𝑇 𝑎 duration. Positioning Failure (PF) event: Sequential PF over all 𝑛 𝑠𝑎 PVT samples within a period of length 𝑇 𝑎 .

No Detection (ND):

The condition that no monitor test statistic exceeds its respective threshold at a single sample 𝑖.

No Detection (ND) event: Sequential ND conditions over all FDE samples within a period of length 𝑇 𝑎 .

Hazardously Misleading Information (HMI):

The joint presence of both PF and ND conditions.

For cases where 𝑛 𝑑 < 𝑛 𝑠 , the most recent ND condition is paired with the PF condition.

Hazardously Misleading Information (HMI) event:

Sequential HMI over all samples within 𝑇 𝑎 given fault hypothesis 𝐻 𝑘 .

𝑃 ℎ𝑚𝑖 : Probability of any HMI event over the exposure interval 𝑇 𝑒 .

𝑃 ℎ𝑚𝑖 (𝑛 𝑠 , 𝐻 𝑘 ) = 𝑃{⋃ ⋂ (𝐻𝑀𝐼 𝑖 𝑗+𝑛 𝑠𝑎 𝑖=𝑗 , 𝐻 𝑘,𝑖 ) 𝑛 𝑠 -𝑛 𝑠𝑎 𝑗=1 } (4) 
The above definitions given in ( 3) and ( 4) express the operational safety metrics employing time indices depicted in Figure 4. The metrics evaluated by the airborne algorithm are expressed in terms of risk at a single sample, 𝑃 𝑓𝑎 (1, 𝐻 0,1 ) and 𝑃 ℎ𝑚𝑖 (1, 𝐻 𝑘,1 ) respectively. This leads to the following definitions for the effective number of samples:

𝑛 𝑒𝑠,𝑓𝑎 (𝑛 𝑑 ) = 𝑃 𝑓𝑎 (𝑛 𝑑 ,𝐻 0 ) 𝑃 𝑓𝑎 (1,𝐻 0,1 ) (5) 
𝑛 𝑒𝑠,ℎ𝑚𝑖,𝑘 (𝑛 𝑠 ; 𝑛 𝑑 ) = 𝑃 ℎ𝑚𝑖 (𝑛 𝑠 ,𝐻 𝑘 ;𝑛 𝑑 )

𝑃 ℎ𝑚𝑖 (1,𝐻 𝑘,1 ) (6) 
Figure 4: Indices 𝑖 and 𝑗 Note that a weak assumption that the geometry is unchanging over the exposure interval is used and that it does not negate the validity of the upper bound derived below.

D. Upper Bounds on the HMI and FA Risks over an Exposure

Period Given these definitions, the maximum allowable interval between ARAIM monitor tests is 𝑇 𝑎 . If fault detection is employed only once per 𝑇 𝑎 , such that the number of fault detection epochs 𝑛 𝑑 is equal to the number of TTA periods 𝑛, then it is not possible for a FA or an HMI event to happen between successive 𝑇 𝑎 intervals. The monitor may sample at a faster rate, for example at intervals 𝑇 𝑠 , but it is not required to do so. Therefore, in this section, it is assumed that the fault detection function operates at the minimum rate, which is conservative with respect to integrity performance. This simplifies the subsequent analysis, and it is the reason for the normalization of the other time intervals by 𝑇 𝑎 as performed above.

Using this simplification, an upper bound on the number of effective samples 𝑛 𝑒𝑠,ℎ𝑚𝑖,𝑘 as defined in ( 4) can be obtained:

𝑃 ℎ𝑚𝑖 (𝑛, 𝐻 𝑘 ) = 𝑃(⋃ (𝐻𝑀𝐼 𝑗 , 𝐻 𝑘,𝑗 ) 𝑗=𝑛 𝑗=1
) ≤ ∑ 𝑃(𝐻𝑀𝐼 𝑗 , 𝐻 𝑘,𝑗 ) 𝑗=𝑛 𝑗=1 [START_REF] Bang | ARAIM Temporal Correlation Effect on PHMI[END_REF] The above equation shows that it is conservative to assume 𝑛 𝑒𝑠,ℎ𝑚𝑖,𝑘 = 𝑛 . One way to see this is by assuming that 𝑃(𝐻𝑀𝐼 𝑗 , 𝐻 𝑘,𝑗 ) = 𝑃 ℎ𝑚𝑖 (1, 𝐻 𝑘,1 ) (i.e. assuming that 𝑃(𝐻𝑀𝐼 𝑗 , 𝐻 𝑘,𝑗 ) is independent of time): 

This bound is valid for both the monitored and un-monitored fault hypotheses. In ARAIM, the majority of fault modes have low prior probabilities of occurrence and, therefore, do not need to be monitored, in which case 𝑃 ℎ𝑚𝑖|𝐻 𝑘 = 1. Further details may be found in [START_REF] Tsg | WG-C ARAIM TSG Reference Airborne Algorithm Description Document (ADD)[END_REF], [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF]. As seen below, a finer bound exists for the non-monitored hypotheses. Note that the exposure intervals 𝑇 𝑒 may be different for integrity (HMI) and continuity (FA). Further details and rigorous developments are described in Appendices A and B.

The following results are presented as a function of the conditional probability of HMI, 𝑃 ℎ𝑚𝑖|𝐻 𝑘 , or the probability of missed detection. Unlike in RAIM, where 𝑃 ℎ𝑚𝑖|𝐻 𝑘 is assigned a fixed requirement of 10-3, in ARAIM, the integrity risk can be allocated dynamically at each sample as a function of the ISM, geometry and error models. 𝑃 ℎ𝑚𝑖|𝐻 𝑘 values may range from 10-5 to 1 (the value of 1 is used for unmonitored hypotheses).

The results for RNP 0.1 and 0.3, with 𝑇 𝑎 = 10 sec and 𝑇 𝑚 = 1 hour, are shown in Figure 5 for a range of 𝑃 ℎ𝑚𝑖|𝐻 𝑘 . The vertical axis represents the number of effectively independent samples for HMI as a function of the exposure time. Figure 6 shows the results for 𝑇 𝑒 = 1 hour as a function of 𝑃 ℎ𝑚𝑖|𝐻 𝑘 . The number of effectively independent samples for HMI ranges from 2 for unmonitored faults to 360, which applies for monitored faults.

Figure 7 shows the corresponding results for LPV 200, with 𝑇 𝑒 = 150 sec and 𝑇 𝑎 = 6 sec. Here, the number of effectively independent samples for integrity ranges from 1 for unmonitored faults to 25 for monitored faults. 

In the case of the non-monitored modes, the effective number of samples has a tighter upper bound given by:

𝑛 𝑒𝑠,ℎ𝑚𝑖,𝑘 (𝑛 𝑠 ) < 1 + 𝑇 𝑒 𝑇 𝑚,𝑘 (12) 
This is a consequence of the fact that the probability of having a fault within the exposure window is given by (see Figure 8 

Note that the 𝑇 𝑚,𝑘 are derived from the broadcast ISM parameters as described in Appendix C.

Note that [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF] 

A. Introduction

In Section II, an upper bound was given regardless of the receiver implementation and error models. Only assumptions regarding the provision of the ISM and basic elements of the ARAIM design were made. This section includes error modelling for a more precise analysis, beginning with a treatment of the Gauss Markov Process (GMP).

B. The Gauss Markov Process (GMP)

The standard assumption regarding the temporal behaviour of error sources in GNSS is the first-order Gauss Markov Process [START_REF]Global Positioning System Standard Positioning Service Performance Standard[END_REF]. The GMP is parameterised by the process variance 𝜎 2 and its time constant 𝜏 (the reciprocal time constant is 𝛽). The autocorrelation function of the GMP is shown in Figure 9:

𝑅(𝛥𝑡) = 𝜎 2 𝑒 -𝛽𝛥𝑡 (16) 𝛽 = 1 𝜏 (17) 
For a given 𝛥𝑡, the alpha parameter may also be defined as:

𝛼 = 𝑅(𝛥𝑡) 𝑅(0)
= 𝑒 -𝛽𝛥𝑡 (18) 

C. Number of Effective Samples for Continuity

It was established in II.D that 𝑛 𝑒𝑠,𝑓𝑎 (𝑛 𝑑 ) < 360. In this section a higher fidelity approach is taken using the GMP, as described in III.B. 𝑃 𝑓𝑎 is heavily dependent on the test statistic autocorrelation function 𝑅(∆𝑡). An analytical upper bound was derived in [START_REF] Pervan | Test Statistic Auto-and Cross-correlation Effects on Monitor False Alert and Missed Detection Probabilities[END_REF]:

𝑃 𝑓𝑎 (𝑛, 𝐾 𝑓𝑎 ) = 1 -[1 -2𝛷(-𝐾 𝑓𝑎 )] { 1 - 𝑃 𝛥 (𝐾 𝑓𝑎 ) 1-2𝛷(-𝐾 𝑓𝑎 ) } 𝑛-1 (22) 
𝑃 𝛥 (𝐾 𝑓𝑎 ) ≜ 1 𝜋 exp (- 𝐾 𝑓𝑎 2 2 ) acos [ 𝑅(∆𝑡) 𝑅(0) ] (23) 
where 𝐾 𝑓𝑎 is the normalized monitor detection threshold and 𝛷(𝑥) is the standard cumulative normal distribution function.

In this 𝑃 𝑓𝑎 analysis, we use realistic autocorrelation models for the various test statistic error contributions. Because 𝑃 𝑓𝑎 contributes only to continuity risk (not integrity), we use "average" (not worst-case) error models (described in Appendix D). A summary of results for 𝑇 𝑎 =10 sec (applicable to RNP 0.1 and 0.3) is provided in Table III, which leads to (∆𝑡 = 10s)= 0.9902, or 𝛽 ≅ 0.001 or 𝜏 𝑡𝑜𝑡 ≅ 1000s.. 

D. Effective Number of Samples for Integrity

In this section more accurate bounds on the 𝑛 𝑒𝑠 for monitored modes are computed; firstly for a class of algorithms which include the baseline algorithm [START_REF] Tsg | WG-C ARAIM TSG Reference Airborne Algorithm Description Document (ADD)[END_REF] in section III.D.1., and secondly for approaches which leverage tighter bounds on the impact of a fault in III.D.2. 1) Single GMP Algorithm (Triangle Inequality) One approach to bounding the PHMI within the ARAIM framework is outlined in the ARAIM ADD [START_REF] Tsg | WG-C ARAIM TSG Reference Airborne Algorithm Description Document (ADD)[END_REF]. The PHMI for this approach is bounded using the triangle inequality and is expressed by the probability of the following condition:

|𝑥 ̂𝑐 (𝑘) -𝑥 𝑐 | 𝜎 𝑐 (𝑘) > 𝐾 𝑚𝑑,𝑐,𝑘 (24) 
The left-hand side is the fault-tolerant subset position solution error 𝑥 ̂𝑐 (𝑘) -𝑥 𝑐 (for position coordinate 𝑐), normalised by its standard deviation 𝜎 𝑐 (𝑘) , under hypothesis 𝐻 𝑘 whilst the righthand side is the Gaussian integrity factor relating to the missed detection probability allocated to the respective fault hypothesis 𝑘 . Note that the subset position error bias is omitted from the above relations for clarity. As established above in section III.B, this quantity may be conservatively assumed to follow a Gauss Markov Process with unit variance and time constant 𝜏. 

Using the GMP model, Figure 13 shows the obtained results. Table IV shows that when employing the baseline algorithm as described in the ADD [START_REF] Tsg | WG-C ARAIM TSG Reference Airborne Algorithm Description Document (ADD)[END_REF] (green curve), a maximum 𝑛 𝑒𝑠,ℎ𝑚𝑖 of 100 is to be expected. If on the other hand the implementation only meets the minimum requirement on fault detection frequency, a maximum of 250 is obtained. In Figures 14 and15 results are shown for RNP and LPV-200. In this section, an alternative class of algorithm implementations are analysed. Under this class, the protection level computation uses a missed detection probability based on the test statistic and position error variables [START_REF] Joerger | Solution Separation Versus Residual-Based RAIM: Solution Separation Versus Residual-Based RAIM[END_REF], [START_REF] Bang | Sample Temporal Correlation Effect on PHMI[END_REF]. The positioning failure condition and the no detection condition are then used to define an integrity event. ⁄ for coordinate 𝑐. The left-hand side of ( 27) is the normalised test statistic, for example the solution separation test statistic as defined in the baseline algorithm, whilst the right-hard side is the Gaussian k-factor relating to the allocated false detection probability to fault mode 𝑘 . Under this approach the impact of a fault vector 𝜇 𝑘 is given as follows:

𝜇 𝑐 (0) = 𝑒 𝑐 𝑇 𝑆 (0) 𝜇 𝑘 (28) 𝜇 𝑠𝑠,𝑐 = 𝑒 𝑐 𝑇 (𝑆 (𝑘) -𝑆 (0) )𝜇 𝑘 ( 29 
)
where 𝑆 (0) and 𝑆 (𝑘) respectively are the full-set and subset estimator matrices, and 𝑒 𝑐 is a column vector of zeros except for unity at element 𝑐 to extract the 𝑐-th state. The slope, defined as ratio of 𝜇 𝑐 (0) and 𝜇 𝑠𝑠,𝑐 is then a constant (not dependent on fault magnitude) [START_REF] Joerger | Solution Separation Versus Residual-Based RAIM: Solution Separation Versus Residual-Based RAIM[END_REF].

𝑠𝑙𝑜𝑝𝑒 𝑐 = 𝜇 𝑐 (0) 𝜇 𝑠𝑠,𝑐 (30) 
The method for calculating 𝑛 𝑒𝑠,ℎ𝑚𝑖 for these algorithms is given in further detail in [START_REF] Bang | ARAIM Temporal Correlation Effect on PHMI[END_REF], [START_REF] Bang | Sample Temporal Correlation Effect on PHMI[END_REF] leading to: We then computed two empirical probability distributions: the instantaneous probability of exceeding a given limit, and the probability of exceeding the limit over an exposure interval.

𝑛 𝑒𝑠,ℎ𝑚𝑖 = 𝑃(⋃ ⋂ ( |𝑥 ̂𝑐,𝑖 ( 
The ratio of these two probabilities 𝑛 𝑒𝑠,ℎ𝑚𝑖 in Figure . The empirical curve is consistent with that in Figure 14. 

IV. IMPACT ANALYSIS

In this part, the impact of the analysis on ADD and MOPS development is described.

A. Reference ARAIM ADD and MOPS

We will update the H-ARAIM reference algorithm using the parameters 𝑛 𝑒𝑠,ℎ𝑚𝑖 and 𝑛 𝑒𝑠,𝑓𝑎 , and the upper bound given in Sections II or III. For the monitored hypotheses, we will inflate the probabilities by 𝑛 𝑒𝑠,ℎ𝑚𝑖 and 𝑛 𝑒𝑠,𝑓𝑎 respectively for the HMI and FA probabilities. Using the notations in [START_REF] Wg-C | EU-US Cooperation on Satellite Navigation Working Group C ARAIM Technical Subgroup Milestone Report 2[END_REF], the containment used for the test thresholds will be now given by:

𝐾 𝑓𝑎,𝑒𝑎𝑠𝑡 = 𝐾 𝑓𝑎,𝑛𝑜𝑟𝑡ℎ = 𝑄 -1 ( 𝑃 𝑓𝑎_ℎ𝑜𝑟 4𝑁 𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑠 𝑛 𝑒𝑠,𝑓𝑎 ) (32) 
The equation defining the PL for coordinate 𝑐 will be:

2𝑄 ̅ ( 𝑃𝐿 𝑐 -𝑏 𝑐 (0) 𝜎 𝑐 (0) ) + ∑ 𝑃 𝑓𝑎𝑢𝑙𝑡,𝑘 𝑄 ̅ 𝑁 𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑠 𝑘=1 ( 𝑃𝐿 𝑐 -𝑇 𝑘,3 -𝑏 𝑐 (𝑘) 𝜎 𝑐 (𝑘) ) = 𝑃𝐻𝑀𝐼 𝑐 𝑛 𝑒𝑠,ℎ𝑚𝑖 (1 - 
𝑃 𝑓𝑎𝑢𝑙𝑡 𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 𝑃 𝑉𝐸𝑅𝑇 +𝑃 𝐻𝑂𝑅 ) (33) 
The computation of 𝑃 𝑓𝑎𝑢𝑙𝑡 𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 is modified by using the probabilities of having a primary fault in the exposure time instead of the state probabilities. The probability of a primary event 𝑃 𝑒𝑣𝑒𝑛𝑡,𝑘 (𝑇 𝑒 ) (satellite or constellation fault) happening in the exposure time is given by:

𝑃 𝑒𝑣𝑒𝑛𝑡,𝑘 (𝑇 𝑒 ) = 𝑟 𝑘 𝑇 𝑚,𝑘 (1 + 𝑇 𝑒 𝑇 𝑚,𝑘 ) (34) 
Once 𝑃 𝑠𝑎𝑡 and 𝑃 𝑐𝑜𝑛𝑠𝑡 are replaced with this expression, the method to compute 𝑃 𝑓𝑎𝑢𝑙𝑡 𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 remains unchanged. More details on these proposed updates can be found in [START_REF] Tsg | WG-C ARAIM TSG Reference Airborne Algorithm Description Document (ADD)[END_REF]. The default values for 𝑛 𝑒𝑠,ℎ𝑚𝑖 and 𝑛 𝑒𝑠,𝑓𝑎 will be 360.

B. Performance Simulations

In order to assess the impact of this approach on ARAIM performance, we evaluated H-ARAIM coverage using both the reference ADD [START_REF] Tsg | WG-C ARAIM TSG Reference Airborne Algorithm Description Document (ADD)[END_REF] and the modification proposed in this paper.

The following settings were used:

-User: 24 h every 300s with a 10-by-10 degree grid -Receiver: PHMI = 10-7/h, PFA = 5x10-7/h -Constellations: Almanacs from [START_REF] Wg-C | EU-US Cooperation on Satellite Navigation Working Group C ARAIM Technical Subgroup Milestone Report 2[END_REF] and [START_REF] Wg-C | EU-US Cooperation on Satellite Navigation Working Group C ARAIM Technical Subgroup Milestone Report 3[END_REF] for dual frequency GPS and Galileo The ISM parameters were set as specified in Table V.

H-ARAIM performance is given in Table VI in terms of coverage of 99.5% availability [START_REF] Tsg | WG-C ARAIM TSG Reference Airborne Algorithm Description Document (ADD)[END_REF]. For the degraded scenario 23-23, the drop in performance is significant. But, for other scenarios including the nominal 24-24 scenario, the modification proposed in this paper maintains a high coverage performance while properly accounting for risks over the exposure period. V. CONCLUSION This paper has evaluated the mapping of performance requirements for continuity and integrity at the operational level to the ARAIM algorithm level. It is recommended that the number of effectively independent samples be used at the algorithm level to correctly ensure requirements are met.

Existing requirements have been interpreted as minimum requirements in this work to avoid unnecessary additional restrictions [START_REF] Rtca | Mininum Operational Performance Standards for Global Positioning System/Wide Area augmentation System Airborne[END_REF]. Strict upper bounds of 360 for RNP and 25 for LPV have been derived under that approach, along with techniques to determine lower values under certain assumptions and receiver implementations. Further reductions may be feasible with increased restrictions on the assumed model or algorithm choices. To simplify further, we exploit the formula for the sum of a geometric series,

∑ 𝛼 ℓ-1 = 1-𝛼 𝐿 1-𝛼 𝐿 ℓ=1 (B.9)
Then, after some algebra, (B.9) becomes

𝑃 ℎ𝑚𝑖∩𝐻 𝑘 (𝑛) = 1 1-𝛼 { (1 -𝛼 𝑛 ) [ 1 - 1 𝑚(1-𝛼) ] + 𝑛 𝑚 } 𝑃 ℎ𝑚𝑖∩𝐻 𝑘 (1) (B.10)

Appendix C: Derivations for Composite Faults

As shown in Appendix B, the number of effective samples is a function of the mean time to detect. For simultaneous faults, it is more adequate to label this quantity the mean fault duration, since the ground segment might not necessarily detect the composite fault, but by notifying one of the faults forming the composite fault, it will stop the composite fault.

Let us consider a composite fault 𝑘 composed of the primary faults 𝑘 1 , … , 𝑘 𝑞 . We show that the mean time to detect 𝑇 𝑚,𝑘 of this is given by:

𝑇 𝑚,𝑘 = (∑ 1 𝑇 𝑚,𝑘 𝜈 𝑞 𝜈=1 ) -1 (C.1)
The fault rate corresponding to this composite fault is given by:

𝑟 𝑘 = 𝑝 𝑓𝑎𝑢𝑙𝑡,𝑘 ∑ 1 𝑇 𝑚,𝑘 𝜈 𝑞 𝜈=1 (C.2)
where 𝑝 𝑓𝑎𝑢𝑙𝑡,𝑘 is the state probability of the composite fault (and is specified in [START_REF] Tsg | WG-C ARAIM TSG Reference Airborne Algorithm Description Document (ADD)[END_REF]). A consequence of this formula is that the probability of fault 𝑘 in an interval of length 𝑇 is given by: 𝑝 𝑓𝑎𝑢𝑙𝑡,𝑘 (𝑇) = (1 + 𝑇 ∑ 

Proof:

Let us consider two events 1 and 2, with rates 𝑟 1 and 𝑟 1 and mean time to notify 𝑇 𝑚,1 and 𝑇 𝑚,1 . In order to determine the rate of the combined fault, let us consider the probability that the fault appears in an interval Δ𝑡. We define 𝑃 𝑘 as the probability that event 𝑘 is present at a given time. We have the relationship:

𝑃 𝑘 = 𝑟 𝑘 𝑇 𝑚,𝑘 (C.7)
There can be three mechanisms for the composite fault to appear:

-fault 1 was already present and 2 starts in the infinitesimal interval Δ𝑡 , or -fault 2 was already present and 1 starts in the infinitesimal interval Δ𝑡 both faults 1 or 2 appear in the interval Δ𝑡

The probability of 1 and 2 first occurring simultaneously in the interval Δ𝑡 is therefore:

𝑃(events 1&2 in [0, ∆𝑡]) = 𝑃 1 𝑟 2 ∆𝑡 + 𝑃 2 𝑟 1 ∆𝑡 + (𝑟 1 ∆𝑡)(𝑟 2 ∆𝑡) (C.8)
To obtain the rate, we divide this expression by ∆𝑡 and let it tend to 0: Data provided by the Boeing Company from flight tests conducted with a 787 aircraft was used to create average autocorrelation models for multipath and receiver noise [START_REF] Pervan | Test Statistic Auto-and Cross-correlation Effects on Monitor False Alert and Missed Detection Probabilities[END_REF].

𝑟 12 =
Raw GPS L1 code-minus-carrier data, with ionospheric effects removed, was analyzed to produce these models. 
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 12 Figure 1: Loss of Integrity

  𝑃 𝑓𝑎 : Probability of any FA event over an exposure interval 𝑇 𝑒 𝑃 𝑓𝑎 (𝑛 𝑑 , 𝐻 0 relate to the integrity: Fault Hypothesis 𝑘 : The condition of a fault event, indexed by 𝑘, following the airborne algorithm function, denoted by 𝐻 𝑘 and by 𝐻 𝑘,𝑖 for specifically at epoch 𝑖 Positioning Failure (PF): The presence of a positioning error exceeding the protection level.

  𝑃 ℎ𝑚𝑖 (𝑛, 𝐻 𝑘 ) ≤ ∑ 𝑃(𝐻𝑀𝐼 𝑗 , 𝐻 𝑘,𝑗 ) ≤ 𝑛 𝑗=𝑛 𝑗=1 𝑃 ℎ𝑚𝑖 (𝑛, 𝐻 𝑘,1 ) (8) And therefore: 𝑛 𝑒𝑠,ℎ𝑚𝑖,𝑘 (𝑛, 𝐻 𝑘 ) = 𝑃 ℎ𝑚𝑖 (𝑛,𝐻 𝑘 ) 𝑃 ℎ𝑚𝑖 (1,𝐻 𝑘,1 )
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 5357 Figure 5: Number of effectively independent samples for integrity vs. 𝑇 𝑒 for RNP 0.1/0.3

  ): 𝑃 ℎ𝑚𝑖 (𝑛 𝑠 , 𝐻 𝑘 ) = 𝑟 𝑘 (𝑇 𝑚,𝑘 + 𝑇 𝑒 ) = = 𝑟 𝑘 𝑇 𝑚,𝑘 + 𝑟 𝑘 𝑇 𝑒 = 𝑟 𝑘 𝑇 𝑚,𝑘 (1 + 𝑇 𝑒 𝑇 𝑚,𝑘 )

Figure 8 :

 8 Figure 8: Sum of latent fault and fault during exposure interval III. SPECIFIC ANALYSIS

Figure 9 :

 9 Figure 9: Gauss Markov Process Autocorrelation Discrete GMP samples of unit variance may be generated by. 𝑥 𝑖+1 = 𝑒 -𝛽𝑇 𝑥 𝑖 + 𝑤 𝑖 (19) where: 𝑥 0 is the initial value following a standard Gaussian distribution 𝑥 𝑖 is a GMP variable at epoch 𝑖 𝑤 𝑖 is a white noise sequence with variance (1 -𝑒 -2𝛽𝛥𝑡 ) 𝛽 is the reciprocal time constant of the process 𝑇 is a time interval between adjacent two 𝑥 's ARAIM's ionosphere-free smoothed pseudorange error model contains three terms relating to the Signal-In-Space (SIS), tropospheric and user multipath and noise errors. The autocorrelation function is then: 𝑒 𝑢𝑒𝑟𝑒 = 𝑒 𝑠𝑖𝑠 + 𝑒 𝑡𝑟𝑝 + 𝑒 𝑢𝑠𝑟 (20)

Figure 10

 10 Figure 10 shows false alert probability as a function of the normalized detection threshold for RNP 0.1&0.3, where 𝑇 𝑒 =1 hour (𝑛 = 360). The blue curve shows 𝑃 𝑓𝑎 for a single test over the exposure time, and the red curve shows the result assuming 360 independent tests. The black curves show the results using equation (2) (solid line) and direct Monte Carlo simulation (dotted line). Setting the normalized threshold at 5.33, (𝑃 𝑓𝑎 = 10-7 for a single test), leads to a false alarm probability of 10-5 over one hour. To achieve 𝑃 𝑓𝑎 = 10-7 over the entire hour requires a threshold to 6.15. Figures 11 and 12 show these results in terms of the number of effectively independent samples for continuity over 𝑇 𝑒 = 3600s with 𝑇 𝑎 = 10s for RNP, and over 𝑇 𝑒 = 15s with 𝑇 𝑎 = 6s for LPV.
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 107 Figure 10: Probability of false alert for RNP 0.1/0.3 versus normalized threshold using 'average' GMP

  The right-hand side varies as a function of the prior probability of the fault hypothesis 𝑝 𝑓𝑎𝑢𝑙𝑡,𝑘 , the computed protection level 𝑃𝐿 𝑐 and risk allocation. Employing the definition for 𝑛 𝑒𝑠 given in Section II.C leads to the following, with 𝑥 ̂𝑐,𝑖(𝑘) the fault tolerant subset position error at epoch 𝑖 within the exposure interval of duration 𝑇 𝑒 : >𝐾 𝑚𝑑,𝑐,𝑘 )
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 8 Figure 8 -Single GMP 𝑛 𝑒𝑠,ℎ𝑚𝑖 (β = 0.01 i.e. τ = 100s)
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 9310 Figure 9: Number of effectively independent samples for integrity vs. 𝑃 ℎ𝑚𝑖|𝐻 𝑖 for RNP 0.1/0.3

  left-hand side of (26) is the normalised position error of the full-set solution, whilst the right side is the normalised protection level, 𝐿 𝑐 = 𝑃𝐿 𝑐 𝜎 𝑐 (0)

  results shown in Figure are comparable to Figure such that the bounding method has little impact of on the 𝑛 𝑒𝑠,ℎ𝑚𝑖 although the denominator in (31) is significantly smaller.

Figure 11 :

 11 Figure 11: Dual GMP 𝑛 𝑒𝑠,ℎ𝑚𝑖 (𝛽 = 0.01)

Figure 12 .

 12 Figure 12. VPE for a flight conducted on October 31, 2017.

Figure 13 .

 13 Figure 13. Empirical number of effective samples as measured over 23 flights.

  Figure D.1 shows the sample means and standard deviations binned by satellite elevation at 5 degrees of resolution. The results suggest that on average it is reasonable to assume a zero-mean distribution with a standard deviation of σ U ≈ 0.4 m for all elevations for raw code multipath and receiver noise.

Figure D. 1 :

 1 Figure D.1: Boeing 787 Flight Data: Airborne Mean and Standard Deviation Figure D.2 shows a composite of autocorrelation traces of the flight data. A number of traces with long correlation times are clearly evident; these are caused by antenna group delay and must be accounted for in the autocorrelation model. Figure D.3 consolidates the autocorrelation data into empirical cumulative distribution functions for a number of discrete lag times. The median user-error time constant is approximately τ U ≈ 14 sec. Raw multipath and noise is affected by carrier-smoothing of the code with filter time constant τ F . (The typically assumed filter time constant is τ F = 100 sec, but it may differ for ARAIM.) The resulting autocorrelation function for the smoothed code error is: 𝑅 𝑈 (𝑡) = 𝜅 𝜎 𝑀 2 𝜏 𝑈 𝜏 𝐹 2 -𝜏 𝑈 2 ( 𝜏 𝐹 𝑒 -|𝑡| 𝜏 𝐹 ⁄ -𝜏 𝑈 𝑒 -|𝑡| 𝜏 𝑈 ⁄ ) (D.1)

Figure D. 2 :

 2 Figure D.2: Boeing 787 Flight Data Autocorrelation Traces

  Figure D.4 (left) sows the average GPS satellite elevation at different user latitudes. The global mean (i.e., the average value of the curve) is 32.4 deg. The corresponding value at that elevation on Figure D.4 (right) is σ T ≈ 0.22 m.

Figure D. 4 :

 4 Figure D.4: Average elevations of GPS satellites (left) and residual tropospheric error vs. elevation (right)

Figure D. 6

 6 Figure D.6 shows the history of 95% satellite ranging error due to satellite orbit and clock errors. The colored lines are the results for individual satellites. The heavy black curve is the average across all satellites. Currently, the average 95 % error value is approximately 1 m, so we use σ S ≈1 m.

Figure D. 5 :

 5 Figure D.5: Example autocorrelation functions for radialminus-clock error for two GPS satellites with different clock types

TABLE I .

 I SIGNAL-IN-SPACE INTEGRITY REQUIREMENTS

	Operation	Integrity	Requirements TTA	Continuity
	En-route, NPA	1-10-7/h	10s	1-10-4/h to 1-10-8/h
	Approach	1-10-7 in any approach	6s	1-10-6 per 15s

  . For analysis purposes, we nondimensionalize time by 𝑇 𝑎 . We define: 𝑛 ≜ The purpose of this paper is to relate continuity and integrity requirements from the operational level to the receiver level.

	𝑇 𝑒 𝑇 𝑎	, 𝑚 ≜	𝑇 𝑚 𝑇 𝑎	.
		Figure 3: Exposure timeline Te
	C. Event Definitions		

TABLE II

 II 

		.	TEMPORAL PARAMETERS
	Name	Description		Value for	Value for LPV
				RNP
	𝑇 𝑒	Operation Exposure time	3600s	150s for integrity
					15s for
					continuity
	𝑇 𝑎	Required Time to Alert	10s	6s
	𝑇 𝑚	Notify (MTTN) CSP monitor Mean Time To	GPS 3600s for	3600s for GPS
	𝑇 𝑚,𝑘	Derived MTTN for fault hypothesis k based on	
		broadcast parameters (c.f.	
		Appendix C)		
	𝑇 𝑑	exclusion (FDE) interval Receiver fault detection and	0.2s-10s	0.2s-6s
	𝑇 𝑠	Receiver PVT output interval	0.2s-1s	0.2s-1s
	𝑛	exposure window Number of TTA periods per	360	25
	𝑛 𝑑	Number of FDE samples per exposure window	360-18000	25-750 for integrity
	𝑛 𝑠	Number of PVT samples per exposure window	3600-18000	150-750 for integrity
	𝑛 𝑑𝑎	TTA Number of FDE samples per	1-50	1-30
	𝑛 𝑠𝑎	TTA Number of PVT samples per	10-50	6-30
	𝑚	MTTN Number of TTA periods per	360	25
	τ	constant Code-Carrier smoothing time	100s	100s

  grows as, 𝑇 𝑚,𝑘 , the MTTN, decreases but is offset by the single epoch probability, as 𝑟 𝑘 𝑇 𝑚,𝑘 is also scaled appropriately.𝑃 ℎ𝑚𝑖 (𝑛 𝑠 , 𝐻 𝑘 ) = 𝑛 𝑒𝑠,ℎ𝑚𝑖,𝑘 (𝑛 𝑠 )𝑃 ℎ𝑚𝑖 ( 1, 𝐻 𝑘,1 )

	= (1 +	𝑇 𝑒 𝑇 𝑚,𝑘

) 𝑟 𝑘 𝑇 𝑚,𝑘 ≅ 𝑟 𝑘 𝑇 𝑒

[START_REF] Bang | Sample Temporal Correlation Effect on PHMI[END_REF] 

In the opposing case, as 𝑇 𝑚,𝑘 grows, the risk increases linearly for 𝑟 𝑘 𝑇 𝑚,𝑘 ≪ 1. So for large 𝑇 𝑚,𝑘 : 𝑃 ℎ𝑚𝑖 (𝑛 𝑠 , 𝐻 𝑘 ) = 𝑛 𝑒𝑠,ℎ𝑚𝑖,𝑘 (𝑛 𝑠 )𝑃 ℎ𝑚𝑖 ( 1, 𝐻 𝑘,1 ) = (1 + 𝑇 𝑒 𝑇 𝑚,𝑘 ) 𝑟 𝑘 𝑇 𝑚,𝑘 ≅ 𝑟 𝑘 𝑇 𝑚,𝑘

TABLE III .

 III AVERAGE AUTOCORRELATION FUNCTION VALUES (INCLUDING RATIO FOR 𝑇 𝑎 =10 SEC)

	Avg. Vals	SIS	TROPO	USER	TOTAL
	𝑅(0) [𝑚 2 ]	0.25	0.22	0.13	0.43
	𝛼 (∆𝑡 =	0.9987	0.9945	0.9724	0.9902
	10𝑠)				
	𝛽	1.3e-4	5.5e-4	2.8e-3	9.8e-4
	𝜏	7700	1800	360	1000

TABLE IV .

 IV MAX 𝑛 𝑒𝑠,ℎ𝑚𝑖 RESULTS FOR RNP 0.1/0.3

		Black	Green	Red
	𝑛 𝑑	360	1800	9000
	𝑛 𝑠	360	1800	9000
	Max(𝑛 𝑒𝑠 ) β = 0.001: 0.01	250	100	75

TABLE V .

 V ISM PARAMETERS USED IN COVERAGE SIMULATIONS

	TABLE VI.	EFFECT OF PROPOSED MODIFICATIONS ON COVERAGE
	(DEFINED AS THE PERCENTAGE OF USERS WITH 100% AVAILABILITY) FOR 6
		SCENARIOS		
	Constellation	URA = 1 m		URA = 2.4 m
	configuration				
	Approach	ARAIM	Proposed	ARAIM	Proposed
		ADD	modifications	ADD	modifications
		v3		v3	
	GPS 24	48.0%	39.48%	33.37%	20.26%
	GPS 27	79.5%	71.62%	65.81%	53.29%
	GPS 23 -Galileo 23 90.08%	51.11%	83.48%	44.38%
	GPS 24 -Galileo 24 98.85%	96.37%	97.56%	94.39%
	GPS 27 -Galileo 27 99.94%	99.2%	99.94%	98.88%
					Parameter Definition	GPS	Galileo Unit
					𝑟 𝑠𝑎𝑡	Constellation fault rate	1e-8	1e-4	1/hour
					𝑟 𝑐𝑜𝑛𝑠𝑡	Satellite fault rate	1e-5	1e-5	1/hour
					𝑀𝑇𝑇𝑁	fault Mean-Time-To-Notify user of	1	1	hours
					𝜎 𝑈𝑅𝐴	Scale factor for URA	1	1	-
					𝜎 𝑈𝑅𝐸	Scale factor for URA	1	1	-
					𝑏 𝑛𝑜𝑚0	Additive nominal bias bound	(DF) 0.75	(DF) 0.75	meters
						0 (SF)	0 (SF)
					𝛾 𝑛𝑜𝑚	Scale factor for bias	0	0	-

  𝑃 ℎ𝑚𝑖∩𝐻 𝑘 (𝑛) = ∑ ∑ 𝑃 𝐶𝑆𝑃|𝐻 𝑘 (𝜇 | 𝐻 𝑘 (𝑖)) 𝑃 ℎ𝑚𝑖|𝐻 𝑘 (𝜇 | 𝐻 𝑘 (𝑖)) 𝑃 𝐻 𝑘 (𝑖) 𝑃 ℎ𝑚𝑖|𝐻 𝑘 (𝜇 | 𝐻 𝑘 (𝑖)) = 𝑃 ℎ𝑚𝑖|𝐻 𝑘 (1 -𝑃 ℎ𝑚𝑖|𝐻 𝑘 ) 𝜇-𝑖 (B.5) where (1 -𝑃 ℎ𝑚𝑖|𝐻 𝑘 ) 𝜇-𝑖 is the probability that 𝐻𝑀𝐼 onset did not occur before time μ given fault onset at time 𝑖. This relation is exact if the conditional 𝐻𝑀𝐼 events are independent over TTA intervals and conservative if positively correlated, as is to Noting that 𝑃 𝐻 𝑘 (𝑖) = (𝑇 𝑎 /𝑇 𝑚 )𝑃 𝐻 𝑘 (1) = 𝑃 𝐻 𝑘 (1)/𝑚, we have

					be expected. Substituting (B.3) and (B.5) into (B.2) it follows
					that:			
						𝑃 ℎ𝑚𝑖∩𝐻 𝑘 (𝑛) = ∑ ∑ 𝑛 𝜇=𝑖 𝑛 𝑖=1 𝑃 ℎ𝑚𝑖|𝐻 𝑘 ) 𝜇-𝑖 𝑃 𝐻 𝑘 (𝑖) 𝑒𝑥𝑝 (-	𝜇-𝑖 𝑚	) 𝑃 ℎ𝑚𝑖|𝐻 𝑘 (1 -(B.6)
					To simplify notation, define 𝛼 ≜ exp (-𝑚-1 𝑚 (1 -𝑃 ℎ𝑚𝑖|𝐻 𝑘 )	1 𝑚	) (1 -𝑃 ℎ𝑚𝑖|𝐻 𝑘 ) ≈
					𝑃 ℎ𝑚𝑖|𝐻 𝑘 {∑ 𝑛 𝜇=1	𝛼 𝜇-1 𝑃 𝐻 𝑘 (1) +	∑ ∑ 𝑛 𝜇=𝑖 𝑛 𝑖=2	𝑃 ℎ𝑚𝑖∩𝐻 𝑘 (𝑛) = 𝛼 𝜇-𝑖 𝑃 𝐻 𝑘 (𝑖) }
									(B.7)
	𝑛 𝑖=1	𝑛 𝜇=𝑖						
	(B.2)							
	𝑃 𝐶𝑆𝑃|𝐻 𝑘 (𝜇|𝑖) = 𝑒𝑥𝑝 (-	𝜇-𝑖 𝑚	)	(B.3)	𝑃 ℎ𝑚𝑖|𝐻 𝑘 𝑃 𝐻 𝑘 (1) {∑ 𝑛 𝜇=1	𝛼 𝜇-1 +	1 𝑚	𝑃 ℎ𝑚𝑖∩𝐻 𝑘 (𝑛) = ∑ ∑ 𝛼 𝜇-𝑖 𝑛 𝜇=𝑖 𝑛 } 𝑖=2 (B.8)
	Using an exponential model and since the conditional 𝐻𝑀𝐼			
	onset times are mutually exclusive, using chain rule:				
	𝑃 ℎ𝑚𝑖|𝐻 𝑘 (𝜇 | 𝐻 𝑘 (𝑖)) = 𝑃 ℎ𝑚𝑖|𝐻 𝑘 (𝜇, 𝜇 -1 ̅̅̅̅̅̅̅ , 𝜇 -2 ̅̅̅̅̅̅̅ , … , 𝑖̅ | 𝐻 𝑘 (𝑖))				
	= 𝑃 ℎ𝑚𝑖|𝐻 𝑘 (𝜇 | 𝜇 -1 ̅̅̅̅̅̅̅ , 𝜇 -2 ̅̅̅̅̅̅̅ , … , 𝑖 ̅, 𝐻 𝑘 (𝑖))𝑃 ℎ𝑚𝑖|𝐻 𝑘 (𝜇 -1 ̅̅̅̅̅̅̅ | 𝜇 -2 ̅̅̅̅̅̅̅ , … , 𝑖̅ , 𝐻 𝑘 (𝑖))			
	⋯ 𝑃 ℎ𝑚𝑖|𝐻 𝑘 (𝑖 + 1 ̅̅̅̅̅̅ | 𝑖̅ , 𝐻 𝑘 (𝑖))𝑃 ℎ𝑚𝑖|𝐻 𝑘 (𝑖̅ | 𝐻 𝑘 (𝑖))			
					(B.4)			
	Assuming that conditional probability of 𝐻𝑀𝐼 onset			
	𝑃 ℎ𝑚𝑖|𝐻 𝑘 is the same for any TTA interval, we obtain:				

  𝑃 1…𝑞\𝑘 is the state probability of all 𝑞 events except 𝑘.

	lim ∆𝑡→0	𝑃 1 𝑟 2 ∆𝑡 + 𝑃 2 𝑟 1 ∆𝑡 + (𝑟 1 ∆𝑡)(𝑟 2 ∆𝑡) ∆𝑡	= 𝑃 1 𝑟 2 + 𝑃 2 𝑟 1
							(C.9)
	Using Equation (C.7), we can write:
	𝑟 12 = 𝑃 1 𝑟 2 + 𝑃 2 𝑟 1 = 𝑃 1 𝑃 2	1 𝑇 𝑚,1	+ 𝑃 2 𝑃 1	1 𝑇 𝑚,2
								= 𝑃 2 𝑃 1 (	1 𝑇 𝑚,1	+	1 𝑇 𝑚,2	)
								(C.10)
	To compute the mean fault duration of the composite fault
	𝑇 𝑚,12 , we consider the probability of having 1 and 2 at a given
	time. Using Equation (C.7) again, we have:
	𝑃 12 = 𝑟 12 𝑇 𝑚,12		(C.11)
	Combining Equations (C.10) and (C.11), we get:
	𝑇 𝑚,12 = (	1 𝑇 𝑚,1	+	1 𝑇 𝑚,2	)	-1	(C.12)
	This result is generalized to 𝑛 events either by induction or by
	rewriting Equations (C.8) and (C.9) as follows:
	𝑃(events 1& … &𝑞 in [0, ∆𝑡])
				= 𝑃 1…𝑞\𝑞 𝑟 𝑞 ∆𝑡 + 𝑃 1…𝑞\𝑞-1 𝑟 𝑞-1 ∆𝑡
				+ ⋯ 𝑃 1…𝑞\1 𝑟 1 ∆𝑡 + 𝑂(∆𝑡 2 )
		(C.13)			
	where We have:						
	𝑃 1…𝑞\𝑘 𝑟 𝑘 = 𝑃 1..𝑞	1 𝑇 𝑚,𝑘	= 𝑃 1 . . 𝑃 𝑞	1 𝑇 𝑚,𝑘	(C.14)
	As a consequence, Equation (C.10) generalizes to:
	𝑟 1..𝑞 = 𝑃 1 . . 𝑃 𝑞 (	1 𝑇 𝑚,1	+ ⋯ +	1 𝑇 𝑚,𝑞	)	(C.15)
	And the mean fault duration is given by:
	𝑇 𝑚,1..𝑞 = (	1 𝑇 𝑚,1	+ ⋯ +	1 𝑇 𝑚,𝑞	)	-1	(C.16)
	Appendix D: Autocorrelation Model
	For the continuity risk analysis, we are interested in "average,"
	not worst-case error models. The contributors to nominal test
	statistic error are the following: multipath and noise at the user
	aircraft, satellite orbit and clock error, and residual (post
	correction) tropospheric error. In parts D.1, D.2 and D.3, these
	three sources of error are addressed. In D.4 the models are then
	extended to worst-case conditions
	D.1 User Multipath and Receiver Noise

TABLE D .

 D I AUTOCORRELATION RANGES FOR LOW, MEDIUM AND HIGH ELEVATION SATELLITES

	Elevation	low	med	high	low	med	High
	𝛼	0.9945	0.9945	0.9950	0.9938	0.9873	0.9829
	(∆𝑡 =						
	10𝑠)						
	𝛽	5.6e-4	5.6e-4	5.0 e-4	6.1 e-4	12.9 e-4	17.3 e-4
	𝜏	1800	1800	2000	1600	780	580

Appendix A: Markov Chain Derivation for Phmi

The joint probability of 𝐻𝑀𝐼 ∩ 𝐻 𝑘 at any time during the exposure interval can be computed using a Markov chain with three states: (0) nominal/fault-free, (1) 𝐻 𝑘 , and ( 2 𝑃 0 (𝑖) can be eliminated using the constraint, 𝑃 0 (𝑖) = 1 -𝑃 1 (𝑖) -𝑃 2 (𝑖).