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Abstract— The Service Evolutions Sub-Group (SESG) of 

Working Group C, the joint technical committee formed from U.S 

and E.U public bodies for the purpose of promoting GPS-Galileo 

applications, has spent the past years working on a number of 

topics relating to Advanced RAIM development and its early 

stages of standardization. This paper addresses the mapping of 

integrity and continuity requirements from the operational (i.e. 

per hour) to the algorithmic (per sample). It provides a method to 

rigorously account for the impact on integrity risk of multiple 

exposures to hazardously misleading events over time, and for the 

impact on false alert probability of multiple detection tests over 

time. This analysis leads to the estimation and bounding of the 

“number of effectively independent samples”, or more concisely 

the “number of effective samples (NES), for integrity and 

continuity within their respective exposure windows.  

Keywords— integity, continuity, Advanced RAIM 

I.  INTRODUCTION 

This paper presents a framework for the treatment of the 
number of effectively independent samples over an exposure 
window is developed. The paper is split into three parts.  

Section II of this paper describes a generic process to 
determine the number of effective samples without assumptions 
regarding the temporal correlation properties of the errors and 
without assumptions regarding the actual implementation of the 
airborne algorithm.  Like RAIM, the initial baseline ARAIM 
airborne algorithms (e.g. in the ARAIM Milestone 3 report) 
assumed a single sample, allocating the full continuity and 
integrity risks required at the operational level to the algorithm 
at each sample. While this approach is a reasonable 
approximation for some phases of flight given the observed error 
margins, it may underestimate the effect of temporal exposure, 
especially for long exposure times.  In Section II, key definitions 
are given of the critical events, namely that a false detection 
event occurs when, under the fault-free state, starting at any 
sample within the exposure window, the false detection 
condition is true for at least the time to alert (TTA) duration. 
Similar, a hazardously misleading information (HMI) event 
occurs when, under the fault hypothesis, starting at any sample 
within the exposure window, both the no detection condition and 
the positioning failure condition are true sequentially for the 
TTA duration. The number of effective samples (NES) is then 
defined as:  (a) for continuity, the ratio of the probability of false 

alert (FA) during an operation over the probability of FA at a 
single epoch (b) for integrity, the ratio of the risk of hazardously 
misleading information (HMI) during an operation over the risk 
of HMI at a single epoch.  Following these definitions, upper 
bounds on NES are developed.  

Section III provides refinements of the NES analysis 
accounting for the temporal behavior of the error sources and 
variability of the receiver algorithm implementation. The impact 
of temporal correlation of the input measurements is addressed 
through simulation employing a First Order Gauss Markov 
Process, followed by analysis of a real data collection.  

Section IV discusses the consequences of this work for the 
Airborne Definition Document (ADD) and a performance 
evaluation is presented.  

II.  GENERIC ANALYSIS 

A. Framework and Definitions 

1) Requirements Interpretation 

In order to proceed, it is necessary to clarify our interpretation 

of the requirements, both at the SARPs level (SARPs stands for 

ICAO’s Standards and Recommended Practices) and at the 

constellation service provider (CSP) commitments level.  

2) SARPs 

This section will treat the definitions and statements relating to 

integrity and continuity as made in the SARPs [8].  

Integrity is a measure of the trust that can be placed in the 

correctness of the information supplied by the total system. 

Integrity includes the ability of a system to provide timely and 

valid warnings to the user (alerts).  

Continuity is the capability of the system to perform its function 

without unscheduled interruptions during the intended 

operation.  

Time-To-Alert (TTA) is the maximum allowable time elapsed 

from the onset of the navigation system being out of tolerance 

until the equipment enunciates the alert. 

 

We make the following interpretations.  Loss of integrity occurs 

when trust is lost for a period that exceeds TTA within the 

period of operation (see Figure 1). Loss of continuity occurs 

when an alert condition persists for a duration exceeding TTA.  



TABLE I.  SIGNAL-IN-SPACE INTEGRITY REQUIREMENTS  

Operation 
Requirements 

Integrity TTA Continuity 

En-route, 

NPA 
1-10-7/h 10s 1-10-4/h to 1-10-8/h 

Approach 1-10-7 in any approach 6s 1-10-6 per 15s 

 

 

For an approach, the period of operation, here equivalent to the 

exposure time, is 150s for integrity purposes and 15s for the 

final approach segment critical to continuity. For en-route flight 

and non-precision approach (NPA), we assume that the 

exposure period for both integrity and continuity is fixed at one 

hour.  We made this assumption considering two possible 

interpretations of the requirements:  

 

1 - The period of operation is taken to be fixed at one hour, 

therefore fixing the exposure window over which to assess 

integrity, or 

2 - The requirement expresses a risk rate, such that a variable 

period of operation can be considered, and the risk requirement 

is proportional to the exposure window length i.e. for rate 𝑟  

and window length 𝑇 the risk is then is then 𝐼(𝑇) ≈ 𝑟 × 𝑇.  

 

Interpretation 1 captures the intent of the requirement in the 

SARPs Table 3.7.2.4-1. Interpretation 2 becomes impractical 

when accounting for non-monitored latent faults.  

 

With regard to Interpretation 2, consider the example of a GPS 

constellation fault, which is assumed a rate of occurrence of 10-

8/h.  Firstly, take the case of values of 𝑇 larger than 1 hour. To 

evaluate 𝑃𝑐𝑜𝑛𝑠𝑡, we must account for the probability of the fault 

being present at the start of the operation or of it occurring 

during the operation. The first is the product of its rate of 

occurrence and its mean time to notify or MTTN (10-8 × 

𝑀𝑇𝑇𝑁), and the second is the product of the rate of occurrence 

and the exposure window length 𝑇. The total probability (10-8) 

therefore is 10-8( 𝑀𝑇𝑇𝑁 + 𝑇). However, as the exposure 

window increases in length, the ratio of this value and 𝐼(𝑇) 

approaches a constant, since 𝑀𝑇𝑇𝑁 become insignificant 

against 𝑇 . Secondly, consider the case of values of 𝑇 smaller 

than 1 hour e.g. 0.1 hours. The requirement is then reduced to  

𝐼(𝑇) < 𝐼(1 ℎ𝑜𝑢𝑟) whilst the probability of a GPS constellation 

fault can never be inferior to 10-8 × 𝑀𝑇𝑇𝑁 . Under this case, it 

therefore becomes impractical to interpret the requirement 

using short exposure windows to handle non-monitored faults.  

 

To conclude, it is proposed to fix the exposure window to a 

practical value of 1 hour thereby adopting Interpretation 1 

above. Once the length of the exposure window is determined, 

then, by definition, the integrity requirement must be met for 

each and every such exposure window. Loss of integrity occurs 

throughout the exposure window if a hazardous condition is 

present without alert for a duration longer than one TTA as 

illustrated in Figure 1 and Figure 2.  

 
Figure 1: Loss of Integrity 

 

 
Figure 2: Loss of Integrity – Discrete Time 

 

3) Service Commitments  

a) GPS Service Commitments  

The GPS service commitments also provide similar definitions 

[9] for the SPS SIS Integrity in terms of a Major Service Failure 

(MSF), expressed as the probability that the SPS SIS's 

instantaneous URE exceeds the SIS URE NTE tolerance (be 

4.42 times the upper bound on the 𝜎𝑈𝑅𝐴) without a timely alert 

being issued.  

 

The GPS service commitment for this value is currently 10-5 per 

satellite per hour, which is employed here as a rate 𝑟𝑠𝑎𝑡. 

Commitments are also made on the CSP’s mean time to notify 

(MTTN) of 1 hour [9]. For a fault hypothesis 𝑘, these quantities 

may be related to the state probability as follows: 

𝑃𝑓𝑎𝑢𝑙𝑡,𝑘 ≅ 𝑟𝑘 ∫ 𝑒
−𝑡

𝑇𝑚 𝑑𝑡
0

−∞
≅ 𝑟𝑘 × 𝑇𝑚,𝑘  (1) 

  

where 𝑟𝑘  is the fault rate and 𝑇𝑚,𝑘 is the MTTN for fault 

hypothesis 𝑘. The rate fault 𝑟𝑘 = 1 𝑀𝑇𝐵𝐹⁄ , where MTBF is the 

Mean Time Between Failure (MTBF). For composite faults, 

both the rate and MTTN may be derived from their counterparts 

broadcast within ISM and derived in Appendix C. A more 

precise computation of the state probability may be given as 

follows, accounting for MTBF and MTTN: 

 

𝑃𝑓𝑎𝑢𝑙𝑡,𝑘 =
𝑀𝑇𝑇𝑁

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑁
=

𝑇𝑚,𝑘
1

𝑟𝑘
+𝑇𝑚,𝑘

=
𝑟𝑘𝑇𝑚,𝑘

1+𝑟𝑘𝑇𝑚,𝑘
≅ 𝑟𝑘𝑇𝑚,𝑘   (2) 

  

b) Galileo Service Commitments  

Integrity is to be developed in future issues of the Galileo 

Service Definition Document (SDD) [10].  

B. Temporal Parameters 

A number of time intervals must be expressed which relate to 

the system requirements, receiver requirements and ISM 

contents [5], [11]. The operation exposure time and required 



TTA are taken from the requirements along with the receiver 

measurement processing and position, velocity, and time (PVT) 

estimation output interval. The CSP monitoring MTTN is set 

here at the default value of GPS, since it is well established, but 

may differ for other constellations. The exposure timeline is 

shown in Figure 3.  Additional terms are provided in Table II. 

For analysis purposes, we nondimensionalize time by 𝑇𝑎.  We 

define:  𝑛 ≜
𝑇𝑒

𝑇𝑎
, 𝑚 ≜

𝑇𝑚

𝑇𝑎
. 

 

  
Figure 3: Exposure timeline Te  

 

C. Event Definitions  

The purpose of this paper is to relate continuity and integrity 

requirements from the operational level to the receiver level.  

TABLE II.  TEMPORAL PARAMETERS 

Name Description Value for 

RNP 

Value for LPV 

𝑇𝑒 Operation Exposure time  3600s 150s for 

integrity 

15s for 
continuity 

𝑇𝑎 Required Time to Alert 10s 6s 

𝑇𝑚 CSP monitor Mean Time To 

Notify (MTTN)  

3600s for 

GPS 

3600s for GPS 

𝑇𝑚,𝑘 Derived MTTN for fault 

hypothesis k  based on 
broadcast parameters (c.f. 

Appendix C) 

  

𝑇𝑑 Receiver fault detection and 

exclusion (FDE) interval  

0.2s-10s 0.2s-6s 

𝑇𝑠 Receiver PVT output interval  0.2s-1s  0.2s-1s 

𝑛 Number of TTA periods per 
exposure window 

360 25 

𝑛𝑑 Number of FDE samples per 

exposure window 

360-18000 25-750 for 

integrity 

𝑛𝑠 Number of PVT samples per 

exposure window 

3600-18000 150-750 for 

integrity 

𝑛𝑑𝑎 Number of FDE samples per 

TTA 

1-50 1-30 

𝑛𝑠𝑎 Number of PVT samples per 

TTA 

10-50 6-30 

𝑚 Number of TTA periods per 
MTTN 

360 25 

τ Code-Carrier smoothing time 

constant 

100s 100s 

 

Fault-Free Hypothesis: The condition of no satellite or 

constellation fault being present, denoted by 𝐻0  and by 𝐻0,𝑖 for 

specifically at epoch 𝑖 
 

False Alert (FA): The detection of a fault under the fault-free 

hypothesis 𝐻0. 

 

False Alert (FA) event:  Sequential FA over all 𝑛𝑑𝑎  FDE 

samples within a period of length 𝑇𝑎  given 𝐻0 . 
 

A receiver may meet the above ‘FA event’ definition by only 

alerting if the FA condition remains true for the 𝑇𝑎  duration. 

 

𝑃𝑓𝑎 : Probability of any FA event over an exposure interval 𝑇𝑒  

𝑃𝑓𝑎(𝑛𝑑 , 𝐻0) = 𝑃{⋃ ⋂ (𝐹𝐴𝑖
𝑗+𝑛𝑑𝑎
𝑖=𝑗 , 𝐻0,𝑖)

𝑛𝑑−𝑛𝑑𝑎
𝑗=1 }  (3) 

  

The following terms relate to the integrity: 

 

Fault Hypothesis 𝑘 : The condition of a fault event, indexed by 

𝑘, following the airborne algorithm function, denoted by 𝐻𝑘  
and by 𝐻𝑘,𝑖   for specifically at epoch 𝑖 
 

Positioning Failure (PF): The presence of a positioning error 

exceeding the protection level. 

 

Positioning Failure (PF) event: Sequential PF over all 𝑛𝑠𝑎 PVT 

samples within a period of length 𝑇𝑎 . 
 

No Detection (ND): The condition that no monitor test statistic 

exceeds its respective threshold at a single sample 𝑖. 
  

No Detection (ND) event: Sequential ND conditions over all 

FDE samples within a period of length 𝑇𝑎 . 
 

Hazardously Misleading Information (HMI): The joint 

presence of both PF and ND conditions.  

 

For cases where 𝑛𝑑 < 𝑛𝑠  , the most recent ND condition is 

paired with the PF condition. 

 

Hazardously Misleading Information (HMI) event:  Sequential 

HMI over all samples within 𝑇𝑎  given fault hypothesis 𝐻𝑘 .  
 

𝑃ℎ𝑚𝑖:  Probability of any HMI event over the exposure interval 

𝑇𝑒. 

 

𝑃ℎ𝑚𝑖(𝑛𝑠, 𝐻𝑘) = 𝑃{⋃ ⋂ (𝐻𝑀𝐼𝑖
𝑗+𝑛𝑠𝑎
𝑖=𝑗 , 𝐻𝑘,𝑖)

𝑛𝑠−𝑛𝑠𝑎
𝑗=1 }  (4) 

 

The above definitions given in (3) and (4) express the 

operational safety metrics employing time indices depicted in 

Figure 4. The metrics evaluated by the airborne algorithm are 

expressed in terms of risk at a single sample, 𝑃𝑓𝑎(1, 𝐻0,1)  and 

𝑃ℎ𝑚𝑖(1, 𝐻𝑘,1) respectively. This leads to the following 

definitions for the effective number of samples: 

 

𝑛𝑒𝑠,𝑓𝑎(𝑛𝑑) =
𝑃𝑓𝑎(𝑛𝑑,𝐻0)

𝑃𝑓𝑎(1,𝐻0,1)
    (5) 

𝑛𝑒𝑠,ℎ𝑚𝑖,𝑘(𝑛𝑠; 𝑛𝑑) =
𝑃ℎ𝑚𝑖(𝑛𝑠,𝐻𝑘;𝑛𝑑)

𝑃ℎ𝑚𝑖(1,𝐻𝑘,1)
   (6) 

 

 
Figure 4: Indices 𝑖 and 𝑗 

 



Note that a weak assumption that the geometry is unchanging 

over the exposure interval is used and that it does not negate the 

validity of the upper bound derived below. 

D. Upper Bounds on the HMI and FA Risks over an Exposure 

Period 

Given these definitions, the maximum allowable interval 

between ARAIM monitor tests is 𝑇𝑎.  If fault detection is 

employed only once per 𝑇𝑎, such that the number of fault 

detection epochs 𝑛𝑑  is equal to the number of TTA periods 𝑛, 

then it is not possible for a FA or an HMI event to happen 

between successive 𝑇𝑎 intervals. The monitor may sample at a 

faster rate, for example at intervals 𝑇𝑠 , but it is not required to 

do so. Therefore, in this section, it is assumed that the fault 

detection function operates at the minimum rate, which is 

conservative with respect to integrity performance.  This 

simplifies the subsequent analysis, and it is the reason for the 

normalization of the other time intervals by 𝑇𝑎 as performed 

above.   

 

Using this simplification, an upper bound on the number of 

effective samples 𝑛𝑒𝑠,ℎ𝑚𝑖,𝑘  as defined in (4) can be obtained:  

 

𝑃ℎ𝑚𝑖(𝑛, 𝐻𝑘) = 𝑃(⋃ (𝐻𝑀𝐼𝑗 , 𝐻𝑘,𝑗)
𝑗=𝑛
𝑗=1 ) ≤ ∑ 𝑃(𝐻𝑀𝐼𝑗 , 𝐻𝑘,𝑗)

𝑗=𝑛
𝑗=1   

(7) 

   

The above equation shows that it is conservative to assume 

𝑛𝑒𝑠,ℎ𝑚𝑖,𝑘 = 𝑛 . One way to see this is by assuming that 

𝑃(𝐻𝑀𝐼𝑗 , 𝐻𝑘,𝑗) = 𝑃ℎ𝑚𝑖(1, 𝐻𝑘,1) (i.e. assuming that 

𝑃(𝐻𝑀𝐼𝑗 , 𝐻𝑘,𝑗)  is independent of time):   

 

𝑃ℎ𝑚𝑖(𝑛, 𝐻𝑘) ≤ ∑ 𝑃(𝐻𝑀𝐼𝑗 , 𝐻𝑘,𝑗) ≤ 𝑛𝑗=𝑛
𝑗=1 𝑃ℎ𝑚𝑖(𝑛, 𝐻𝑘,1)   (8) 

 

And therefore: 

𝑛𝑒𝑠,ℎ𝑚𝑖,𝑘(𝑛, 𝐻𝑘) =
𝑃ℎ𝑚𝑖(𝑛,𝐻𝑘)

𝑃ℎ𝑚𝑖(1,𝐻𝑘,1)
≤ 𝑛 =

𝑇𝑒

𝑇𝑎
   (9) 

 

This bound is valid for both the monitored and un-monitored 

fault hypotheses.  In ARAIM, the majority of fault modes have 

low prior probabilities of occurrence and, therefore, do not need 

to be monitored, in which case 𝑃ℎ𝑚𝑖|𝐻𝑘
= 1. Further details may 

be found in [5], [12].  As seen below, a finer bound exists for 

the non-monitored hypotheses. Note that the exposure intervals 

𝑇𝑒 may be different for integrity (HMI) and continuity (FA). 

Further details and rigorous developments are described in 

Appendices A and B.  

 

The following results are presented as a function of the 

conditional probability of HMI, 𝑃ℎ𝑚𝑖|𝐻𝑘
, or the probability of 

missed detection. Unlike in RAIM, where 𝑃ℎ𝑚𝑖|𝐻𝑘
 is assigned a 

fixed requirement of 10-3, in ARAIM, the integrity risk can be 

allocated dynamically at each sample as a function of the ISM, 

geometry and error models. 𝑃ℎ𝑚𝑖|𝐻𝑘
 values may range from  

10-5  to 1 (the value of 1 is used for unmonitored hypotheses). 

 

The results for RNP 0.1 and 0.3, with 𝑇𝑎 = 10 sec and 𝑇𝑚 = 1 

hour, are shown in Figure 5 for a range of 𝑃ℎ𝑚𝑖|𝐻𝑘
.  The vertical 

axis represents the number of effectively independent samples 

for HMI as a function of the exposure time.  Figure 6 shows the 

results for 𝑇𝑒 = 1 hour as a function of 𝑃ℎ𝑚𝑖|𝐻𝑘
.  The number of 

effectively independent samples for HMI ranges from 2 for 

unmonitored faults to 360, which applies for monitored faults. 

Figure 7 shows the corresponding results for LPV 200, with 

𝑇𝑒 = 150 sec and 𝑇𝑎 = 6 sec.  Here, the number of effectively 

independent samples for integrity ranges from 1 for 

unmonitored faults to 25 for monitored faults.   

 
Figure 5:  Number of effectively independent samples for 

integrity vs. 𝑇𝑒 for RNP 0.1/0.3 

 

 
Figure 5:  Number of effectively independent samples for 

integrity vs. 𝑃ℎ𝑚𝑖|𝐻𝑘
 for RNP 0.1/0.3, for 𝑇𝑒 = 1 h 

 
Figure 7:  Number of effectively independent samples for 

integrity vs. 𝑃ℎ𝑚𝑖|𝐻𝑘
 for LPV 200, for 𝑇𝑒 = 150 sec 

 

Therefore, for the monitored modes during H-ARAIM RNP 0.3 

and RNP 0.1 operations: 

𝑛𝑒𝑠,𝑓𝑎(𝑛𝑑) < (360 𝑅𝑁𝑃) or  (25 𝐿𝑃𝑉)  (10) 

𝑛𝑒𝑠,ℎ𝑚𝑖(𝑛𝑠) < (360 𝑅𝑁𝑃) or  (25 𝐿𝑃𝑉)  (11) 

 



In the case of the non-monitored modes, the effective number 

of samples has a tighter upper bound given by: 

 

𝑛𝑒𝑠,ℎ𝑚𝑖,𝑘(𝑛𝑠) < 1 +
𝑇𝑒

𝑇𝑚,𝑘
    (12) 

 

This is a consequence of the fact that the probability of having 

a fault within the exposure window is given by (see Figure 8): 

𝑃ℎ𝑚𝑖(𝑛𝑠, 𝐻𝑘) = 𝑟𝑘(𝑇𝑚,𝑘 + 𝑇𝑒) = 

= 𝑟𝑘𝑇𝑚,𝑘 + 𝑟𝑘𝑇𝑒 = 𝑟𝑘𝑇𝑚,𝑘 (1 +
𝑇𝑒

𝑇𝑚,𝑘
) (13) 

 

Note that the 𝑇𝑚,𝑘 are derived from the broadcast ISM 

parameters as described in Appendix C.  

 

Note that (12) grows as, 𝑇𝑚,𝑘, the MTTN, decreases but is offset 

by the single epoch probability, as 𝑟𝑘𝑇𝑚,𝑘 is also scaled 

appropriately.  

𝑃ℎ𝑚𝑖(𝑛𝑠, 𝐻𝑘) = 𝑛𝑒𝑠,ℎ𝑚𝑖,𝑘(𝑛𝑠)𝑃ℎ𝑚𝑖( 1, 𝐻𝑘,1) 

= (1 +
𝑇𝑒

𝑇𝑚,𝑘
) 𝑟𝑘𝑇𝑚,𝑘 ≅ 𝑟𝑘𝑇𝑒 (14) 

In the opposing case, as 𝑇𝑚,𝑘 grows, the risk increases linearly 

for 𝑟𝑘𝑇𝑚,𝑘 ≪ 1. So for large 𝑇𝑚,𝑘: 

𝑃ℎ𝑚𝑖(𝑛𝑠, 𝐻𝑘) = 𝑛𝑒𝑠,ℎ𝑚𝑖,𝑘(𝑛𝑠)𝑃ℎ𝑚𝑖( 1, 𝐻𝑘,1) = (1 +

𝑇𝑒

𝑇𝑚,𝑘
) 𝑟𝑘𝑇𝑚,𝑘 ≅ 𝑟𝑘𝑇𝑚,𝑘  (15) 

 
Figure 8: Sum of latent fault and fault during exposure interval  

III. SPECIFIC ANALYSIS  

A. Introduction 

In Section II, an upper bound was given regardless of the 

receiver implementation and error models. Only assumptions 

regarding the provision of the ISM and basic elements of the 

ARAIM design were made. This section includes error 

modelling for a more precise analysis, beginning with a 

treatment of the Gauss Markov Process (GMP). 

B. The Gauss Markov Process (GMP) 

The standard assumption regarding the temporal behaviour of 

error sources in GNSS is the first-order Gauss Markov Process 

[9]. The GMP is parameterised by the process variance 𝜎2   and 

its time constant 𝜏  (the reciprocal time constant is 𝛽). The 

autocorrelation function of the GMP is shown in Figure 9: 

 

𝑅(𝛥𝑡) = 𝜎2𝑒−𝛽𝛥𝑡   (16) 

𝛽 =
1

𝜏
          (17) 

 

For a given 𝛥𝑡, the alpha parameter may also be defined as: 

 

𝛼 =
𝑅(𝛥𝑡)

𝑅(0)
= 𝑒−𝛽𝛥𝑡   (18) 

 
 

 
Figure 9: Gauss Markov Process Autocorrelation 

 

Discrete GMP samples of unit variance may be generated by. 

 

𝑥𝑖+1 = 𝑒−𝛽𝑇𝑥𝑖 + 𝑤𝑖          (19) 

 

where: 

𝑥0 is the initial value following a standard Gaussian 

distribution 

𝑥𝑖 is a GMP variable at epoch 𝑖 
𝑤𝑖 is a white noise sequence with variance (1 − 𝑒−2𝛽𝛥𝑡) 

𝛽 is the reciprocal time constant of the process 

𝑇 is a time interval between adjacent two 𝑥 ’s 

 

ARAIM’s ionosphere-free smoothed pseudorange error model 

contains three terms relating to the Signal-In-Space (SIS),  

tropospheric and user multipath and noise errors. The 

autocorrelation function is then: 

 

𝑒𝑢𝑒𝑟𝑒 = 𝑒𝑠𝑖𝑠 + 𝑒𝑡𝑟𝑝 + 𝑒𝑢𝑠𝑟         (20) 

 

𝑅𝑢𝑒𝑟𝑒 (𝛥𝑡) =
𝑅𝑠𝑖𝑠(𝛥𝑡)+𝑅𝑡𝑟𝑝(𝛥𝑡)+𝑅𝑡𝑟𝑝(𝛥𝑡)

𝑅𝑠𝑖𝑠(0)+𝑅𝑡𝑟𝑝(0)+𝑅𝑡𝑟𝑝(0)
  (21) 

 

C. Number of Effective Samples for Continuity  

It was established in II.D that 𝑛𝑒𝑠,𝑓𝑎(𝑛𝑑) < 360. In this section 

a higher fidelity approach is taken using the GMP, as described 

in III.B. 𝑃𝑓𝑎 is heavily dependent on the test statistic 

autocorrelation function 𝑅(∆𝑡).  An analytical upper bound was 

derived in [4]: 

𝑃𝑓𝑎(𝑛, 𝐾𝑓𝑎)  =   1 − [1 −  2𝛷(−𝐾𝑓𝑎)] { 1 −
𝑃𝛥(𝐾𝑓𝑎)

1− 2𝛷(−𝐾𝑓𝑎)
 }

𝑛−1

  

   (22) 

𝑃𝛥(𝐾𝑓𝑎) ≜
1

𝜋
 exp (−

𝐾𝑓𝑎
2

2
)  acos [

𝑅(∆𝑡)

𝑅(0)
] (23) 

 

where 𝐾𝑓𝑎  is the normalized monitor detection threshold and 

𝛷(𝑥) is the standard cumulative normal distribution function.   

 

In this 𝑃𝑓𝑎 analysis, we use realistic autocorrelation models for 

the various test statistic error contributions.  Because 𝑃𝑓𝑎 



contributes only to continuity risk (not integrity), we use 

“average” (not worst-case) error models (described in 

Appendix D).  A summary of results for 𝑇𝑎 =10 sec (applicable 

to RNP 0.1 and 0.3) is provided in Table III, which leads to 
(∆𝑡 = 10s)= 0.9902, or 𝛽 ≅ 0.001  or 𝜏𝑡𝑜𝑡 ≅ 1000s.. 

TABLE III.  AVERAGE AUTOCORRELATION FUNCTION VALUES 

(INCLUDING RATIO FOR 𝑇𝑎 =10 SEC) 

Avg. Vals SIS TROPO USER TOTAL 

𝑅(0) [𝑚2]  0.25 0.22 0.13 0.43 
𝛼 (∆𝑡 =

10𝑠) 
0.9987 0.9945 0.9724 0.9902 

𝛽 1.3e-4 5.5e-4 2.8e-3 9.8e-4 
𝜏 7700 1800 360 1000 

 

Figure 10 shows false alert probability as a function of the 

normalized detection threshold for RNP 0.1&0.3, where  𝑇𝑒 =1 

hour (𝑛 = 360).  The blue curve shows 𝑃𝑓𝑎 for a single test over 

the exposure time, and the red curve shows the result assuming 

360 independent tests.  The black curves show the results using 

equation (2) (solid line) and direct Monte Carlo simulation 

(dotted line).  Setting the normalized threshold at 5.33, (𝑃𝑓𝑎 = 

10-7 for a single test), leads to a false alarm probability of 10-5 

over one hour.  To achieve 𝑃𝑓𝑎 = 10-7 over the entire hour 

requires a threshold to 6.15. Figures 11 and 12 show these 

results in terms of the number of effectively independent 

samples for continuity over 𝑇𝑒 = 3600s with 𝑇𝑎 = 10s for 

RNP, and over 𝑇𝑒 = 15s with 𝑇𝑎 = 6s for LPV. 

 

 
Figure 10:  Probability of false alert for RNP 0.1/0.3 versus 

normalized threshold using ‘average’ GMP 

 

 
Figure 61:  𝑛𝑒𝑠for continuity vs. 𝑃𝑓𝑎 for RNP 0.1/0.3 using 

‘average’ GMP 

 
Figure 7:  𝑛𝑒𝑠 for continuity vs. 𝑃𝑓𝑎 for LPV 200 using 

‘average’ GMP 

 

D. Effective Number of Samples for Integrity 

In this section more accurate bounds on the 𝑛𝑒𝑠 for monitored 

modes are computed; firstly for a class of algorithms which 

include the baseline algorithm [5] in section III.D.1., and  

secondly for approaches which leverage tighter bounds on the 

impact of a fault in III.D.2.  

1) Single GMP Algorithm (Triangle Inequality) 

One approach to bounding the PHMI within the ARAIM 

framework is outlined in the ARAIM ADD [5]. The PHMI for 

this approach is bounded using the triangle inequality and is 

expressed by the probability of the following condition: 

|𝑥𝑐
(𝑘)

−𝑥𝑐 |

𝜎𝑐
(𝑘) > 𝐾𝑚𝑑,𝑐,𝑘    (24) 

The left-hand side is the fault-tolerant subset position solution 

error 𝑥̂𝑐
(𝑘)

− 𝑥𝑐  (for position coordinate 𝑐), normalised by its 

standard deviation 𝜎𝑐
(𝑘)

, under hypothesis 𝐻𝑘 whilst the right-

hand side is the Gaussian integrity factor relating to the missed 

detection probability allocated to the respective fault hypothesis 

𝑘 . Note that the subset position error bias is omitted from the 

above relations for clarity. As established above in section 

III.B, this quantity may be conservatively assumed to follow a 

Gauss Markov Process with unit variance and time constant 𝜏. 

The right-hand side varies as a function of the prior probability 

of the fault hypothesis 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘, the computed protection level 

𝑃𝐿𝑐 and risk allocation. Employing the definition for 𝑛𝑒𝑠 given 

in Section II.C leads to the following, with 𝑥̂𝑐,𝑖
(𝑘)

 the fault tolerant 

subset position error at epoch 𝑖 within the exposure interval of 

duration 𝑇𝑒: 

 

𝑛𝑒𝑠,ℎ𝑚𝑖 =

𝑃(⋃ ⋂
𝑥̂𝑞,𝑖

(𝑘)
−𝑥

𝜎𝑞
(𝑘) >𝐾𝑚𝑑,𝑐,𝑘

𝑖=𝑗+𝑛𝑑𝑎
𝑖=𝑗

𝑛𝑑−𝑛𝑑𝑎
𝑗=0

)

𝑃(
𝑥̂𝑞,0

(𝑘)
−𝑥

𝜎𝑞
(𝑘)

>𝐾𝑚𝑑,𝑐,𝑘)

  (25) 

 

Using the GMP model, Figure 13 shows the obtained results. 



 
Figure 8 – Single GMP 𝑛𝑒𝑠,ℎ𝑚𝑖 (β = 0.01 i.e. τ = 100s) 

TABLE IV.  MAX 𝑛𝑒𝑠,ℎ𝑚𝑖  RESULTS FOR RNP 0.1/0.3 

 Black Green Red 

𝑛𝑑 360 1800 9000 

𝑛𝑠  360 1800 9000 

Max(𝑛𝑒𝑠) 
β = 0.001: 0.01 

250 100 75 

 

Table IV shows that when employing the baseline algorithm as 

described in the ADD [5] (green curve), a maximum 𝑛𝑒𝑠,ℎ𝑚𝑖  of 

100 is to be expected. If on the other hand the implementation 

only meets the minimum requirement on fault detection 

frequency, a maximum of 250 is obtained. In Figures 14 and 15 

results are shown for RNP and LPV-200.  

 

 
Figure 9:  Number of effectively independent samples for 

integrity vs. 𝑃ℎ𝑚𝑖|𝐻𝑖
 for RNP 0.1/0.3 

 

 
Figure 10:  Number of effectively independent samples for 

integrity vs. 𝑃ℎ𝑚𝑖|𝐻𝑖
 for LPV 200 

 

2) Dual GMP Algorithm (Slope-Based Integrity) 

In this section, an alternative class of algorithm 

implementations are analysed. Under this class, the protection 

level computation uses a missed detection probability based on 

the test statistic and position error variables [13], [14]. The 

positioning failure condition and the no detection condition are 

then used to define an integrity event.  

 

|𝑥𝑐
(0)

−𝑥𝑐 |

𝜎𝑐
(0) > 𝐿𝑐     (26) 

|𝑥𝑐
(𝑘)

−𝑥𝑐
(0)

|

𝜎𝑠𝑠,𝑐
(𝑘) < 𝐾𝑓𝑑,𝑐,𝑘    (27) 

 

The left-hand side of (26) is the normalised position error of the 

full-set solution, whilst the right side is the normalised 

protection level, 𝐿𝑐 = 𝑃𝐿𝑐 𝜎𝑐
(0)⁄  for coordinate 𝑐. The left-hand 

side of (27) is the normalised test statistic, for example the 

solution separation test statistic as defined in the baseline 

algorithm, whilst the right-hard side is the Gaussian k-factor 

relating to the allocated false detection probability to fault mode 

𝑘 . Under this approach the impact of a fault vector 𝜇𝑘 is given 

as follows: 

 

𝜇𝑐
(0)

= 𝑒𝑐
𝑇𝑆(0)𝜇𝑘    (28) 

𝜇𝑠𝑠,𝑐 = 𝑒𝑐
𝑇(𝑆(𝑘) − 𝑆(0))𝜇𝑘   (29) 

 

where 𝑆(0) and 𝑆(𝑘) respectively are the full-set and subset 

estimator matrices, and 𝑒𝑐 is a column vector of zeros except 

for unity at element 𝑐 to extract the 𝑐-th state. The slope, defined 

as ratio of 𝜇𝑐
(0)

  and 𝜇𝑠𝑠,𝑐 is then a constant (not dependent on 

fault magnitude) [13]. 

𝑠𝑙𝑜𝑝𝑒𝑐 =
𝜇𝑐

(0)

𝜇𝑠𝑠,𝑐
     (30) 

The method for calculating 𝑛𝑒𝑠,ℎ𝑚𝑖 for these algorithms is given 

in further detail in [7], [14] leading to:  

 

𝑛𝑒𝑠,ℎ𝑚𝑖 =

𝑃(⋃ ⋂ (
|𝑥̂𝑐,𝑖

(0)
|

𝜎𝑐
(0) >𝐿𝑐∩

|𝑥̂𝑐,𝑖
(𝑘)

−𝑥̂𝑐,𝑖
(0)

|

𝜎𝑠𝑠,𝑐
(𝑘) <𝐾𝑓𝑑,𝑐,𝑘)

𝑖=𝑗+𝑛𝑠𝑎
𝑖=𝑗

𝑛𝑠−𝑛𝑠𝑎
𝑗=0 )

𝑃(
|𝑥̂𝑐,0

(0)
|

𝜎𝑐
(0) >𝐿𝑐∩

|𝑥̂𝑐,0
(𝑘)

−𝑥̂𝑐,0
(0)

|

𝜎𝑠𝑠,𝑐
(𝑘) <𝐾𝑓𝑑,𝑐,𝑘)

   (31) 

The results shown in Figure  are comparable to Figure  such that 

the bounding method has little impact of on the 𝑛𝑒𝑠,ℎ𝑚𝑖  although 

the denominator in (31) is significantly smaller.  

 
Figure 11: Dual GMP 𝑛𝑒𝑠,ℎ𝑚𝑖  (𝛽 = 0.01) 



E. Observed Temporal Correlations 

We evaluated the temporal correlation of the position errors 

observed in 23 flights (72 hours) collected by an FAA Global 

5000 between 08/2017 and 08/2018.  The data was decimated 

at 1 Hz. The reference position was computed using a Precise 

Point Positioning algorithm (with forward backward filter) 

using RTKLIB tools and GPS + GLONASS L1-L2.  We expect 

the accuracy of the position at the decimeter level. Figure  

shows the vertical position error and its standard deviation for 

one of the flights. 

 
Figure 12.  VPE for a flight conducted on October 31, 2017. 

 

We then computed two empirical probability distributions: the 

instantaneous probability of exceeding a given limit, and the 

probability of exceeding the limit over an exposure interval.  

The ratio of these two probabilities 𝑛𝑒𝑠,ℎ𝑚𝑖  in Figure .  The 

empirical curve is consistent with that in Figure 14. 

 
Figure 13. Empirical number of effective samples as measured 

over 23 flights. 

IV. IMPACT ANALYSIS  

In this part, the impact of the analysis on ADD and MOPS 

development is described. 

A. Reference ARAIM ADD and MOPS  

We will update the H-ARAIM reference algorithm using the 

parameters 𝑛𝑒𝑠,ℎ𝑚𝑖 and 𝑛𝑒𝑠,𝑓𝑎 , and the upper bound given in 

Sections II or III.  For the monitored hypotheses, we will inflate 

the probabilities by 𝑛𝑒𝑠,ℎ𝑚𝑖   and  𝑛𝑒𝑠,𝑓𝑎 respectively for the HMI 

and FA probabilities. Using the notations in [2], the 

containment used for the test thresholds will be now given by: 

𝐾𝑓𝑎,𝑒𝑎𝑠𝑡 = 𝐾𝑓𝑎,𝑛𝑜𝑟𝑡ℎ = 𝑄−1 (
𝑃𝑓𝑎_ℎ𝑜𝑟

4𝑁𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑠𝑛𝑒𝑠,𝑓𝑎
) (32) 

 

The equation defining the PL for coordinate 𝑐  will be: 

 

2𝑄̅ (
𝑃𝐿𝑐−𝑏𝑐

(0)

𝜎𝑐
(0) ) + ∑ 𝑃𝑓𝑎𝑢𝑙𝑡,𝑘𝑄̅

𝑁𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑠

𝑘=1 (
𝑃𝐿𝑐−𝑇𝑘,3−𝑏𝑐

(𝑘)

𝜎𝑐
(𝑘) ) =

𝑃𝐻𝑀𝐼𝑐

𝑛𝑒𝑠,ℎ𝑚𝑖
(1 −

𝑃𝑓𝑎𝑢𝑙𝑡 𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑

𝑃𝑉𝐸𝑅𝑇+𝑃𝐻𝑂𝑅
)   (33) 

 

The computation of 𝑃𝑓𝑎𝑢𝑙𝑡 𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑  is modified by using the 

probabilities of having a primary fault in the exposure time 

instead of the state probabilities.  The probability of a primary 

event 𝑃𝑒𝑣𝑒𝑛𝑡,𝑘(𝑇𝑒) (satellite or constellation fault) happening in 

the exposure time is given by: 

 

 𝑃𝑒𝑣𝑒𝑛𝑡,𝑘(𝑇𝑒) = 𝑟𝑘𝑇𝑚,𝑘 (1 +
𝑇𝑒

𝑇𝑚,𝑘
)  (34) 

 

Once 𝑃𝑠𝑎𝑡 and 𝑃𝑐𝑜𝑛𝑠𝑡 are replaced with this expression, the 

method to compute 𝑃𝑓𝑎𝑢𝑙𝑡 𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑  remains unchanged.  

More details on these proposed updates can be found in [5]. The 

default values for 𝑛𝑒𝑠,ℎ𝑚𝑖  and 𝑛𝑒𝑠,𝑓𝑎 will be 360. 

B. Performance Simulations 

In order to assess the impact of this approach on ARAIM 

performance, we evaluated H-ARAIM coverage using both the 

reference ADD [5] and the modification proposed in this paper.  

The following settings were used: 

- User: 24 h every 300s with a 10-by-10 degree grid 

- Receiver: PHMI = 10-7/h, PFA = 5x10-7/h 

- Constellations: Almanacs from [2] and [3] for dual 

frequency GPS and Galileo 

The ISM parameters were set as specified in Table V.   

 

H-ARAIM performance is given in Table VI in terms of 

coverage of 99.5% availability [5].  For the degraded scenario 

23-23, the drop in performance is significant.  But, for other 

scenarios including the nominal 24-24 scenario, the 

modification proposed in this paper maintains a high coverage 

performance while properly accounting for risks over the 

exposure period. 

 

 

 

TABLE V.  ISM PARAMETERS USED IN COVERAGE SIMULATIONS 

Parameter Definition GPS Galileo Unit 

𝑟𝑠𝑎𝑡 Constellation fault rate 1e-8 1e-4 1/hour 

𝑟𝑐𝑜𝑛𝑠𝑡  Satellite fault rate 1e-5 1e-5 1/hour 

𝑀𝑇𝑇𝑁 Mean-Time-To-Notify user of 
fault  

1 1 hours 

𝜎𝑈𝑅𝐴  Scale factor for URA 1 1 - 

𝜎𝑈𝑅𝐸  Scale factor for URA 1 1 - 

𝑏𝑛𝑜𝑚0 Additive nominal bias bound 0.75 

(DF) 
0 (SF) 

0.75 

(DF) 
0 (SF) 

meters 

𝛾𝑛𝑜𝑚  Scale factor for bias 0 0 - 

 



TABLE VI.  EFFECT OF PROPOSED MODIFICATIONS ON COVERAGE 

(DEFINED AS THE PERCENTAGE OF USERS WITH 100% AVAILABILITY) FOR 6 

SCENARIOS 

Constellation 

configuration 

URA = 1 m URA = 2.4 m 

Approach ARAIM 

ADD 

v3 

Proposed 

modifications  

ARAIM 

ADD 

v3 

Proposed 

modifications 

GPS 24  48.0% 39.48% 33.37% 20.26% 

GPS 27  79.5% 71.62% 65.81% 53.29% 

GPS 23 – Galileo 23  90.08% 51.11% 83.48% 44.38% 

GPS 24 – Galileo 24  98.85% 96.37% 97.56% 94.39% 

GPS 27 – Galileo 27  99.94% 99.2% 99.94% 98.88% 

 

V. CONCLUSION 

This paper has evaluated the mapping of performance 

requirements for continuity and integrity at the operational level 

to the ARAIM algorithm level. It is recommended that the 

number of effectively independent samples be used at the 

algorithm level to correctly ensure requirements are met. 

Existing requirements have been interpreted as minimum 

requirements in this work to avoid unnecessary additional 

restrictions [11]. Strict upper bounds of 360 for RNP and 25 for 

LPV have been derived under that approach, along with 

techniques to determine lower values under certain assumptions 

and receiver implementations. Further reductions may be 

feasible with increased restrictions on the assumed model or 

algorithm choices.  
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Appendix A:  Markov Chain Derivation for Phmi 

The joint probability of 𝐻𝑀𝐼 ∩ 𝐻𝑘 at any time during the 

exposure interval can be computed using a Markov chain with 

three states:  (0) nominal/fault-free, (1) 𝐻𝑘, and (2) 𝐻𝑀𝐼 ∩ 𝐻𝑘 .  

The state transitions over any time interval 𝑇𝑎 are modeled in 

Figure A.1. Transition probabilities from (0) to (1) and 

conversely are governed by the rate of failure and rate of CSP 

notification respectively. The transition probability from (1) to 

(2) is assumed to be independent of time as discussed for 

equation (B-5). 

 
 

Figure A.1:  Three-state Markov chain model of ARAIM 

monitor 

To simplify notation, we recall the definitions 𝑃̅𝐻𝑘
≜ 𝑟𝐻𝑘

𝑇𝑚,𝑘 

and 𝑚 ≜ 𝑇𝑚,𝑘/𝑇𝑎 .   At any time 𝑖, the probability transition 

equations for 𝑃1(𝑖) and 𝑃2(𝑖) are: 

𝑃1(𝑖 + 1) =
𝑃̅𝐻𝑖

𝑀
𝑃0(𝑖) + (1 −

𝑇𝑎

𝑇𝑚,𝑘
− 𝑃ℎ𝑚𝑖|𝐻𝑘

) 𝑃1(𝑖)      (A.1) 

𝑃2(𝑖 + 1) = 𝑃ℎ𝑚𝑖|𝐻𝑘
𝑃1(𝑖) + 𝑃2(𝑖)    (A.2) 

𝑃0(𝑖) can be eliminated using the constraint, 𝑃0(𝑖)  =  1 −
𝑃1(𝑖) − 𝑃2(𝑖).  To further lighten notation, define 𝑄 ≜ 𝑃ℎ𝑚𝑖|𝐻𝑘

, 

𝑅 ≜
𝑃̅𝐻𝑘

𝑚
,  𝑆 ≜

𝑚−1

𝑚
− 𝑄 − 𝑅.  Then, from (A.1) and (A.2) we 

have 

[
𝑃1

𝑃2
]

𝑖+1

= [
𝑆 −𝑅
𝑄 1

] [
𝑃1

𝑃2
]

𝑖

+  [
𝑅
0

]     (A.3) 

where, by definition, 𝑃2(𝑖) = 𝑃ℎ𝑚𝑖∩𝐻𝑘
(𝑖). 



Appendix B:  Closed Solution form for Phmi 

Define 𝑃𝐻𝑘
(𝑖) to be the probability of onset of 𝐻𝑘 between TTA 

intervals 𝑖 − 1 and 𝑖.  The event itself is denoted 𝐻𝑘(𝑖).  Then 

we can write  

𝑃ℎ𝑚𝑖∩𝐻𝑘
(𝑛) = 𝑃 {⋃(𝐻𝑀𝐼𝜇 ,

𝑛

𝜇=1

𝐻𝑘)} = 

 ∑ 𝑃{⋃ 𝐻𝑀𝐼𝜇
𝑛
𝜇=𝑖 | 𝐻𝑘(𝑖) }𝑃𝐻𝑘

(𝑖)𝑛
𝑖=1   (B.1) 

At start of exposure, 𝑃𝐻𝑘
(1) = 𝑃̅𝐻𝑘

/(1 + 𝑃̅𝐻𝑘
), which for small 

𝑃̅𝐻𝑘
, means that 𝑃𝐻𝑘

(1) ≈ 𝑃̅𝐻𝑘
.  At any time 𝜇, given a fault 𝐻𝑘 

with onset time 𝑖, 𝐻𝑀𝐼 will be the result of two independent 

events:  a) the CSP fails to detect and notify before time 𝜇 given 

a fault with onset time 𝑖, and b) the fault becomes hazardous at 

time 𝜇 and ARAIM fails to detect.  We denote the probabilities 

of these two events as 𝑃𝐶𝑆𝑃|𝐻𝑘
(𝜇 | 𝐻𝑘(𝑖)) and 

𝑃ℎ𝑚𝑖|𝐻𝑘
(𝜇 | 𝐻𝑘(𝑖)), respectively.  Using mutual exclusivity of 

the conditional 𝐻𝑀𝐼 onset times in the exposure interval, we 

can write (B.1) as: 

𝑃ℎ𝑚𝑖∩𝐻𝑘
(𝑛)  =  ∑  ∑  𝑃𝐶𝑆𝑃|𝐻𝑘

(𝜇 | 𝐻𝑘(𝑖)) 𝑃ℎ𝑚𝑖|𝐻𝑘
(𝜇 | 𝐻𝑘(𝑖)) 𝑃𝐻𝑘

(𝑖)𝑛
𝜇=𝑖

𝑛
𝑖=1                       

(B.2) 

 𝑃𝐶𝑆𝑃|𝐻𝑘
(𝜇|𝑖) =  𝑒𝑥𝑝 (−

𝜇−𝑖

𝑚
 )  (B.3) 

Using an exponential model and since the conditional 𝐻𝑀𝐼 

onset times are mutually exclusive, using chain rule: 

𝑃ℎ𝑚𝑖|𝐻𝑘
(𝜇 | 𝐻𝑘(𝑖))

= 𝑃ℎ𝑚𝑖|𝐻𝑘
(𝜇, 𝜇 − 1̅̅ ̅̅ ̅̅ ̅, 𝜇 − 2̅̅ ̅̅ ̅̅ ̅, … , 𝑖 ̅ | 𝐻𝑘(𝑖)) 

                          
= 𝑃ℎ𝑚𝑖|𝐻𝑘

(𝜇 | 𝜇 − 1̅̅ ̅̅ ̅̅ ̅, 𝜇 − 2̅̅ ̅̅ ̅̅ ̅, … ,  𝑖̅,  𝐻𝑘(𝑖))𝑃ℎ𝑚𝑖|𝐻𝑘
(𝜇 − 1̅̅ ̅̅ ̅̅ ̅ |  𝜇 − 2̅̅ ̅̅ ̅̅ ̅, … , 𝑖,̅ 𝐻𝑘(𝑖)) 

               ⋯ 𝑃ℎ𝑚𝑖|𝐻𝑘
(𝑖 + 1̅̅ ̅̅ ̅̅  | 𝑖,̅ 𝐻𝑘(𝑖))𝑃ℎ𝑚𝑖|𝐻𝑘

(𝑖 ̅| 𝐻𝑘(𝑖))

    (B.4) 

Assuming that the conditional probability of 𝐻𝑀𝐼 onset 

𝑃ℎ𝑚𝑖|𝐻𝑘
 is the same for any TTA interval, we obtain:  

𝑃ℎ𝑚𝑖|𝐻𝑘
(𝜇 | 𝐻𝑘(𝑖)) = 𝑃ℎ𝑚𝑖|𝐻𝑘

 (1 − 𝑃ℎ𝑚𝑖|𝐻𝑘
)𝜇−𝑖  (B.5) 

where (1 − 𝑃ℎ𝑚𝑖|𝐻𝑘
)𝜇−𝑖  is the probability that 𝐻𝑀𝐼 onset did 

not occur before time μ given fault onset at time 𝑖. This relation 

is exact if the conditional 𝐻𝑀𝐼 events are independent over 

TTA intervals and conservative if positively correlated, as is to 

be expected. Substituting (B.3) and (B.5) into (B.2) it follows 

that:  

𝑃ℎ𝑚𝑖∩𝐻𝑘
(𝑛) =  ∑ ∑  𝑒𝑥𝑝 (−

𝜇−𝑖

𝑚
 ) 𝑃ℎ𝑚𝑖|𝐻𝑘

(1 −𝑛
 𝜇=𝑖

𝑛
𝑖=1

𝑃ℎ𝑚𝑖|𝐻𝑘
)𝜇−𝑖  𝑃𝐻𝑘

(𝑖)   (B.6) 

To simplify notation, define 𝛼 ≜  exp (−
1

𝑚
) (1 − 𝑃ℎ𝑚𝑖|𝐻𝑘

) ≈
𝑚−1

𝑚
(1 − 𝑃ℎ𝑚𝑖|𝐻𝑘

) 

𝑃ℎ𝑚𝑖∩𝐻𝑘
(𝑛) =

 𝑃ℎ𝑚𝑖|𝐻𝑘
{∑ 𝛼𝜇−1  𝑃𝐻𝑘

(1) +  𝑛
 𝜇=1 ∑ ∑ 𝛼𝜇−𝑖  𝑃𝐻𝑘

(𝑖)𝑛
 𝜇=𝑖

𝑛
𝑖=2 }  

 (B.7) 

Noting that 𝑃𝐻𝑘
(𝑖) = (𝑇𝑎/𝑇𝑚)𝑃𝐻𝑘

(1) = 𝑃𝐻𝑘
(1)/𝑚, we have 

 𝑃ℎ𝑚𝑖∩𝐻𝑘
(𝑛) =

 𝑃ℎ𝑚𝑖|𝐻𝑘
𝑃𝐻𝑘

(1) {∑ 𝛼𝜇−1  +  
1

𝑚
 𝑛

 𝜇=1 ∑ ∑ 𝛼𝜇−𝑖𝑛
 𝜇=𝑖

𝑛
𝑖=2 }                   

   (B.8) 

To simplify further, we exploit the formula for the sum of a 

geometric series, 

∑ 𝛼ℓ−1  =  
1−𝛼𝐿

1−𝛼
 𝐿

ℓ=1      

 (B.9) 

Then, after some algebra, (B.9) becomes 

𝑃ℎ𝑚𝑖∩𝐻𝑘
(𝑛)  =   

1

1−𝛼
 { (1 − 𝛼𝑛) [ 1 −

1

𝑚(1−𝛼)
 ]  +  

𝑛

𝑚
 } 𝑃ℎ𝑚𝑖∩𝐻𝑘

(1)  (B.10) 

Appendix C:  Derivations for Composite Faults 

 

As shown in Appendix B, the number of effective samples is a 

function of the mean time to detect.  For simultaneous faults, it 



is more adequate to label this quantity the mean fault duration, 

since the ground segment might not necessarily detect the 

composite fault, but by notifying one of the faults forming the 

composite fault, it will stop the composite fault. 

 

 

Let us consider a composite fault 𝑘 composed of the primary 

faults 𝑘1, … , 𝑘𝑞 .  We show that the mean time to detect 𝑇𝑚,𝑘 of 

this is given by: 

𝑇𝑚,𝑘 = (∑
1

𝑇𝑚,𝑘𝜈

𝑞
𝜈=1 )

−1

    (C.1) 

The fault rate corresponding to this composite fault is given by:

   

𝑟𝑘 = 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘 ∑
1

𝑇𝑚,𝑘𝜈

𝑞
𝜈=1    (C.2) 

where 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘  is the state probability of the composite fault (and 

is specified in [5]).  A consequence of this formula is that the 

probability of fault 𝑘 in an interval of length 𝑇 is given by: 

𝑝𝑓𝑎𝑢𝑙𝑡,𝑘(𝑇) = (1 + 𝑇 ∑
1

𝑇𝑚,𝑘𝜈

𝑞
𝜈=1 ) 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘 (C.3) 

In case all 𝑇𝑚s are identical (which is what we expect).  These 

formulas become: 

 𝑇𝑚,𝑘 =
𝑇𝑚

𝑞
    (C.4) 

𝑟𝑘 = 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘
𝑞

𝑇𝑚
    (C.5) 

𝑝𝑓𝑎𝑢𝑙𝑡,𝑘(𝑇) = (1 +
𝑞𝑇

𝑇𝑚
) 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘  (C.6) 

 

Proof: 

 

Let us consider two events 1 and 2, with rates 𝑟1 and 𝑟1 and 

mean time to notify 𝑇𝑚,1 and 𝑇𝑚,1. In order to determine the rate 

of the combined fault, let us consider the probability that the 

fault appears in an interval Δ𝑡. We define 𝑃𝑘as the probability 

that event 𝑘 is present at a given time.  We have the relationship: 

 

𝑃𝑘 = 𝑟𝑘𝑇𝑚,𝑘     (C.7) 

 

There can be three mechanisms for the composite fault to 

appear: 

- fault 1 was already present and 2 starts in the 

infinitesimal interval Δ𝑡 , or 

- fault 2 was already present and 1 starts in the 

infinitesimal interval Δ𝑡  

- both faults 1 or 2 appear in the interval Δ𝑡  

The probability of 1 and 2 first occurring simultaneously in the 

interval Δ𝑡  is therefore: 

𝑃(events 1&2 in [0, ∆𝑡]) = 𝑃1𝑟2∆𝑡 + 𝑃2𝑟1∆𝑡 + (𝑟1∆𝑡)(𝑟2∆𝑡) 

 (C.8)  

 

To obtain the rate, we divide this expression by ∆𝑡  and let it 

tend to 0: 

𝑟12 = lim
∆𝑡→0

𝑃1𝑟2∆𝑡 + 𝑃2𝑟1∆𝑡 + (𝑟1∆𝑡)(𝑟2∆𝑡)

∆𝑡
= 𝑃1𝑟2 + 𝑃2𝑟1 

   (C.9) 

Using Equation (C.7), we can write: 

  

𝑟12 = 𝑃1𝑟2 + 𝑃2𝑟1 = 𝑃1𝑃2

1

𝑇𝑚,1
+ 𝑃2𝑃1

1

𝑇𝑚,2

= 𝑃2𝑃1 (
1

𝑇𝑚,1
+

1

𝑇𝑚,2
) 

    (C.10) 

To compute the mean fault duration of the composite fault 

𝑇𝑚,12, we consider the probability of having 1 and 2 at a given 

time. Using Equation (C.7) again, we have: 

 𝑃12 = 𝑟12𝑇𝑚,12    (C.11) 

Combining Equations (C.10) and (C.11), we get: 

 𝑇𝑚,12 = (
1

𝑇𝑚,1
+

1

𝑇𝑚,2
)

−1

   (C.12) 

 

This result is generalized to 𝑛 events either by induction or by 

rewriting Equations (C.8) and (C.9) as follows: 

𝑃(events 1& … &𝑞 in [0, ∆𝑡])
= 𝑃1…𝑞\𝑞𝑟𝑞∆𝑡 + 𝑃1…𝑞\𝑞−1𝑟𝑞−1∆𝑡

+ ⋯ 𝑃1…𝑞\1𝑟1∆𝑡 + 𝑂(∆𝑡2) 

  (C.13) 

where  𝑃1…𝑞\𝑘  is the state probability of all 𝑞 events except 𝑘. 

We have: 

𝑃1…𝑞\𝑘𝑟𝑘 = 𝑃1..𝑞
1

𝑇𝑚,𝑘
= 𝑃1. . 𝑃𝑞

1

𝑇𝑚,𝑘
  (C.14) 

As a consequence, Equation (C.10) generalizes to: 

𝑟1..𝑞 = 𝑃1. . 𝑃𝑞 (
1

𝑇𝑚,1
+ ⋯ +

1

𝑇𝑚,𝑞
)  (C.15) 

And the mean fault duration is given by: 

𝑇𝑚,1..𝑞 = (
1

𝑇𝑚,1
+ ⋯ +

1

𝑇𝑚,𝑞
)

−1

  (C.16) 

Appendix D:  Autocorrelation Model  

For the continuity risk analysis, we are interested in “average,” 

not worst-case error models.  The contributors to nominal test 

statistic error are the following:  multipath and noise at the user 

aircraft, satellite orbit and clock error, and residual (post 

correction) tropospheric error. In parts D.1, D.2 and D.3, these 

three sources of error are addressed. In D.4 the models are then 

extended to worst-case conditions 

 

D.1 User Multipath and Receiver Noise 

 

Data provided by the Boeing Company from flight tests 

conducted with a 787 aircraft was used to create average 

autocorrelation models for multipath and receiver noise [4].  



Raw GPS L1 code-minus-carrier data, with ionospheric effects 

removed, was analyzed to produce these models.  Figure D.1 

shows the sample means and standard deviations binned by 

satellite elevation at 5 degrees of resolution.  The results suggest 

that on average it is reasonable to assume a zero-mean 

distribution with a standard deviation of σU ≈ 0.4 m for all 

elevations for raw code multipath and receiver noise. 

 

 
 

 

Figure D.1:  Boeing 787 Flight Data:  Airborne Mean and 

Standard Deviation 

 

Figure D.2 shows a composite of autocorrelation traces of the 

flight data.  A number of traces with long correlation times are 

clearly evident; these are caused by antenna group delay and 

must be accounted for in the autocorrelation model.  Figure D.3 

consolidates the autocorrelation data into empirical cumulative 

distribution functions for a number of discrete lag times.   The 

median user-error time constant is approximately τU ≈ 14 sec. 

 

Raw multipath and noise is affected by carrier-smoothing of the 

code with filter time constant τF.  (The typically assumed filter 

time constant is τF = 100 sec, but it may differ for ARAIM.)  

The resulting autocorrelation function for the smoothed code 

error is:  

 

𝑅𝑈(𝑡) =   𝜅 𝜎𝑀
2  

𝜏𝑈

𝜏𝐹
2− 𝜏𝑈

2 ( 𝜏𝐹𝑒−|𝑡|  𝜏𝐹⁄ −  𝜏𝑈𝑒−|𝑡|  𝜏𝑈⁄ ) (D.1) 

 

where 

𝜅 ≜
𝑓𝐿1

4 +𝑓𝐿5
4

(𝑓𝐿1
2 −𝑓𝐿5

2 )
2     (D.2) 

 

is the error scale factor for the L1-L5 observable relative to L1. 

 

 
 

Figure D.2:  Boeing 787 Flight Data Autocorrelation Traces 

 
Figure D.3: Boeing 787 Data Autocorrelation by Lag Time 

 

D.2 Residual Tropospheric Error 

 

From DO 229E [11], Appendix R, Section R.4.1, we are 

instructed that, “Tropospheric error shall be modeled using a 

first-order Gauss-Markov process with a 30-minute correlation 

time (τT).  The sigma shall be scaled per the tropospheric 

residual error sigma equation defined in Appendix A, Section 

A.4.2.5 … Note: The 30-minute correlation time representative 

of a typical storm system passing through.”  This equation is 

plotted versus satellite elevation in Figure D.4 (right).  Figure 

D.4 (left) sows the average GPS satellite elevation at different 

user latitudes.  The global mean (i.e., the average value of the 

curve) is 32.4 deg.  The corresponding value at that elevation 

on Figure D.4 (right) is σT ≈ 0.22 m. 

 

 
Figure D.4:  Average elevations of GPS satellites (left) and 

residual tropospheric error vs. elevation (right) 

 

 

D.3 GPS Satellite Orbit and Clock Error 

 

To obtain average error models for satellite signal in space 

ranging error (SISRE), we use as proxy radial-minus-clock 

autocorrelation data provided by Stanford University.  Example 

autocorrelation functions for two satellites with different clock 

types are shown in Figure D.5.  The data was sampled at T𝑆 = 

15 min intervals, and autocorrelation ratios  RS(TS)/RS(0) 

were obtained.  The average value of this raita across GPS 

satellites was 0.9994. However, because of the performance 

variations between the Rubidium and Cesium clocks to be 

conservative in the example computation of the number of 

effectively independent samples for continuity in section 2.3, 



we use the minimum value across the satellites, RS(TS)/
RS(0) = 0.9987. 

 

Figure D.6 shows the history of 95% satellite ranging error due 

to satellite orbit and clock errors.  The colored lines are the 

results for individual satellites.  The heavy black curve is the 

average across all satellites.  Currently, the average 95 % error 

value is approximately 1 m, so we use σS ≈1 m. 

 

 
Figure D.5:  Example autocorrelation functions for radial-

minus-clock error for two GPS satellites with different clock 

types 

 
Figure D.6:  Histories of 95% satellite ranging error due to 

satellite orbit and clock errors 

TABLE D.I AUTOCORRELATION RANGES FOR LOW, MEDIUM AND HIGH 

ELEVATION SATELLITES 

Elevation low med high low med High 

𝛼  
(∆𝑡 =
10𝑠) 

0.9945 0.9945 0.9950 0.9938 0.9873 0.9829 

𝛽  5.6e-4 5.6e-4 5.0 e-4 6.1 e-4 12.9 e-4 17.3 e-4 

𝜏 1800 1800 2000 1600 780 580 
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