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Abstract 

We study the impact of airline network design on excess travel times for the 
main US carriers between 2008 and 2017 and find that network configuration affects 
excess travel time. Based on graph theory and a principal component analysis we 
build four continuous indicators to measure the airlines networks. We observe that 
airlines serving more destinations, organizing flights landings and take offs around 
banks or moving towards a point to point configuration present higher levels of 
excess travel time. However, there does not seem to exist a preferred network con-
figuration between hub and spoke or point-to-point configuration to reduce excess 
travel time. We also find a nonlinear impact of competition measured at the city-
pair level over excess travel time. These results are robust when analyzing observed 
delays rather than excess travel time. 
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1 Introduction 
Delays are a widespread phenomenon in air transportation and the problem 
has been largely studied by researchers. One of the first difficulties faced by 
researchers is the definition of delays. The US federal aviation 
administration considers as delayed flights with more than 15 minutes delay. 
As shown in the literature, the scheduled travel time does not usually match 
the minimum or average travel time and airlines enlarge or pad their 
schedule to control for delays (Mayer and Sinai 2003; Deshpande and Arikan 
2011; Zhang, Salant, and Van Mieghem 2018). For instance, between 2007 
and 2018 more than a half of the US domestic flights arrived before the 
scheduled time.1 The choice of scheduled time usually differs across carriers 
using the same technology over the same market (Skaltsas 2011; Silke J. 
Forbes, Lederman, et Yuan 2019).  

To avoid the problem of modelling scheduling choices this study analyzes 
the impact of the network configuration on excess travel time, that is, the 
difference between the observed arrival time and a theoretical arrival time 
based on the time technically required under “normal” conditions to fly as 
defined by Mayer and Sinai (2003). Excess travel time is a measure of airline 
efficiency in operations: low level of excess travel time corresponds to a 
higher ability to fly more rapidly among airports. Because passengers are in 
general more aware of delays than excess travel time, the study presents also 
the analysis on observed delays. Moreover, most of the literature focuses on 
studying delays rather than excess travel time. We highlight some 
differences in the results that should be explained by buffer choices, however 
the study of buffer or schedule choices is not considered in this article.2  

Following a long tradition in the literature, this study considers the 
relationship between airport congestion and excess travel time and the 
question of internalization of externalities by dominant airlines at airport. 
The study addresses also the relationship between competition and excess 
travel time at the city-pair level. We provide some additional insights about 
the impact of market competition on efficiency. 3 In addition to these tradi-
tional delay’s drivers, we add new measures to control for network evolution. 

 
1 Own calculation based on the collected data, presented in section 3. 
2 For recent works on buffer and schedule choices see Fan (2019) or Forbes et al. (2019; 2019).  
3 A market refers to a city pair, for instance New York - Boston, while a route or flight segment 

refers to an airport-pair, for instance JFK-BOS. 
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This is the main contribution of this study to the existing literature. We 
argue that the usual measures used in the empirical literature to describe 
network organization, in particular hub characteristics, are partial represen-
tations of network reality and fail to explain complex network evolutions.  

We build four indicators measuring the topological properties of the airline 
networks and show that they have a significant impact over excess travel 
time, as well as on delays. Our main result is that airlines increasing their 
size, measured as the number of city pairs served by the airline, show larger 
values for excess travel time and delays. According to Basso and Jara Diaz 
bigger airlines would enjoy economies of spatial scope (2005) however they 
would suffer longer flights length according to our results. Apart from this 
size effect, we do not observe that a network configuration is clearly pre-
ferred to improve efficiency. A mix of hubbing and point-to-point organiza-
tion should certainly lead to better performances in terms of excess travel 
time and delays, a result already suggested by Wojahn (2001) while analyz-
ing airline costs. This mixed organization is observed on the market with 
airlines supplying both connecting and point-to-point services. 

Moreover, our results show a nonlinear relationship between market com-
petition and excess travel time. Some degrees of competition could improve 
efficiency. In this sense, mergers among airlines could have positive or neg-
ative effects in each market depending on the premerger level of competition. 
Finally, our results suggest that dominant airlines at airport do not inter-
nalize the externalities created.  

Although the literature has studied the impact of hubbing in the past, up 
to our knowledge this is the first study to measure the impact of hubbing 
and other network dimensions with continuous indicators over excess travel 
time or delays.  

We summarize in the next section the literature which has mainly focused 
on delays rather than on excess travel time. In section 3 we describe our 
sample, focused on the US domestic market, the network variables and the 
remaining control variables considered on the analysis. Section 4 presents 
the estimation and main the results. Section 5 compares the analysis for 
excess travel time and delays and finally section 6 concludes. 
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2 Literature Review 
There is a large literature on congestion on the air transport sector. The 
literature tries to study congestion and other factors affecting travel time, 
distinguishing between scheduled travel time, observed travel time, delays 
(positive and or negative) and excess travel time. There are few attempts to 
study the impact of the network configuration in any of these measures. 
When network configuration is included in the analysis it is usually meas-
ured through dummies and is not the main focus.  

Following Daniel (1995), there is a large branch of the literature devoted 
to analyze if congestion, as an externality, is internalized by airlines with 
large presence at certain airports, where dummies are included to control for 
large, medium and small hubs.4 In this spirit, though results on delay inter-
nalization differ across authors, most of them conclude that hubs imply 
larger delays or travel time: Brueckner (2002; 2004; 2005), Mayer and Sinai 
(2003) and Bilotkach and Lakew (2019). Ater (2012) studies also concentra-
tion although focusing the analysis exclusively on hubs and studying the 
length of flight banks. Baumgarten et al. (2014) uses the Hubbing Concen-
tration Index (developed by Martín and Voltes-Dorta (2009)) to find a pos-
itive effect of hubbing over excess travel time while a negative effect is found 
over delays, suggesting that airlines increase buffers to reduce the delays 
suffered by passengers. Fageda and Flores-Fillol (2016) study theoretically 
and empirically the relationship between congestion and network structure 
finding that delays are larger for hub networks once concentration and air-
port size are controlled for, and hub and spoke airlines will tend to internal-
ize less congestion. 

Another branch of the literature, started by Suzuki (2000), reviews the 
relationship between competition and quality levels where delay or on time 
performance is considered as a quality indicator. In this line, Bubalo and 
Gaggero (2015) find that, at the European level, the presence of low cost 
carriers reduces delays at airports and Greenfield (2014) find that competi-
tion decreases on time performance. This branch of the literature also con-
siders the hub presence measured by dummies as in Mazzeo (2003) who finds 
mixed effects of hub presence over delays. Cao et al. (2017) measures hub 
presence through a continuous variable, the number of destinations served 

 
4 The airport presence is typically measured with the airlines market share at the airport or with 

the airports Herfindahl Hirschman concentration index. 
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by each airline from each airport, the higher the number of movements, the 
more the airport can be considered as a hub, finding also a positive effect 
over delays.  

Rupp (2009) and Bendinelli et al. (2016) combine both approaches, delays 
as externalities and as quality indicators. However, apart from hubbing, they 
do not control for network characteristics. Up to our knowledge, the study 
presented here is the first attempt to measure the impact of network config-
uration, described by continuous indicators, over excess travel time. Follow-
ing Bendinelli et al. (2016), our study includes variables to control for con-
centration both at airport and market levels. Our analysis is based on excess 
travel time rather than delays since airlines can control for delays announc-
ing longer flights to their passenger, i.e. increasing buffer.5 Indeed, buffer is 
largely used by airlines to reduce delays and has been increasing during the 
last decades (Forbes, Lederman, and Yuan 2019; Fan 2019).  

 

3 Data 

3.1 Data collection 
 
The two main data sources are the Official Airline Guide (OAG) and the 
Airline On-Time Performance data (OTP dataset) from the Bureau of 
Transportation Statistics of U.S. Department of Transportation.  

The flight data is collected from OAG, which provides worldwide infor-
mation on scheduled traffic. The OAG data includes a set of flight charac-
teristics, such as origin and destination airports, distance, departure and 
arrival scheduled time, as well as the operating carrier, the aircraft type and 
the number of available seats. The OTP dataset provides information on 
scheduled time and delays from carriers representing at least 1 percent of 
the total domestic scheduled-service passenger revenue. In 2017, there were 
18 reporting carriers. Consequently, only airlines present in both OTP and 
OAG will be considered in our analysis. 

We focus on one-way passenger domestic flights between 2008 and 2017 
operated by US carriers. We study exclusively the month of august to avoid 

 
5 We present the same analysis over delays as a robustness analysis in section 5. 
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a seasonality treatment and weather issues (while 38% of the flights in our 
sample are delayed, only 1% of the flights are delayed due to weather is-
sues).6  

For both databases, OAG and OTP, we recode regional/feeder airlines to 
their major partners at the carrier-route level. Some extreme observations 
are deleted from our databases; we delete flights between midnight and 5 
am, as they represent less than 1% of the total flights, and extreme values 
for the excess travel time and distance (top and bottom corresponding to 
1% of the total sample).  

Some macroeconomic variables are collected from different public data 
sources. Average household income is gathered from the United States Cen-
sus Bureau, while oil jet fuel spot prices are collected from the US Energy 
Information Administration. These variables will be used as control or in-
strumental variables in the forthcoming regressions. 

Our final dataset includes 12 carriers (AA, AS, B6, CO, DL, F9, FL, HA, 
UA, US, VX and WN)7 and 3,970,831 flights.  

3.2 Data description 
One observation is a flight characterized by its date and hour of departure 

and arrival, its operating airline, and its origin and destination airports. 
Excess travel time is measured at the flight level. 

Our interest is to study how airline’s Excess Travel Time (ETT) is af-
fected by its network evolution. As stated previously we choose to study 
excess travel time to get rid of buffer time included in scheduled time by 
airlines. Excess travel time is a measure of airline quality of services. How-
ever, we also run regressions on delays to check if results are robust to such 
choice.  

Excess travel time is computed, for each flight, looking at the difference 
between the scheduled departure time, the real arrival time and the mini-
mum technically required time to do such trip. The minimum required time 
per route is calculated thanks to the distribution of real travel time per route 
observed on the sample. The minimum required time corresponds to the 

 
6 Our database includes also the months of july and september (third quarter). This data is used 

for robustness analysis in the construction of the network indicators. 
7 American Airlines (AA), Alaska Airlines (AS), JetBlue (B6), Continental Airlines (CO), Delta 

Airlines (DL), Frontier Airline (F9), AirTran Airways (FL), Hawaiian Airlines (HA), United Airlines 
(UA), US Airlines (US), Virgin America (VX) and Southwest Airlines (WN). 
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lowest values of the real time distribution. We have tested several percentiles: 
5th, 10th and 25th. The results are robust to this choice: we present them 
using the 5th percentile. 

3.3 Network indicators as control variables 
Our focus variables are the network evolution indicators. In order to ob-

tain simple continuous indicators measuring the evolution of the airline’s 
networks, we study eleven graph theory measures for each of the airlines 
during the studied period, plus two measures of network connectivity and 
size. These measures are built from information compiled at OAG, and they 
study different topological properties of the networks. We summarize the 
information from these measures applying a principal component analysis 
that results into four indicators as explained in Appendix A. As shows Table 
A5, the main contribution for the last two components comes from single 
variables, the measures of network size and connectivity. Therefore, we ex-
clude these two variables and perform a PCA analysis on the eleven graph 
theory measures obtaining two indicators that explain 81.5% of the original 
measure variability. 8  

The two indicators and the two measures of network size and connectivity 
are the four indicators that describe airline network configuration. They are 
expressed in terms of differences and altogether they represent network evo-
lution. 

The first indicator, NetCenterGrowth is correlated with seven graph the-
ory measures calculated at the node or airport level. It can be interpreted 
as an indicator of the presence of central nodes in the network, or as an 
indicator of a network topology ranging from point-to-point configuration to 
a star topology. A positive value of this indicator corresponds to network 
configuration getting closer to a star configuration. Reversely, a negative 
value of the indicator should imply that the network is getting closer to a 
point-to-point structure. Notice that this indicator may differ from the no-
tion of Hub. The presence of hub airports implies that connections are pro-
posed to passengers among the flights arriving and departing from a given 
airport that are usually organized around banks to reduce connection time. 

 
8 The methodology to obtain these indicators is explained in details in Roucolle et al. (2020). 

Compared to this article, we add a new measure based on connectivity as explained in Appendix A. 
We thank our anonymous referee for this suggestion during the revision process of Roucolle et al. 
(2020). 
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NetCenterGrowth exclusively analyzes if an airport is central, in the airlines 
network.   

The second indicator, NetWeaveGrowth is strongly correlated with three 
graph theory measures. It increases with density, transitivity and decreases 
with mean eigenvector centrality. This component can be viewed as a meas-
ure of network interlacing. A positive value of the second indicator may 
reflect that the network is proposing more alternative routings involving 
non-stop and one-stop flights, whereas a negative value shows that the net-
work contains fewer and fewer alternative paths to attain a destination. 

The third indicator, NetConnectivityGrowth, is based on the scheduled 
proposed by each airline and analyses how many potential connections can 
be stablished for each flight arriving at an airport. NetConnectivityGrowth 
measures the proportion of possible connections with respect to all the flights, 
direct or connected proposed by an airline.9 A positive value indicates that 
the airline is organizing more and more its flights around banks.  

Finally, NetSizeGrowth measures the evolution of the size of the network 
determined by the number of flight segments, i.e., the number of non-direc-
tional city pairs that are offered with nonstop flights. A positive value rep-
resents an increase in the number of supplied flights segments. The measure 
is independent of the flight frequencies. 

 

3.4 Other control Variables  
 
In addition to network indicators, we introduce in the analysis of excess 

travel time (ETT) some traditional factors in the empirical literature and 
that have been proven to impact delays. Table 1 presents the list and some 
statistics of the variables included in our analysis. 

Customers can perceive ETT as a measure of quality. Therefore, compe-
tition might affect ETT. Under competitive pressure, airlines have incentives 
to provide higher quality of service to keep their market share. To measure 
the impact of competition on ETT, we include the level of concentration for 
each market, i.e. a city-pair, through the Herfindahl Hirschman Index, or 
HHI. HHICitySeats is calculated in terms of seats supplied on a city pair. 
As shown in the literature (Brueckner, Lee, and Singer 2013) competition 

 
9 A detailed description on the indicator construction can be found on Appendix A. 



9 
 

among airlines may occur at city level rather than at airport level. Thus, we 
consider city-city markets rather than airport-airport markets for the HHI 
computation. Following Cao et al. (2017), we introduce HHI in its basic 
form and in its square form, allowing a non-linear relationship between com-
petition and excess travel time. We expect the excess travel time to decrease 
with competition. 

We introduce a measure of congestion at origin and destination airport 
(CongestionAtOrigin and CongestionAtDestination). We want to study the 
number of landings and enplanements around each of the considered flights. 
To reduce the computational burden, we split the day into 48 half an hour 
interval and compute the total number of movements at each airport for 
each 30-minute interval. For each flight, we add the total number of move-
ments during the current, previous and next half an hour, i.e., we measure 
congestion during a one-hour and half time period around the considered 
flight departure or arrival. Each flight is therefore associated with two con-
gestion levels at departure and arrival airports. We transform the congestion 
variables into their logarithm form to smooth the impact of the highest 
congestion levels. We expect congestion to affect positively excess travel 
time. 

The literature has also largely studied the internalization of congestion by 
airlines with large market shares at airports. The results in the literature are 
mixed. To control for the internalization of congestion, we include in the 
estimation the airline average flight shares at the origin and destination 
airports, AirlineAirportShare, as in Mazzeo (2003).  

We create three different dummies for the recoded airlines: iRECowned 
indicates if the feeder/regional is owned by a major, iRECone indicates if 
the feeder/regional is independent but works exclusively for one major and 
iRECmany indicates if the feeder/regional is independent and works for 
more than one major. Higher levels of integration should represent lower 
levels of excess travel time as suggested by Forbes and Lederman (2009). 
The estimated coefficients will be interpreted as a deviation compared to the 
referent situation where airline is a legacy carrier. 

We include variables controlling for the number of proposed seats in each 
flight (Seats). The impact of the number of seats is unclear as airlines could 
put more efforts to reduce delays for larger aircraft and simultaneously suffer 
longer delays due to the difficulty to manage a larger volume of customers 
and luggage. 
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Table 1. Variables, definitions and summary statistics 

Variable Description Mean Std. Dev. 

ETT Excess travel time at flight level measured in minutes 23.3461 39.5524 

NetCenterGrowth Yearly evolution of the airline network topology ranging 
from point-to-point configuration to a star topology 

-0.0520 1.0125 

NetWeaveGrowth Yearly evolution of the richness of alternative routings 
proposed by an airline 

0.0085 0.7645 

NetConnectivityGrowth Yearly evolution of the number of potential connections 
proposed by an airline  

0.0008 0.0389 

NetSizeGrowth Yearly evolution of the number of connections that are 
offered by an airline with nonstop flights 

30.5357 88.5129 

HHICitySeats Monthly Herfindahl-Hirschman Index (HHI) between 
origin and destination cities according to offered seats 

0.6587 0.2755 

AirlineAirportShare Airline’s share of total flights, monthly average at origin 
and destination airports 

0.8654 0.3746 

iRECowned Dummy indicating if a flight is operated by a feeder/re-
gional owned by a major carrier 

0.0711 0.2569 

iRECone Dummy indicating if a flight is operated by an inde-
pendent feeder/regional working exclusively for one ma-
jor carrier 

0.0228 0.1494 

iRECmany Dummy indicating if a flight is operated by an inde-
pendent feeder/regional working simultaneously for sev-
eral major carriers 

0.1995 0.3996 

Seats Number of hundred seats available per flight 1.1953 0.4777 
OriginAirportSize  Monthly total thousand movements at origin airport 22.2829 19.5727 
DestinationAirportSize Monthly total thousand movements at destination air-

port 
22.1867 19.5336 

CongestionAtOrigin  
(log) 

Number of movements at origin airport in a one hour 
and half period around the departure time of the flight 

63.7744 59.4829 

CongestionAtDestination  
(log) 

Number of movements at destination airport in a one 
hour and half period around the arrival time of the 
flight 

62.8009 59.9360 

JetFuelSpotPrice Monthly jet fuel oil spot price, dollars per gallon 2.3451 0.7074 
Instruments Description Mean Std. Dev. 
RouteMovements Monthly total hundred movements on an airport pair  2.7345 2.1956 
AvMSOR  Monthly carrier average market share measured at the 

airports non present in the considered route 
0.3193 0.1078 

DestTotPopulation Total population at destination Metropolitan area (hun-
dred thousands) 

43.7925 44.9031 

DestAvIncome Average income (GDP) in thousand US dollars at desti-
nation Metropolitan area 

58.072 10.2281 
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Figure 1. UA and DL average excess travel time per departing hour 

Two variables are introduced to control the impact of airport size over 
excess travel time: the total monthly movements, arrival and departures, at 
each airport and its square (OriginAirportSize and DestinationAirportSize). 
Both variables are measured at origin and destination allowing for different 
effects. We expect those variables to present a positive effect over excess 
travel time. 

We also include monthly jet fuel spot prices, JetFuelSpotPrice. The ex-
pected effect is not clear as most of the airlines hedge jet fuel acquisitions. 

Finally, we have chosen to include 37 dummies controlling for departures 
each 30 minutes between 5am and 12pm. We have excluded flights between 
midnight and 5 am as they represent less than 0.3% of the sample. We 
observe that excess travel time is affected by the departing hour, as shows 
figure 1. For most of the airlines, ETT increases during the day up to 6pm 
and then decreases until mid-night. We expect the values of the dummy 
coefficients to respect this average tendency. 

 

4 Estimation 
 

The use of panel data requires several tests on the database to avoid 
misleading estimation methods. First, we test for the heteroskedasticity of 
the errors. The Wald test rejects the null assumption of homoskedasticity.10 
We use robust errors for the regression. The Brush Pagan test controlling 

 
10 The modified Wald Chi2-Probability for groupwise heteroskedasticity in fixed effect regression 

model is Prob>Chi2=0.0000. We can reject the null assumption of homoskedasticity. 
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the independence between errors of the model and exogenous variables re-
jects the null assumption of independence of the errors.11 The model is spec-
ified as a fixed effect model rather than a random effect model. 

The sense of causality between competition (HHICitySeats) and ETT is 
uncertain, leading to potential endogeneity issues when using an HHI meas-
ure as a proxy for competition on a market. Indeed, ETT can affect the 
airline’s market share, and therefore the HHI, as customers can switch to 
competitor in case of higher ETT. Therefore, ETT affects competition on a 
given market. For the same reasons, the sense of causality between airport 
concentration (AirlineAirportShare) and ETT is also uncertain. The varia-
bles HHICitySeats and AirlineAirportShare could face endogeneity bias in 
the absence of endogeneity treatment. 

To control these endogeneity concerns, we instrument the market compe-
tition and airport concentration by selecting variables that affect their re-
spective levels through size. First, we include RouteMovements, measured 
as the total number of proposed flights between an airport pair. Second, we 
consider Hausman-type instruments similarly to Bendinelli et al. (2016), i.e., 
the average market share of the carriers measured at all the airports but 
airports of the considered route (AvMSOR). Third, we introduce socioeco-
nomic variables that can affect competition at both levels, market and air-
port, such as the total population at destination metropolitan area (DestTot-
Population) and the average household income at the destination metropol-
itan areas (DestAvIncome). Because we introduce a nonlinear relationship 
between concentration at market level and excess travel time, we include 
the level and squared values of RouteMovements.12 Several set of instru-
ments have been tested. In particular, the lag of the endogenous variables 
HHICitySeats has been tested in place of the RouteMovements.13 The results 
are robust to these changes in instruments. 

We perform a two stage least square estimation of the following baseline 
model: 

 
 ijt it ijt ijt ij t ijtETT I Comp Z d d          , (1) 

 
11 The Chibar2-Probability test of the Brush and Pagan Lagragian multilier test for random effects 

takes the value: Prob>Chibar2=0.0000. We can reject the null assumption of independence of the 
errors and we specify the model as a fixed effect model. 

12 Nonlinearity was also tested for the concentration at the airport level, however results were 
nonconlusive. 

13 The results are available upon requests. 
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where the dependent variable is the excess travel time, ETT, for a flight 
operated by carrier i, on route (airport pair) j, at date t, and is measured on 
minutes. Iit is a vector including the four indicators allowing to measure the 
airlines’ network evolution, our main interest variables. Compijt includes the 
competition measures at airport-airline and market (city-pair) level. The 
remaining control variables are included in vector Zijt and are airline and/or 
route and/or time dependent. Finally, we include dummies dij, controlling 
carrier and airport of origin and destination and dt, controlling for time fixed 
effects. 𝜖௜௝௧ represents the error term of the model. Table 2 presents the es-
timation results for the baseline model and four alternative samples (models 
2-4) and variable combinations (model 5). 

Several tests are performed to validate the instruments. First, the un-
deridentification test checks the explanatory power of the instruments vali-
dating that the model is identified (Kleibergen-Paap LM Chi-sq P-
val=0.0000). Two tests are performed to study if weak identification may 
be a problem. The Cragg-Donald Wald F test and the Kleibergen-Paap 
Wald F test. The latter is more appropriate in settings with several endog-
enous explanatory variables and the presence of heteroskedasticity. Stock 
and Yogo (2005) provide critical values for this test for up to three endoge-
nous variables. We can confirm the absence of weak instruments, as the 
obtained statistics are higher than the critical values in the three endogenous 
variables scenarios. 

The Hansen J test for overidentifying restrictions shows that we cannot 
reject the null hypothesis of our instruments being uncorrelated with the 
error term (Chi-sq(3) P-val = 0.288): the selected set of instruments is valid 
for the estimation of the model. Finally, the endogeneity test of endogenous 
regressors, with Chi2(3) P-Val=0.000, confirms that we can reject exogene-
ity of the considered regressors. 

Among the network indicators, NetSizeGrowth estimated parameter is 
positive and statistically significant in all the tested model configurations, 
suggesting that airlines serving more airport-pairs suffer larger ETT. 
NetConnectivityGrowth and NetWeaveGrowth are statistically significant 
and present a positive effect in all model specifications, meaning that on 
average excess travel time increases when airlines organize flights around 
banks or modify their network structure towards a point-to-point network. 
NetCenterGrowth is not significant in most of the analysis considered. 
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Table 2. Estimation results 

 (1) (2) (3) (4) (5) 
VARIABLES Base Model Large 

carriers 
Large 

airports 
Permanent 
Markets 

No network 
indicator 

NetCenterGrowth 0.00148 -0.126*** -0.0405 -0.0240  
 (0.0286) (0.0464) (0.0355) (0.0292)  
NetWeaveGrowth 0.235*** 0.393*** 0.0966** 0.263***  
 (0.0365) (0.0554) (0.0435) (0.0370)  
NetConnectivity-  2.123*** 12.40*** 2.815*** 1.978***  
Growth (0.575) (3.100) (0.670) (0.586)  
NetSizeGrowth 0.00901*** 0.00540*** 0.0116*** 0.00866***  
 (0.000390) (0.000456) (0.000519) (0.000407)  
HHI city seats -106.7*** -137.1*** -113.3*** -107.3*** -126.9*** 
 (10.48) (11.99) (12.96) (10.59) (10.31) 
HHI city seats^2 81.22*** 103.5*** 92.02*** 81.70*** 95.76*** 
 (7.784) (8.825) (10.02) (7.869) (7.662) 
Airline Airport  14.36*** 24.23*** 7.543*** 13.64*** 28.76*** 
Share (1.147) (1.274) (1.834) (1.219) (0.888) 
Fully integrated  3.359*** 2.787*** 5.784*** 3.026*** 2.570*** 
feeder (0.239) (0.249) (0.306) (0.261) (0.238) 
Unique Feeder 7.484*** 6.640*** 6.920*** 8.355*** 7.624*** 
 (0.225) (0.265) (0.318) (0.243) (0.225) 
Multiple feeder 7.160*** 7.023*** 6.942*** 7.093*** 7.189*** 
 (0.161) (0.174) (0.190) (0.166) (0.161) 
Seats 3.313*** 2.694*** 3.631*** 3.321*** 2.976*** 
 (0.151) (0.169) (0.166) (0.154) (0.150) 
Origin Airport Size -0.0970*** -0.151*** 0.120*** -0.0814*** -0.145*** 
 (0.0220) (0.0243) (0.0253) (0.0231) (0.0217) 
Origin Airport  0.000565** 0.00124*** -0.00269*** 0.000284 0.00165*** 
Size^2 (0.000262) (0.000288) (0.000323) (0.000270) (0.000251) 
Destination Airport  -0.254*** -0.329*** -0.0925*** -0.263*** -0.288*** 
Size (0.0219) (0.0237) (0.0247) (0.0230) (0.0218) 
Destination  0.00197*** 0.00279*** -0.000878*** 0.00195*** 0.00291*** 
Airport Size^2 (0.000276) (0.000298) (0.000338) (0.000282) (0.000268) 
Airport Congestion at 
Origin (log) 

0.238*** 0.207** 0.133 0.216** 0.461*** 
(0.0840) (0.0951) (0.106) (0.0878) (0.0834) 

Airport Congestion  1.680*** 1.788*** 2.408*** 1.769*** 1.798*** 
at Destination (log) (0.0588) (0.0660) (0.0690) (0.0607) (0.0586) 
Jet Fuel Spot Price 
 

-0.191*** 0.129** -0.500*** -0.129*** 0.191*** 
(0.0441) (0.0509) (0.0561) (0.0471) (0.0417) 

Fixed effects YES YES YES YES YES 
Observations 3,970,831 3,355,339 2,878,438 3,653,809 3,970,831 
Number of groups 8,341 6,022 5,624 6,140 8,341 
Log Likelihood -2.010e+07 -1.700e+07 -1.450e+07 -1.850e+07 -2.010e+07 
R² 0.023 0.020 0.026 0.024 0.020 

Note: Robust standard errors in parentheses. All the regressions include fixed effects for 
route and carrier, day of the week and departure time with dummies for intervals of 30 
minutes. *** p<0.01, ** p<0.05, * p<0.1 
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In order to be able to measure the impact of the network evolution on 
excess travel time, we present several figures representing the marginal effect 
of the indicators over ETT and the indicators evolution across time. Figure 
2 presents the evolutions for Jetblue (B6) and Southwest (WN) while Figure 
3 presents the evolution for Delta (DL) and American Airlines (AA). During 
the period of analysis most of the main US airlines have experienced mergers 
that can shock the evolution of the network indicators.14 When a merger 
occurred, the merging period is represented in the figures by a shadow area.  

Note that the two pairs of graphs present different scales. In all the cases, 
the top graph represents the marginal effect of the network indicators over 
ETT, while the bottom one represents the indicators evolution. All the net-
work indicators are measured on differences and for scale imperatives, Net-
SizeGrowth has been harmonized and is measured in hundreds of city pairs. 

In terms of network evolution, we do not observe a clear pattern among 
airlines as the network evolution differs across them. None of the network 
indicator seems to be perfectly correlated with another over the period of 
analysis.15 First, on Figure 2, we represent two LCCs, Southwest Airlines 
(WN) that is usually studied on the literature and Jet Blue (B6), as it is the 
largest airline not merging during the studied period.16  
  

 
14 During the considered time frame six mergers took place among the US domestic carriers. 

Delta Airlines (DL) and Northwest Airlines (NW) merged between 2008 and 2010. From 2010, these 
two airlines are considered as one. United Airlines (UA) and Continental Airlines (CO) merged 
between 2010 and 2012. From 2012, these two airlines are considered as one. Southwest Airlines (WN) 
acquired AirTran Airways (FL) between 2010 and 2014. From 2015, these two airlines are considered 
as one. Frontier Airlines (F9) and Midwest Airlines (YX) merged in 2010. From 2011, these two 
airlines are considered as one. American Airlines (AA) and US Airways (US) merged between 2013 
and 2015. From 2016, these two airlines are considered as one. Finally, Alaska Airlines (AS) and 
Virgin America (VX) merged between 2016 and 2018. From 2018, these two airlines are considered 
as one. 

15 By construction the two indicators built from PCA are orthogonal. 
16 The grey area corresponds to the period of the merger between Southwest Airlines and Airtran 

Airways. 
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Figure 2. Marginal effects of network indicator on Excess Travel Time – Jetblue 
(B6) and Southwest Airlines (WN) 

 

  

Figure 3. Marginal effects of network indicator on Excess Travel Time – Delta Air-
lines (DL) and American Airlines (AA) 
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The average impact over ETT is small ranging between -0.22 and 0.48 
average variation in minutes of ETT.17 Other LCCs, such as Frontier Air-
lines (F9), present higher impacts, equivalent to the ones presented on Fig-
ure 3 for Delta Airlines and American Airlines.18 These two airlines show a 
larger impact of the network evolution over ETT, ranging between -0.61 and 
2.32 average variation in minutes of ETT.19 The marginal impact is larger 
and positive during the merger period as shown in Figure 3. Up to our 
knowledge there is no study analyzing the impact of mergers on ETT, how-
ever several studies find a positive impact of mergers on delays as in Steven 
et al. (2016) or Das (2019).  

Figure 2 and Figure 3 show that, post-merger, as the network evolution 
stabilizes, the variation in ETT stabilizes as well. Our continuous indicators 
allow to observe that the evolution can differ during and after mergers as 
for instance Delta is able to reduce ETT after the merger period while AA 
requires a longer period to integrate both airlines. 

With respect to the competition measures, first we obtain a nonlinear 
relationship between competition and ETT at the city pair level, with ETT 
decreasing when competition increases from a monopoly towards competi-
tion at HHI=0.66 and increasing onwards. Therefore, some degree of com-
petition reduces ETT, while extreme cases (monopoly and highly competi-
tive city pairs) suffer longer ETT. Second, the airline airport share shows a 
positive effect, which suggest a non internalization of delays externalities by 
airlines. In this sense this work would follow the results suggested by Mazzeo 
(2003), Rupp (2009) or Bilotkach and Lakew (2019). As can be seen in Table 
2, these results are not affected by the omission of the network indicators in 
the estimation as shows model (5). 

The other control variables present the usual results. Feeders present on 
average higher ETT, however integrated feeders present lower levels of ETT 
than non-integrated ones. Higher levels of congestion imply a larger ETT 
although the effect is larger at the destination airport (as in Cao et al. 
(2017)). Seats present a positive effect (as in Mazzeo (2003)) suggesting that 
larger aircrafts may need more time on average to perform the flight given 
that larger aircrafts will often carry more passengers and luggage. Jet fuel 

 
17 The average ETT over the sample is 32.26 minutes for B6, 21.91 minutes for F9 and 21.19 

minutes for WN.   
18 Grey areas correspond to the period of the mergers between Delta Airines and Northwest 

Airlines and between United Airlines and Continental Airlines. 
19 The average ETT over the sample is 24.76 minutes for AA and 23.10 minutes for DL.  
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prices present a negative sign however the effect is not robust among the 
different regressions. 

Finally, Figure 4 presents the estimated fixed effects according to the de-
parting hour. Everything else constant, excess travel time can differ on av-
erage up to 20 minutes according to the departing hour, with the highest 
levels observed between 6 and 7 pm. This is consistent with the descriptive 
statistics represented in Figure 1. With respect to the day of the week, Mon-
days, Thursdays and Fridays present the highest ETT while Wednesday and 
Saturdays present the lowest values. 

We implement some series of robustness check in order to test the validity 
of the estimated model. We use three different subsamples usually analyzed 
in the literature. The results are largely stable confirming the robustness of 
the estimated model as shows Table 2. 

We first estimate the model focusing on the five main US carriers (model 
(2)): American Airlines (AA), Southwest Airlines (WN), United Airways 
(UA), Delta Airlines (DL) and US Airways (US). The sign and significance 
of the estimated coefficients are unchanged, except for NetCenterGrowth 
and JetFuelprice. Their values remain on the same magnitude. 

We estimate the model on large airports with more than 1,380 thousand 
flights per month. 20 The results (model (3)) are robust to the selection of 
large airports. 

Finally, we regress the model on the markets which continue during the 
full period of observation (model (4)). This test allows avoiding the potential 
impact of created or vanished markets. The results confirm the robustness 
of the estimated model. The estimated coefficients are close to the ones of 
Base model (1). 

 

 
20 This subsample represents the 25th percent largest airports. 
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Figure 4. Fixed effect estimation for the departing hour dummies 

 

5 Excess travel time versus delays 
 
Although ETT and delays are closely related, the relationship is not nec-

essarily linear as airlines introduce buffer time in their schedules to control 
for delays. ETT is an indicator of airline efficiency in terms of travelling 
time. Companies with lower ETT move passengers faster across airports. 
However, passengers are not usually aware of this and generally only observe 
delays, measured as the difference between real and scheduled arrival times. 
In our sample, over a half of the observed flights arrive before schedule and 
“suffer” negative delays. As Rupp (2009) we estimate our baseline model 
using several delay measures as endogenous variable to test if the network 
indicators are still relevant to explain delays. The results that are presented 
in Table 3 must be interpreted as a robustness analysis for our main results 
on ETT. Indeed, for a proper estimation of the impact of the network con-
figuration on delays the airline buffer choices should be modelled, this is left 
for further research. 

In column 2 (Table 3) we use the observed arrival delays (including both 
positive and negative delays) as endogenous variable. Several changes are 
noticeable with respect to our main results on ETT presented on model 1. 
First, NetCenterGrowth becomes significant and negative, meaning that fly-
ing with carriers with networks moving towards a star configuration enjoy 
lower arrival delays probably due to larger buffer times. NetSizeGrowth re-
mains positive and significant suggesting that bigger airlines with increasing 
network sizes suffer longer ETT and longer delays.  
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Table 3. Delays estimation results 

 (1) (2) (3) (4) (5) 
VARIABLES Base Model 

ETT 
Delay (+/-) Delay≥15 Delay≥30 Delay≥60 

NetCenterGrowth 0.00148 -0.205*** 1.630*** 2.188*** 2.595*** 
 (0.0286) (0.0286) (0.132) (0.198) (0.332) 
NetWeaveGrowth 0.235*** 0.408*** 0.308** 0.0462 -0.785** 
 (0.0365) (0.0366) (0.135) (0.199) (0.332) 
NetConnectivity 2.123*** 6.995*** -16.83*** -23.37*** -24.93*** 
Growth (0.575) (0.576) (2.099) (2.934) (4.595) 
NetSizeGrowth 0.00901*** 0.00926*** 0.000673 0.00299 0.0104*** 
 (0.000390) (0.000390) (0.00137) (0.00190) (0.00294) 
HHI city seats -106.7*** -106.6*** -137.9*** -206.0*** -265.3*** 
 (10.48) (10.43) (31.22) (42.48) (67.66) 
HHIcity seats^2 81.22*** 81.55*** 100.4*** 151.8*** 197.4*** 
 (7.784) (7.745) (23.44) (31.96) (50.94) 
Airport Share 14.36*** 7.761*** 66.80*** 84.30*** 95.93*** 
 (1.147) (1.148) (4.003) (5.457) (8.342) 
Fully integrated  3.359*** 4.740*** -11.32*** -13.20*** -13.59*** 

feeder (0.239) (0.239) (0.844) (1.191) (1.930) 
Unique Feeder 7.484*** 8.749*** -3.399*** -5.050*** -7.466*** 
 (0.225) (0.225) (0.802) (1.116) (1.722) 
Multiple feeder 7.160*** 8.380*** 1.321** 0.674 -0.566 
 (0.161) (0.161) (0.604) (0.849) (1.338) 
Seats 3.313*** 4.735*** 0.183 1.849** 4.964*** 
 (0.151) (0.151) (0.545) (0.789) (1.276) 
Origin Airport Size -0.0970*** -0.0839*** 0.587*** 0.721*** 0.836*** 
 (0.0220) (0.0219) (0.0806) (0.114) (0.181) 
Origin Airport  0.000565** 0.00126*** -0.00450*** -0.00511*** -0.00607*** 
Size^2 (0.000262) (0.000261) (0.000923) (0.00130) (0.00206) 
Destination Airport  -0.254*** -0.217*** 0.345*** 0.520*** 0.790*** 
Size (0.0219) (0.0219) (0.0810) (0.115) (0.183) 
Destination Airport  0.00197*** 0.00173*** -0.00602*** -0.00775*** -0.0101*** 
Size^2 (0.000276) (0.000276) (0.00103) (0.00145) (0.00226) 
Airport Congestion at 
Origin (log) 

0.238*** -0.725*** -10.97*** -13.09*** -14.01*** 
(0.0840) (0.0840) (0.378) (0.543) (0.868) 

Airport Congestion  1.680*** 0.522*** -4.154*** -4.804*** -5.329*** 
at Destination (log) (0.0588) (0.0588) (0.199) (0.285) (0.471) 
Jet Fuel Spot Price 
 

-0.191*** 0.505*** -0.865*** -0.263 -0.680* 
(0.0441) (0.0441) (0.160) (0.223) (0.353) 

Route and Carrier FE YES YES YES YES YES 
Observations 3,970,831 3,970,831 778,673 480,287 241,032 
Number of groups 8,341 8,341 7,995 7,745 7,237 
Log Likelihood -2.010e+07 -2.010e+07 -4.296e+06 -2.701e+06 -1.386e+06 
R-squared 0.023 0.020 0.002 -0.001 0.001 
Note: Robust standard errors in parentheses. All the regressions include fixed effects for route and 
carrier, year, day of the week and departure time with dummies for intervals of 30 minutes. *** 
p<0.01, ** p<0.05, * p<0.1 
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NetConnectivityGrowth remains statistically significant and positive, how-
ever the impact is tripled: an increasing network connectivity leads to higher 
delays. This suggests that buffer time could be on average shorter, compared 
to airlines with decreasing connectivity values. Interestingly NetWeave-
Growth and NetCenterGrowth present opposite effects over delays, meaning 
that networks moving towards a star configuration with a central airport 
suffer on average less delays. No significant change is observed for the con-
trol variables. 

The Federal Aviation Administration consider as delayed flights with an 
arrival delay larger than or equal to 15 minutes.21 We perform the regression 
in three subsamples: delays larger than 15, 30 and 60 minutes respectively 
to check if the network indicators may impact differently larger delays. The 
results in Table 3 confirm that the network indicators remain relevant to 
explain larger delays, although they are not all significant in all specifications 
and their impact differ from the base model (1) or from model (2). For 
instance, in the three scenarii the effects of NetCenterGrowth and NetCon-
nectivityGrowth are similar but opposite compared to models (1) and (2). 
Longer delays should be the focus of further analysis including a thoughtful 
analysis of buffer choices. There are effects that cannot be capture in our 
analysis, as shown by the differences in impact of the other control variables. 
 

6 Conclusion 
Our analysis contributes to the empirical literature on the measure of the 

impact of airline network organization on efficiency. The relationship be-
tween hubs and airline’s efficiency (delays, cost, profits…) has been a concern 
in the literature for decades. However, airline’s networks evolve continuously 
over time and hubbing is one network characteristic among several charac-
teristics that describe a network configuration.  

This study represents a first attempt to measure the impact of airlines 
network evolution over excess travel time. As consumers do not generally 
observe excess travel time but delays, we also study the impact of the net-
work evolution over observed delays. We describe network evolution thanks 
to four continuous indicators, which allow describing the full range of exist-
ing networks. In addition to the network evolution impact, we analyze the 

 
21 20,43% of our sample present delays larger than 15 minutes. 
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effect of competition and congestion at airport and market level respectively, 
to measure the potential effect of airline dominance or internalization of 
congestion on efficiency. 

 All our estimations suggest that airlines increasing the number of desti-
nations served perform worse in terms of excess travel time and delays. Also, 
according to our estimations, when airlines increase the number of  alterna-
tive routings, excess travel time increases so that a network organization 
that moves towards a point-to-point structure leads to more excess travel 
time. Increases in connectivity leads as well to more excess travel time: re-
inforcing network organization around banks implies more excess travel time. 
Instead, when airlines move their networks towards a star structure, orga-
nized around a central airport, we do not observe a significant effect over 
ETT, unless flight arrivals and departures are organized on banks.  

We have studied the marginal effects of the indicators over ETT and we 
do not observe a common trend among all airlines as network evolutions 
differ among them. The only exception is mergers that represent an increase 
of ETT in most of the cases although some of the airlines are able to reduce 
over time such increase thanks to the integration of the airlines’ networks. 

From our results, there is no precise network configuration evolution that 
seems to perform better in terms of excess travel time. At least neither a 
perfect star nor a fully connected network, are optimal to reduce excess 
travel time. This result is consistent with previous results in the literature 
stating that a mixed network organization could lead to better performances 
in terms of cost (Wojahn 2001).  

When considering market competition, our results indicate that a certain 
level of competition is efficient to reduce both excess travel time and delays. 
The incentives to improve efficiency seems to be higher in oligopolistic mar-
kets, while more competitive markets or markets where concentration is high, 
lead to higher airline inefficiencies. This result could settle the different re-
sults found in the literature (Goolsbee et Syverson 2005; Prince et Simon 
2015; Gil et Kim 2018; Das 2019) 

Finally, when airlines have a larger presence at airports, the excess travel 
time increases. This result shows that when the dominance increases at air-
port, the airline does not internalize the externalities created by its delays.  

 Our study still presents several limitations. First, international flights 
should also be considered on the ETT analysis. The network indicators are 
built considering international flights, given that they determine the full 
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network, while we only observe delays for domestic flights. Additionally, all 
our information is compiled from supply sources. Several studies include 
competition measures computed from demand. Finally, we have studied 
ETT and delays but not buffers that is left for further research. 
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Appendix A: PCA and connectivity ratio 
 
Following the work proposed by Roucolle et al. (2020) we study 11 graph theory 
measures and we add a measure of connectivity to include properties linked to hubs 
and not reflected by the considered topological measures. Following Alderighi et al. 
(2007) and Bootsma (1997) the connectivity ratio for an airline network is defined 
as the number of one-stop city pairs divided by the total number of non-stop and 
one-stop city-pairs. 

To calculate the connectivity ratio, we use the scheduled flight dataset and com-
pile yearly for each operating carrier the number of connecting flights. We consider 
only one-stop connecting flights. The origin and destinations are considered at the 
city level while connections must be done at the airport level. For instance, if a 
passenger wants to fly from Bozeman (BZN) to Washington (DCA, IAD), there 
exists no direct flight. For each airline we measure how many connecting flights 
through an airport (not a city) can be proposed to attain any of the airports at the 
origin and destination cities. The connecting flights must satisfy several conditions:  

 minimum of two flights proposed per day (in order to reduce computation 
time); 

 keep city-pairs for which there exists at least one possible non-stop connection 
on each direction. 

 min-max connection time at an airport (different for domestic and interna-
tional flights); 

 factor-1.25 or factor 1.50 to identify possible one-stop connections between 
two airports(cities); 

We describe the last two conditions in detail. 

Connection Time Condition  

For the condition on the connection time TCc, Table A1 shows the min-Max crite-
rion, minimum (mtc) and maximum (MTC), at the airport used by US carriers for 
different types of connection. 
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Table A1.  Minimum and maximum times at an airport used by US carriers 
for different types of connection 

Type of connection mtc MTC 
US-US 45 180 
US-Int, Int-US, Int-Int 90 300 
US –domestic market with two US unincorporated 
territories, Puerto Rico and US Virgin Island 
Int – international 

MTC values are the same as suggested by Bootsma (1997). The mtc value for 
US-US connection type is taken as in Alderighi et al. (2007) for Europe–Europe 
connections. As for mtc value for international flight connections, Bootsma (1997) 
set it to be 120 minutes. We reduce this value to 90 minutes considering it more 
adequate for the flight operated by US airlines in the study period. 

Factor-1.25 or Factor-1.50 in Identifying One-Stop Connections 

With the previous conditions, we could end up counting as possible connections 
paths that are highly unreasonable. If we take the previous example, a flight be-
tween Bozeman (BZN) to Washington (DCA, IAD) with a connection via Anchor-
age in Alaska would satisfy the previous conditions. The criterion proposed by 
Bootsma (1997) to identify one-stop reasonable connections paths between two 
airports(cities) is based on the difference between the time of the connecting flight 
and the time of a direct flight (if a direct flight is not proposed a theoretical time 
is computed). More precisely, Bootsma proposes the “1.25” criterion as follows, 

max(𝑐𝑓) = max ቀ
்௜௠௘ ௢௙ ௢௡௘ି௦௧௢௣ ௖௢௡௡௘௖௧௜௢௡

்௜௠௘ ௢௙ ௗ௜௥௘௖௧ ௖௢௡௡௘௧௜௢௡
ቁ = 1.25. 

 
The routing (circuity) factor 𝑐𝑓 = 𝐼𝐷𝑇/𝐷𝑇𝑇, where 

IDT – actual in-flight time indirect connection; 

DTT – estimated in-flight time of the direct connection. 

Maximum 𝑐𝑓 excludes the ‘back-tracking paths’, not attractive for passengers. 
The “1.25 criterion” thus imposes a connecting flight to last at most 1.25 times a 
direct one. 

To compute IDT, we use the dataset of possible one-stop airport connections 
compiled with min-Max connection time condition. The sum of the two connecting 
flight durations plus the difference between arrival and departure times (satisfying 
mtc and MTC conditions) give the total flight time of a possible one-stop connec-
tion, IDT. 

 The computation of estimated time of non-stop flight connection between two 
airports(cities), DTT, depends on the city pairs. If the carrier already operates a 
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direct flight, the flight time of the direct connection is available on the route. If the 
considered carrier does not operate a flight but other carriers do, their flight time 
can be considered as a proxy. Still there exists thousands of city pairs combinations 
with no direct flights, in such cases DTT estimation requires the following two 
procedures: 

1. estimating the flight distance between any two geolocations (in miles) and 
2. determining the parameters to calculate flight duration based on this dis-

tance. 
We calculate the distance (in miles) between an airport(city)-pair from the in-

formation on longitude/latitude. The estimated flight distance between two air-
ports(cities), EDistMl_Apt and EDistMl_City respectively, can be obtained using 
the Haversine formula. This formula calculates the distance between two geoloca-
tions as a shortest distance over the earth’s surface ignoring any hills: 

𝑎 = sinଶ ቀ
∆ఝ

ଶ
ቁ + cos 𝜑ଵ ∙ cos 𝜑ଶ ∙ sinଶ ቀ

∆ఒ

ଶ
ቁ, 

𝑐 = 2 ∙ atan 2(√𝑎, ඥ(1 − 𝑎)), 
𝑑 = 𝑅 ∙ 𝑐, 

where 𝜑 and 𝜆 are latitude and longitude respectively, and R is the Earth’s radius  
(6,371km=3,959miles). The use of this formula needs the 𝜑 and 𝜆 to be expressed 
in radians.22 

The SAS function GEODIST (see more in O’Day (2017), Zdeb (2010)) is based 
on the Haversine formula and allows calculating the distance in kilometers, miles, 
degrees or radians. The input format of the latitude/longitude values can be degrees 
or radians. In our database the airport(city) coordinates are expressed in decimals, 
so before applying this function we converted them into radians by multiplying 
each one by 𝜋/180. The options 'RM' was specified (R – for the input format in 
radians of the latitude and longitude variables, M – for the output format in miles 
of the geodetic distance). We used the SAS function GEODIST to define variables 
EDistMl_City, EDistMl_Apt. 

The “City”-variable [EDistMl_City] will be used when deriving the estimated 
non-stop flight time, DTT, between two cities. The “Apt”-variable [EDistMl_Apt] 
is to be taken as a dependent variable in the Time-Distance linear regression anal-
ysis. The discovered parameter estimators of the regression model will be further 
used to calculate the estimated non-stop flight time, i.e. DTT, between any two 
airports(cities) based on the estimated distance. 

 
22 For instance, to convert latitude and longitude of the JFK airport in New York into radians, these 

coordinates in degrees.minutes.seconds format (40°38′23″N 073°46′44″W) must be first converted into decimal 
format (40.6441666667, -73.7822222222), then into radians by multiplying each one by 𝜋/180, so that latitude 
𝜑 = 0.709374530 and longitude 𝜆 = −1.287742707. 
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For the non-stop flights in August 2007 for each origin-destination airport-pair 
(no matter flight direction)23, Table A2 shows descriptive statistics of the differ-
ences between estimated distances returned by the SAS function GEODIST and 
the actual distances as given in OAG data. We denote as resDistMl_Apt the dif-
ference between the distances at the airport-pair level and resDistMl_City for city-
pairs. The table is followed by the figures of their distributions. We can see that 
GEODIST calculates distance accurately with respect to the OAG database. In 
75% of observations the difference resDistMl_Apt for the airport pairs does not 
exceed 3 miles (4.82803 km) and no more than 12 miles (19.3121km) in 95% of 
observations. 

Table A2.  Descriptive statistics of resDistMl_Apt and resDistMl_City for 
US airlines 

Variable 
Mean  
(St.Dev.) 

Quantiles (%) 
0 1 5 10 25 50 75 
   90 95 99 100 

resDistMl_Apt 2.76836511 0 0 0 0 1 1 3 
 (3.64905766)    7 12 17 22 
resDistMl_City 8.9190372 0 0 0 1 2 6 12 
 (9.80025702)    20 28 49 76 
Number of observations (number of flight segments): 3199 

 

Distribution of resDistMl_Apt Distribution of resDistMl_City 

The estimated distance between two airports, calculated as described in the 
previous step, serves as a basis to obtain estimated non-stop flight time between 
the two airports. The plot of the data in figure A1 (FDurM on DistMl) shows a 
generally linear relationship, on average, with a positive slope. 

 
23 Notice that the non-stop flight distance between two airports as given in OAG database remains the same 

no matter the flight direction or carrier who operates the flight. 
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Figure A1. Linear regression analysis of FDurM on DistMl 

 
The linear regression analysis of the model FDurtM = 𝑎 + 𝑏 ∙ DistMl  for the 

data in August 2007 returns parameters â = 43.511  and 𝑏෠ = 0.1171. The constant 
term 𝑎ො captures the takeoff-landing times (~22 minutes for each takeoff or landing). 
The coefficient 𝑏෠ shows that 620 mile (or ~1000km) increase in flight distance adds  
0.1171*620 ≈ 73 minutes to the total flight duration. This parameter is associated 
with an average aircraft speed of 512.38 mi/h. 

 To obtain estimated non-stop flight time, DTT, between any two air-
ports(cities) in our database, we use the formula EFDurtM = 𝑎ො + 𝑏෠ ∙ EDistMl_City, 
where 𝑎ො,  𝑏෡  are parameter estimates obtained from the linear regression of FDurM 
on DistMl yearly on the data in August. Table A3 shows the parameter estimates 
for each year from 2007-2019 together with root-mean-squared error, i.e. the error 
for differing the distance of a data point above or below the fitted line. 

Table A3.  Linear regression of FDurM on DistMl 

Year(August) 𝑏෠ 𝑎ො RMSE 
2008 43.51059368 0.1170995058 12.416085919 
2009 43.550579105 0.1175595399 13.064568068 
2010 43.189051816 0.1171230161 12.861380355 
2011 43.245293807 0.1167206194 12.505426433 
2012 42.924182005 0.1169540596 12.329147971 
2013 42.965673425 0.1167822994 18.219435179 
2014 43.398446349 0.1166991177 12.000168411 
2015 45.057112423 0.1170881167 13.060806043 
2016 46.13354556 0.116186122 12.297892449 
2017 46.818508599 0.1163265752 12.628752386 
2018 47.429301331 0.1160135332 12.983622996 
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A flight duration consists of takeoff-landing time and time in the air. The regres-
sion of flight time on distance shows that flights need on average 45 minutes for 
takeoff and landing. Therefore, a non-stop flight will take 45' + X minutes. A 
connecting flight is composed of two non-stop flights, lasting Y minutes each, plus 
a connecting time, TCc, that can be viewed as 𝐼𝐷𝑇 = 45ᇱ + 𝑌 + 𝑇஼௖ + 45ᇱ + 𝑌.24 
Therefore, given the minimum of the connecting time 𝑇஼௖, i.e. mtc, we can express 
the minimum connecting flight time as, 𝐼𝐷𝑇 = mtc + 90ᇱ + 2𝑌, or 𝐼𝐷𝑇௎ௌ = 135ᇱ +

2𝑌  for domestic flights and 𝐼𝐷𝑇ூே் = 180ᇱ + 2𝑌 for international flights. 
Since the sum of in-flight times (the flight time without takeoff/landing) of con-

necting flight must be no less than that of the direct one, we further take an ex-
treme case assuming that the flight time of these two connecting flights is very 
close to the flight time of the direct one, i.e. 2Y=X. This leads to  

mtc + 90ᇱ + 𝑋 ≤ 1.25 ∙ (45′ + 𝑋), or 𝑋 ≥
ଽ଴ᇲା୫୲ୡିଵ.ଶହ∙ସହᇱ

ଵ.ଶହିଵ
,  

i.e. 𝑋௎ௌ ≥ 315′ for domestic and 𝑋ூே் ≥ 495′ for international flights, implying 
that only non-stop domestic flights lasting at least 315+45 minutes (6 hours) and 
international flights lasting 495+45  minutes (9 hours) can be replaced by connect-
ing flights. This does not adequately match the actual flight situation for U.S. 
airlines. The criterion proposed by Bootsma (1997) to identify one-stop possible 
connections between two airports(cities) that was applied to European market must 
be now adapted to the reality of the flight activity of the U.S. airlines. 

Therefore, in addition to the “1.25 criterion” proposed by Bootsma, we also 
examine other factors. Table A4 shows minimum time of a non-stop flight (US 
domestic and international) corresponding to different factors. 

Table A4.  Minimum non-stop flight time for different factors of identifying 
one-stop alternatives, US airlines 

Factor Minimum time (hh:mm) 
of a non-stop flight to be compared with 

connecting flight alternatives 
US domestic INT 

1.25 6:00 9:00 
1.50 3:00 4:30 
1.75 2:00 3:00 
2.00 1:30 2:15 
2.50 1:00 1:30 

The “1.5 criterion” may be more appropriate for studying the flights operated by 
U.S. airlines, both domestic and international. This criterion allows minimum 3 

 
24 We assume the same flight duration for the two nonstop flights, Y, for simplification. The 

same conclusions can be obtained with different flight durations assuming that Y1+Y2≥X 
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hours of a domestic and 4 hours and half for an international non-stop flight dura-
tion to be considered as reasonable in comparing with one-stop alternatives. 

We keep considering two criteria, “1.25” and “1.50” and calculate the airline con-
nectivity ratios on two datasets that have been obtained following these two crite-
ria, CcRatioCr125 and CcRatioCr150 respectively. The resulting variable of airline 
connectivity ratio for each of two criteria, 1.25 and 1.50, is tested in PCA together 
with 11 graph theory measures, following Roucolle et al. (2020): Number of flight 
segments, Density, Transitivity, Maximum of Degree centrality, Degree centraliza-
tion, Maximum of Harmonic centrality, Harmonic centralization, Maximum of Be-
tweenness centrality, Betweenness centralization, Mean Eigenvector centrality, Ei-
genvector centralization. The application of PCA requires stationary variables. Our 
panel data set does not satisfy the stationarity condition and therefore we perform 
a PCA based on first differences that could correct for non-stationarity. Table A5 
shows the correlations of the four first principal components (PC) with the first 
differenced variables and the “1.25” criteria. Similar results are obtained with the 
“1.5” criteria. 

Table A5.  Correlations with variables 

 PC1 PC2 PC3 PC4 

∆ଵଶConnectivity Crit 125 0.006 0.012 0.993 0.107 
∆ଵଶNumber flight segments -0.320 0.319 -0.106 0.837 
∆ଵଶDensity 0.638 0.672 0.004 -0.183 
∆ଵଶTransitivity 0.008 0.782 0.034 -0.250 
∆ଵଶMax. Degree centrality 0.932 0.086 -0.028 0.081 
∆ଵଶDegree centralization 0.898 -0.135 -0.033 0.161 
∆ଵଶMax. Harmonic centrality  0.953 0.198 -0.021 0.093 
∆ଵଶHarmonic centralization 0.888 -0.230 -0.029 0.096 
∆ଵଶMax. Betweenness centrality  0.807 -0.358 0.034 0.057 
∆ଵଶBetweenness centralization 0.798 -0.403 0.029 0.083 
∆ଵଶMean Eigenvector centrality 0.801 0.380 0.011 -0.161 
∆ଵଶEigenvector centralization -0.035 -0.881 -0.009 -0.209 

∆ଵଶ indicates yearly differences 
 

As in Roucolle et al. (2020), we decide to keep the original variables in the case 
of the last two indicators where the main contribution is coming from a single 
variable, ∆ଵଶConnectivity Crit 125 and ∆ଵଶNumber flight segments. We denote 
them as NetConnectivityGrowth and NetSizeGrowth respectively. If we exclude 
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these two variables from the PCA analysis, the interpretation of the first two com-
ponents remains the same as shows Table A6. 

 

Table A6.  Correlations with variables 

 PC1 PC2 
∆ଵଶDensity 0,6490 -0,6689 
∆ଵଶTransitivity 0,0193 -0,7995 
∆ଵଶMax. Degree centrality 0,9334 -0,0639 
∆ଵଶDegree centralization 0,8966 0,1618 
∆ଵଶMax. Harmonic centrality  0,9592 -0,1708 
∆ଵଶHarmonic centralization 0,8844 0,2555 
∆ଵଶMax. Betweenness centrality  0,8029 0,3873 
∆ଵଶBetweenness centralization 0,7936 0,4341 
∆ଵଶMean Eigenvector centrality 0,8056 -0,3716 
∆ଵଶEigenvector centralization -0,0629 0,8595 

 
As in Roucolle et al. (2020) component one can be interpreted as NetCenter-

Growth and component two as NetWeaveGrowth. 
 
 
 

 
 


