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Abstract

One of the key challenges towards more automation in Air Traffic Control is the
resolution of en-route conflicts. In this article we present a generic framework for the
conflict resolution problem that clearly separates the trajectory and conflict models from
the resolution. It is able to handle any kind of maneuver and detection models, though
we propose our own realistic 3D maneuvers and conflict detection that takes into account
uncertainties on the positioning of aircraft. Based on these models, realistic scenarios are
built, for which potential conflicts are detected using an efficient GPU-based algorithm.
The resulting instances of the conflict resolution problem are provided to the community
as a public benchmark.

To efficiently solve this problem, we also introduce a generic framework for the
cooperation of optimization algorithms. The framework benefits from the various
optimization algorithms plugged to it by sharing relevant information among them, and
is implemented as a distributed application for better performance. We illustrate its
behavior on the conflict resolution problem with the cooperation between a Memetic
Algorithm and an Integer Linear Program which consistently outperforms previous
approaches by orders of magnitude. Instances with up to 60 aircraft are optimally solved
within a few minutes using this framework, while each algorithm taken individually
only provides sub-optimal solutions. This cooperative approach thus seems appropriate
for application in a real-time context.
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1. Introduction

The emergence of new ATM concepts such as free-routing or sector-less control will
significantly modify the structure of en-route traffic in the future. This modification and
the increase of traffic will directly impact controllers in their conflict management task.
To tackle these rising issues, decision support tools for conflict detection and resolution
are needed so as to alleviate the controllers workload and thus make it possible to
accommodate for traffic increase.

Most of the mathematical models that have been developed to this purpose are very
closely linked to the algorithmic method used for resolution, making any comparison of
different approaches hardly objective. For example [13, 19] used the Base of Aircraft
Data (BADA) developed and maintained by EUROCONTROL in the Complete Air
Traffic Simulator (CATS) to solve conflicts using Evolutionary Algorithms. The solver
was quite powerful as it could handle complete days of traffic in the European sky but the
method was difficult to compare to others because the conflict detection was embedded
in the solver. This problem also occurred in Erzberger’s approach [16], where most
of the expertise was focused on the trajectory and maneuver model. But results were
impossible to compare to other methods because, once again, the resolution maneuver
generator was embedded in the solver. In this article, we propose a framework for the
en-route conflict resolution problem that strictly separates the trajectory and conflict
modeling from the resolution, and provide a set of realistic instances as a freely and
publicly available benchmark.

The modeling part is particularly versatile. It enables the representation of any
discrete set of maneuvers, and is able to take into account uncertainties on many
parameters of the trajectory. For the provided benchmark, we present in this article
three kinds of maneuvers, namely a heading change, a Flight Level change or a speed
change, which are commonly used by traffic controllers. For each kind of maneuver and
for each aircraft, many trajectories are pre-computed (for example, a heading change
can be parameterized by the angle of deviation). Potential conflicts among maneuvers
are then detected using an efficient GPU-based algorithm to generate the conflict matrix
of the resolution problem. For feasible instances, the best solution w.r.t. operational
costs should be provided, considering airlines cost as well as Air Traffic Management
cost. Therefore, our instances also specify a template1 cost for each trajectory, favouring
later, shorter and least-deviating maneuvers, and solvers should return (and prove when
possible) optimal solutions w.r.t. the sum of the costs of assigned trajectories. The
resulting public benchmark contains instances of various sizes, up to 60 aircraft with
more than 190 possible trajectories per aircraft.

Given an instance, any algorithmic strategy can be used to solve the conflicts. In this
article, we propose to use two classic algorithms tailored to improve their performance:
a Memetic Algorithm, which is a metaheuristic based on a Genetic Algorithm and a
Tabu Search, and an “aggregated” compact Integer Linear Programming method. We
also propose a cooperative approach that benefits from the strength of both previous

1The costs defined in our model are arbitrary, though they allow to rank trajectories relatively according to
their “efficiency”. However, any more concrete cost model can be used with our approach.
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methods and consistently increases the efficiency of the resolution tool by orders of
magnitude over previously published results.

The paper is organized as follows. Previous research works related to the conflict
resolution problem are presented in Section 2. Section 3 describes a maneuver model
allowing heading, Flight Level or speed changes and a 3D-trajectory model that takes
into account realistic uncertainties to detect all potential conflict. Section 4 details
a Metaheuristic approach and a Integer Linear Programming method, as well as a
framework for their cooperation. Section 5 compares both optimization techniques and
their cooperation on our benchmark in order to assess the performance of these different
approaches, showing the advantage of the cooperation method for large instances. We
then conclude and present future research directions in Section 6.

2. Related Works

Research on automated aircraft conflict resolution started in the 1980s. Many
different models were introduced to comply with existing resolution techniques. Some
studies like [16], conducted by Air Navigation System Providers, offer realistic models
but do not focus on the resolution methods. Other approaches, like [13, 19] which use
uncertainty models and the Base of Aircraft Data (BADA, developed and maintained
by Eurocontrol), studied both the model and the resolution algorithms. However, they
were completely tailored to the underlying traffic simulator (CATS), which prevents the
scientific community from comparing different resolution methods.

Many mathematical models have led to specific resolution algorithms able to deal
with very complex situations, but require specific characteristics for trajectory prediction.
This is the case for Pallottino’s approach [29] that used Mixed Integer Linear Program-
ming (as [35, 5, 32]). Theses models rely on constant speed trajectories and assume that
all maneuvers are executed simultaneously. They cannot deal with trajectory models
able to handle descending or climbing aircraft, nor with complex trajectory uncertainties.
Other authors like [6, 7] proposed different Mixed Integer Non-Linear models that can
deal with horizontal and vertical maneuvers, taking multi-objective criteria into account,
though uncertainties are not included in the trajectory prediction.

Conflict resolution is known for being highly combinatorial [14] and large instances
can therefore be very difficult to solve. Assessing the relative merits of different solvers
is very useful to pave the way to future automation tools. Moreover, the best solution or
at least a good solution is needed very quickly for real-time en-route conflict resolution.
The computation time is thus critical.

In 2013, we proposed a framework to separate the trajectory model from the reso-
lution algorithm [3], as well as a Constraint Programming (CP) approach to solve the
problem with 2D maneuvers only. This framework was extended in 2017 to scenar-
ios involving several Flight Level with 3D maneuvers in [4], and a second approach
using a Memetic Algorithm (MA) was proposed. In these studies however, optimal
solutions could only be found on small instances. On larger instances, the MA was
able to find good solutions without reaching the optimal, while CP was occasionally
able to prove optimality or unfeasability for highly constrained instances. The strict
separation between the model and the resolution made it possible for us to publish
the instances of the problem for the scientific and ATM community. This offered the
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Figure 1: Graph representation of a conflict resolution problem: clique 〈1d, 2c, 3c, 4b〉 is a solution.

opportunity to test different algorithms on various problems without investing effort in
the model. With such a framework, resolution times and costs of different solvers can be
fairly compared. Instances of the problem can be downloaded on the dedicated website:
clusters.recherche.enac.fr.

In 2015, Lehouiller et al. [24] also proposed a general framework by modeling
the problem with a graph where the vertices are the trajectories and the edges connect
compatible trajectories. This is possible because the problem only involves binary
constraints, i.e. constraints that specify the allowed combination of maneuvers for
exactly two aircraft. The problem can thus be viewed as minimizing the cost of a
maximum clique. For example in figure 1, each aircraft must choose between four
maneuvers {a, b, c, d}. The edges represent compatible maneuvers. There is only one
maximum clique representing a solution: 〈1d, 2c, 3c, 4b〉. Lehouiller obtains good
results using this model on problems involving up to 20 aircraft with a small number of
maneuver options. Then in 2017, Lehouiller et al. [25] have proposed two decomposition
algorithms to enhance the resolution. This graph model can easily be generated with our
framework, but uncertainties are not taken into account. The same year, [31] proposed a
new complex number formulation and convex relaxation for the centralized problem
and showed that it could reduce the resolution time.

As observed from previous studies, classic algorithmic approaches of the en-route
conflict resolution problem have not proved to be effective as soon as instances are of
large dimension. In the last ten years, combining various algorithmic strategies, such as
mathematical programming techniques and metaheuristics, has proved powerful in many
domains [30]. Problems for which pure traditional approaches were uneffective could be
successfully solved by exploiting synergies between different techniques [12] [11]. Even
among metaheuristics, some are better at local search [26], while others cope well with
global search [27]. Therefore, the hybridization of optimizers can alleviate the intrinsic
drawbacks of basic algorithms [9], leading to reduced calculations, improvement of the
precision of results and more stable convergence behaviors [15, 22]. The purpose of this
paper is to show that combining different algorithms on the conflict resolution problem
can improve the results obtained with pure approaches alone.

4
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Figure 2: A traffic scenario on several Flight Levels.

3. Model

In this section, we present a generic approach to the conflict resolution problem
which can be based on any conflict prediction system that takes as input a discrete set of
possible maneuvers for each aircraft.

We first describe a possible model of realistic 3D maneuver options compatible with
current Air Traffic Control (ATC) practice. Then we present a trajectory prediction
model that approximates an aircraft possible positions at each time step as a convex
polyhedron, according to a set of uncertainty parameters, as described in [4]. Possible
conflicts are thereupon detected by an efficient GPU-based parallel algorithm described
in [33], which improves the execution time by orders of magnitude compared to our
previous sequential approach (cf. [4]). Eventually, the resulting conflict matrix is used
to specify the constraints of the instance and a simple cost function is defined to favour
later, shorter and least-deviating maneuvers.

3.1. Maneuvers and Decision Variables

In the traffic scenarios used for our benchmark, aircraft are initially leveled on
consecutive Flight Levels (FL) spaced-out by 1000 ft, as sketched in Figure 2. On each
FL, the routes of the flight plans are defined by a sequence of waypoints (specified by
their coordinates in the horizontal plane).

In our trajectory model, a maneuver could be a heading change (cf. Figure 3a), a
FL change (cf. Figure 3b) or a speed change (cf. Figure 3c). These types of maneuvers
are representative of ATC practice and can be easily implemented by pilots and current
Flight Management System (FMS) technologies (cf. [19]). But we do not allow to
combine different types in order to keep them simple enough.

The first phase of a maneuver begins at a discrete given time t0, when it deviates
from the initial trajectory, and its second phase starts at a later given time t1, when the
aircraft returns to its initial trajectory, as depicted in Figure 3. To recover the trajectory,
described as a sequence of waypoints (depicted by large white dots in Figure 3a), while
implementing an heading change maneuver, the first of the next waypoints that can
be reached with an acceptable turning angle (i.e. ≤ 60◦) is selected; therefore, some
waypoints might be skipped as illustrated by Figure 3a. For vertical maneuvers, the
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aircraft begin to climb or descend at a standard rate at time t0 towards its assigned FL
and starts to return to its original FL (also at a standard rate) at time t1. Note that the time
spent by an aircraft to climb or descend only depends on the climbing or descending
rate and is not related to t0 or t1.

Heading changes α can take nα = 6 different values in our benchmark (see Sec-
tion 5.1), i.e. 10, 20 or 30 degrees to the left or the right of the current heading. Vertical
moves δFL can take nFL = 4 values, i.e. climb or descend 1000 ft or 2000 ft (i.e. one or
two FLs) from the current level. Speed changes σ can take nσ = 2 different values, i.e.
a −6 % slowdown or a +3 % acceleration (w.r.t. the current speed), which corresponds
to the speed adjustment range deemed acceptable w.r.t. pilots and air traffic controllers
constraints by the ERASMUS project [8]. The number of maneuver types is thus
nk = nα + nFL + nσ = 12. We limit the number of possible maneuvers by choosing t0
among n0 values (typically n0 = 4 in our experiments). The number of values for t1 is
also chosen among a limited set of n1 values (typically n1 = 4).

αt0

t1

(a) Horizontal maneuver.

t0

t1

δFL

(b) Vertical maneuver.

t0
speed control σ

t1

back to initial speed

(c) Speed maneuver.

Figure 3: Maneuvers, beginning at t0 and returning at t1, compatible with current ATC practice. Large white
dots correspond to waypoints of the initial trajectory, which is itself depicted in light gray. In figure 3c, the
dotted line represents the parts of the trajectory where speed change is active, with the densely dotted sections
corresponding to situations where the aircraft speeds up or slows down to the target speed.

If we combine n0 values for t0 and n1 for t1 with nα possible angles, nFL vertical
maneuvers or nσ possible speed modifications, plus one maneuver for unaltered aircraft
(as a null heading, level change or speed change correspond to the same trajectory,
regardless of t0 and t1), the number of maneuvers per aircraft is:

nman = n0 × n1 × (nα + nFL + nσ) + 1
= n0 × n1 × nk + 1

Table 1 sums up the maneuver parameters and their respective values in the benchmark
presented in Section 5.1, which amounts to nman = 4 × 4 × (6 + 4 + 2) + 1 = 193
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Table 1: Maneuver parameters.

Parameter Size (value) Typical values

t0 start time n0 (= 4) 0, 1, 2 and 3 min
t1 return time n1 (= 4) 5, 6, 7 and 8 min
α heading change nα (= 6) −30, −20, −10, 10, 20 and 30◦

δFL FL change nFL (= 4) −20, −10, 10 and 20 FL
σ speed change nσ (= 2) −6 and +3 %

combinations. For a conflict cluster with n aircraft, the search space size is then:

nn
man

therefore 19320 ≈ 5.14 × 1045 for a 20-aircraft instance and up to 1.36 × 10137 for
60 aircraft.

To provide a generic view of the maneuver model, we restrict the number of parame-
ters for each aircraft i to a single decision variable mi that aggregates variables t0, t1 and
the heading change α, the FL change δFL or the speed change σ, thanks to a bijection
from the valid 5-tuples to interval {1, . . . , nman}. We callM the set of decision variables
of the problem:

M = {mi ∈ {1, . . . , nman} , ∀i ∈ {1, . . . , n}} (1)

3.2. Trajectory Prediction and Conflict Detection
To compute possible conflicts between maneuvers within the time frame of the

resolution, we first model various sources of uncertainty, then describe how our trajectory
prediction take them into account to detect incompatible maneuvers and build the conflict
matrix.

3.2.1. Conflict
For ATC, a conflict occurs between two aircraft if there is a simultaneous loss

of horizontal and vertical separation according to some distance thresholds (called
separation norms in the following) which depend on the airspace considered:

Definition 1 (Conflict Between Aircraft). Aircraft i and j are in conflict iff ∃t s.t.:

disth(pi(t), p j(t)) ≤ normh ∧ distv(pi(t), p j(t)) ≤ normv

where:

• pk(t) = (xt
k, y

t
k, z

t
k) is the position of aircraft k at time t;

• disth(pi(t), p j(t)) =

√
(xt

i − xt
j)

2
+ (yt

i − yt
j)

2 is the distance in the horizontal
plane;

• distv(pi(t), p j(t)) = |zt
i − zt

j| is the distance between altitudes.

For en-route traffic, the separation norms are usually normh = 5 NM and normv =

1000 ft as illustrated by Figure 4 showing the protection volume around an aircraft. A
conflict occurs whenever another intruding aircraft enters the protection volume.
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5NM

1000 ft

Figure 4: Typical en-route protection volume around an aircraft.

3.2.2. Uncertainties on Trajectories
To model the inaccuracy of realistic trajectory prediction systems, we model the six

following sources of uncertainties, associated to the implementation of the maneuver or
to the state of the aircraft. As in Figure 3, large white dots represent waypoints of the
aircraft flight plan, while small black dots correspond to turning points of maneuvers in
Figures 5–9.

• When instructed to maneuver, a pilot can react more or less quickly. Uncertainty
εt0 ∈ [0, Et0 ] representing the maximum reaction time to start a maneuver is
associated to time t0 (see Figure 5).

• Uncertainty εt1 ∈ [0, Et1 ] representing the maximum reaction time for ending a
maneuver is associated to time t1 (see Figure 5).

• Uncertainty εα ∈ [−Eα, Eα] is also associated to the heading change angle α (see
Figure 6).

• Horizontal aircraft speeds vh are subject to relative error εvh ∈ [−Evh , Evh ] (ex-
pressed as a percentage) such that future positions of aircraft are spread over a
range which grows with time (see Figure 7).

• Climbing and descending rates vv are also subject to relative error εvv ∈ [−Evv , Evv ]
(as a percentage) as illustrated in Figure 8.

• The fly mode fm can be chosen among two values fm ∈ {Fb, Fo} as an aircraft
can “fly by” (Fb) or “fly over” (Fo) a waypoint, depending on the pilot practice
or the airline rules, and we consider both options to build the future trajectory
(see Figure 9). More precisely, when an aircraft must turn at a waypoint, it
cannot strictly fly linear segments with instant turning points. Flight Management
Systems or pilots can either “fly by” or “fly over” the turning point: when the
pilot anticipates the turning angle before arriving at the waypoint, she flies by the
waypoint, and when the pilot turns once she has reached the waypoint and heads
back to the initial trajectory after it, she flies over the waypoint. Because we do
not know which choice is going to be made by the pilot, we take the so-called
“fly mode” uncertainty into account in our model.

8



t0
t0 + Et0

t1 t1 + Et1

Figure 5: Reaction time uncertainty model with maximal errors Et0 and Et1 .

α
α + Eα

α − Eα

t0

t1

Figure 6: Heading change uncertainty model with maximal error Eα.

t0(1 − Evh )vh

(1 + Evh )vh

t1(1 − Evh )vh (1 + Evh )vh

Figure 7: Speed uncertainty model with maximal error Evh .

t0

t1(1 + Evv )vv (1 − Evv )vv

(1 + Evv )vv (1 − Evv )vv

Figure 8: Climb and descent uncertainty model with maximal error Evv model.
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Fo

Fb

Figure 9: Flight mode uncertainty model with possible modes “fly by” (Fb) or “fly over” (Fo).

Table 2: Uncertainties on the trajectory parameters.

Parameter Error Typical values

t0 start time εt0 ∈ [0, Et0 ] 10, 20 and 30 s
t1 return time εt1 ∈ [0, Et1 ] 10, 20 and 30 s
α angle εα ∈ [−Eα, Eα] 1, 2 and 3◦

vh horizontal speed εvh ∈ [−Evh , Evh ] 2, 4 and 6 %
vv vertical speed εvv ∈ [−Evv , Evv ] 5, 10 and 15 %
fm waypoint fly mode fm ∈ {Fb, Fo} Fb, Fo

Table 2 sums up these uncertainties, related to the maneuver parameters at the top
of the table, and to the aircraft characteristics only at the bottom. Note that there is no
uncertainty on the lateral position when an aircraft is heading toward a waypoint as
its FMS is able to dynamically correct the lateral error. Accordingly, no uncertainty is
considered for the maneuver parameter specifying the FL change δFL as current FMS
are able to precisely level out at the specified FL. Uncertainty on the vertical profile is
therefore taken into account by the error on the vertical speed εvv alone.

3.2.3. Aircraft Position Envelope
To detect the conflicts, time can be discretized into regular steps, provided their

duration τ is small enough to avoid missing even the shortest conflicts. In Section 5.1,
we fix τ = 3 s because two facing aircraft flying at 600 kn (maximal speed for airliners)
get only 1 NM closer every 3 s, which ensures the detection of such a conflict, as the
target separation distance is 5 NM (see [10] for a more in-depth discussion on this topic).

We assume that at a given time step, the position of an aircraft belongs to the set
of positions allowed by any combination of the uncertainty parameters with a uniform
probability distribution (but this assumption could be refined with a more realistic
distribution model as described in [16]). We therefore build the envelopes of possible
positions at each time step for all maneuvers before checking their distance to detect a
possible conflict (see Section 3.2.4).
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t0

t1

α

Figure 10: An example of convex hulls representing a maneuver with uncertainties in the horizontal plane at
each time step.

As described in Section 3.1, we have defined six uncertainty parameters for our
trajectory prediction: εt0 , εt1 , εα, εvh , εvv and fm. In order to take into account every
possible trajectory, we test every combination of the extreme values of these parameters:
26 = 64 trajectories are computed to built the geometric boundaries of a single maneuver
over time. Once these extreme trajectories are built, we compute for each time step t
a 3D polyhedral convex envelope to safely approximate the possible positions of an
aircraft. We use the well-known Graham’s algorithm [18] to build the corresponding
smallest convex hull in the horizontal plane, and take the minimum and maximum
altitudes in the vertical plane. The resulting prism is the smallest convex orthogonal
cylinder that includes the set of the possible positions of the aircraft at step t.

Figure 10 gives an example in the horizontal plane of a 30◦ heading change maneuver
starting at t0 = 5 min, lasting 10 min (therefore t1 = 15 min), with Et0 = Et1 = 60 s,
Eα = 5◦ and Evh = 5 %. The original route of the aircraft is represented as a gray
solid line and the maneuver is depicted every minute as a polygon corresponding to the
convex hull that includes the possible aircraft positions.

3.2.4. Conflict Detection
In the previous section, each predicted trajectory is modeled as a sequence of aircraft

position envelopes. As the notion of conflict is only defined pointwise between two
perfect aircraft trajectories, we extend the notion of conflict to trajectories modeled as a
sequence of aircraft position envelopes.

Definition 2 (Conflict Between Predicted Trajectories). Predicted trajectories p and
q are in conflict iff ∃ t, a ∈ p(t) and b ∈ q(t) s.t.:

disth(a, b) ≤ normh ∧ distv(a, b) ≤ normv

where p(t) and q(t) are aircraft position envelopes at time t, and a and b are 3D
positions.

Because of the uncertainties defined in section 3.2.2, when predicting aircraft
trajectories, we define the future possible positions of each aircraft at a given time
with a convex envelope that includes all the possible locations of the aircraft. In this
context, Definition 2 generalizes Definition 1 by requiring that all possible positions
of the first aircraft combined with all possible positions of the second aircraft satisfy
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Definition 1. Therefore, two aircraft will be in conflict according to Definition 2 iff
the two envelopes representing them at a given time are closer than 5 NM horizontally
and 1000 ft vertically, even if some pairs of points within the two envelopes are not in
conflict according to Definition 1. Note that the top and bottom faces of the 3D envelope
corresponding to the exclusion volume of an aircraft do not become slanted during
climb or descent, but remains horizontal, as only the minimal and maximal altitude are
taken into account to approximate the possible positions of an aircraft as mentioned in
the previous section.

We assume that the actual future trajectory will always be inside the aircraft position
envelopes of the predicted trajectory. Thus, with Definition 2, if the predicted trajectories
are not in conflict then this property will hold for the actual future trajectories as well.

Using this definition, we can compute all the conflicts between all the predicted
trajectories considered for the resolution and store them in a 4D boolean matrix. As
described in 3.1, maneuvers are numbered from 1 to nman. Then, for each pair of aircraft
(i, j), with i < j as the conflict relation is symmetric, and each pair of maneuver options
(k, l), where k is a maneuver option for aircraft i and l for aircraft j, we test if maneuvers
k and l are in conflict to set the coefficients Ci, j,k,l of the conflict matrix:

Definition 3 (Conflict Matrix). The coefficients of the symmetric conflict matrix of
dimensions n × n × nman × nman are defined by:

Ci, j,k,l =

{
1 if maneuver k and l conflicts according to Definition 2
0 otherwise

∀i ∈ {1, . . . , n},∀ j ∈ {1, . . . , n} s.t. i < j,∀k ∈ {1, . . . , nman},∀l ∈ {1, . . . , nman}.

The calculation of such a conflict matrix requires to compare n2
man

n(n−1)
2 pairs of

predicted trajectories. In the end, it leads to compare n2
man

n(n−1)
2 T pairs of aircraft

position envelopes where T is the number of time steps and therefore of aircraft position
envelopes per trajectory. This number can be huge even with a limited number of
aircraft. For the smallest scenario in this paper with n = 15 aircraft, nman = 193 possible
trajectories and T = 150 time steps, we have to check the separation for 586 672 750
envelope pairs. If we were to integrate our conflict solver in a traffic simulator or
operational system, we would have to solve iteratively a sequence of conflict resolution
problems over a Rolling Horizon (RH) with the fastest possible update rate allowed by
the running time of the resolution process (see [19]). Therefore, the conflict matrices
must also be built as fast as possible.

In order to avoid numerous time-consuming distance computations, we can use
simple bounding volumes with cheap intersection checks. As depicted by Figure 11, for
each aircraft position envelope we can compute an Axis-Aligned Bounding Box (AABB)
increased by half the separation norm (cf. Definition 1). The intersection test between
AABBs is very fast as it requires six floating-point number comparisons at most. If the
AABBs of two aircraft position envelopes do not intersect then the envelopes cannot
conflict. Otherwise, we use the ISA-GJK algorithm [34], a more time-consuming test,
to check if the envelopes intersect. It is a variant of the GJK algorithm [17] which is
widely used in robotics and computational geometry to determine the distance between
two convex shapes. This algorithm runs in linear time w.r.t. the number of vertices of
the aircraft position envelopes.
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Figure 11: Axis-Aligned Bounding Box (in black) of an aircraft position envelope (in green).

To reduce even more the running time of our solver, the computation of the conflicts
can be parallelized. A parallel implementation on Graphics Processing Unit (GPU)
described in [33] using the AABBs and ISA-GJK has been successfully tested to
compute conflict matrices with a decrease of two orders of magnitude for the total
running time of the detection phase. For instance, the conflict matrix of the largest
scenario available in our online benchmark (see Section 2) with n = 100, nman = 193
and T = 150 is computed in 1 s only. On average, the trajectory pairs are processed at a
rate of 117 000 pairs per millisecond.

3.3. Cost of Maneuvers

To discriminate among the solutions to feasible instances, we build an arbitrary cost
function for the maneuvers so as to ensure the following properties which characterize
good solutions from an operational point of view:

1. any maneuver is more costly than no maneuver;
2. maneuvers should start as late as possible: because uncertainties are reduced over

time for successive resolution problems in a RH solver (cf. Section 3.2.4), the
cost of a delayed maneuver could be reduced when the problem is updated;

3. maneuvers should be as short as possible;
4. the angle should be as small as possible;
5. FL change should be as small as possible;
6. a −6 % slowdown or +3 % acceleration is deemed equivalent to a 10◦ heading

change (for the sake of simplicity);
7. a 1000 ft vertical maneuver is considered equivalent to a 20◦ heading change, and

a 2000 ft one to 30◦.

To compute the cost of a maneuver, values of t0 are enumerated by an index k0 ∈

{1, ..., n0}, values of t1 by index k1 ∈ {1, ..., n1} and angles α, of value 10, 20 or 30
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degrees right or left, are respectively indexed by kα ∈ {1, ..., nα
2 }. Speed changes σ are

emunerated by an index kσ ∈ {1, ..., nσ
2 }. Similarly, FLs are indexed by kFL ∈ {1, ..., nFL

2 }.
For our benchmark, the cost of a maneuver is then defined as follows:

Definition 4 (Cost of a Single Maneuver). The cost c(mi) of a single maneuver mi ∈

{1, ..., nman} for aircraft i is:

c(mi) =


(n0 − k0)2 + k2

1 + k2
α if α 6= 0

(n0 − k0)2 + k2
1 + (1 + kFL)2 if δFL 6= 0

(n0 − k0)2 + k2
1 + k2

σ if σ 6= 0
0 otherwise

where k0, k1, kα, kFL and kσ are the indices corresponding to the values of t0, t1, α, δFL
and σ for maneuver mi.

Note that the cost is null whenever an aircraft is not maneuvered.
As this work is based on a generic framework that separates the solver method from

the problem itself, we chose to instantiate our benchmark with the most simple and
intuitive cost function we could come up with, easy to understand and reproduce, so as
to encourage the comparison of different solvers by interested readers, which might be
unfamiliar with all the quirks of operational ATC costs. In a real environment, it should
be modified to comply with aircraft performance models on one side and controllers’
preferences on the other side. We could easily replace this cost by a more accurate one,
taking into account the fuel consumption, or pilots and air traffic controllers preferences.
This would however not change the model but only the values given to each maneuver
of each aircraft. The same resolution methods would apply but provide different results.

Given an instance with n aircraft, we define the cost of a solution as the sum of the
costs of the maneuvers for all aircraft:

Definition 5 (Cost of Conflict Resolution). The cost of a solution to a conflict resolu-
tion problem with n aircraft is:

cost(M) =

n∑
i=1

c(mi)

Note thatM is the set of decision variables of the problem defined in 1.

3.4. Overall Mathematical Model
Eventually, we model conflict resolution as the following combinatorial optimization

problem which summarizes the preceding sections.

Decision variables. For a problem with n aircraft, the set of decision variables is:

M = {mi ∈ {1, . . . , nman}, ∀i ∈ {1, . . . , n}}

where the maneuver of aircraft i is represented by decision variable mi and all the
maneuver options associated with allowed tuples 〈t0, t1, α, δFL, σ〉 are numbered from 1
to nman as described in Section 3.1. Hence, the size of the search space is nnman . Note
that different sets of possible maneuvers could also be specified for each aircraft without
loss of generality.

14



Constraints. According to the 4D conflict matrix C defined in Section 3.2, for each
element Ci, j,k,l = 1, maneuvers k of aircraft i and l of aircraft j cannot be chosen at the
same time. The constraints of our problem are therefore defined by:

mi 6= k ∨ m j 6= l,
∀i ∈ {1, . . . , n},∀ j ∈ {1, . . . , n} s.t. i < j,∀k ∈ {1, . . . , nman},∀l ∈ {1, . . . , nman} s.t. Ci, j,k,l = 1

Cost. The cost of an optimal solution to a conflict resolution problem is equal to:

min
∀i∈{1,...,n},mi∈{1,...,nman}

n∑
i=1

c(mi)

with

c(mi) =


(n0 − k0)2 + k2

1 + k2
α if α 6= 0

(n0 − k0)2 + k2
1 + (1 + kFL)2 if δFL 6= 0

(n0 − k0)2 + k2
1 + k2

σ if σ 6= 0
0 otherwise

where maneuver mi corresponds to allowed tuple 〈t0, t1, α, δFL, σ〉 and k? ∈ {1, . . . , n?}
indexes the possible values associated with ? ∈ {0, 1, α,FL, σ} (a generic parameter
subscript) by increasing absolute value (as described in Section 3.3), such that later,
shorter, and least-deviating maneuvers are favoured. Note that any cost function,
possibly customized for each aircraft, could also be used in our model.

4. Resolution Algorithms

In this section, we first present two methods to solve the conflict resolution problem,
then describe how they can cooperate to improve the performances of our solver.

The first one, a Memetic Algorithm (MA), is a metaheuristic that mimics natural
evolution to explore the search space and can find optimal solutions for reasonable
instances in a short amount of time. However, for larger instances, a MA may remain
stuck in local optima and fail to discover an optimal solution. Moreover, metaheuristics
are not exact algorithms, hence they can neither prove the optimality of a solution nor
the infeasibility of an instance.

The second one, Integer Linear Programming (ILP), is based on the Branch and
Cut algorithm and able to quickly prove optimal solutions (or infeasibility) for small
instances. Though for large instances (more than 50 aircraft), the resolution is too
time-consuming for a real-time system.

To benefit from the advantages of both combinatorial solvers and find better solutions
to large instances, our third approach consists in their cooperation. We first present
a distributed framework that can leverage any combinatorial solver with the suitable
interface. Then we describe how to adapt a solver to take into account and provide
information on the state of the search from and to other solvers.

4.1. Memetic Algorithm
In this section, we first present the general principle of our Memetic Algorithm

(MA) and the objective function used to solve the conflict resolution problem. Then, we
detail the Tabu Search included in our MA and the crossover operator used to recombine
current solutions into new ones.
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4.1.1. Principle
An MA, described in Algorithm 1, is a hybridization of an Evolutionary Algorithm

and a Tabu Search (TS) such as presented in [21]. The main feature of an MA is that
each element of the population is a local minimum.

Algorithm 1 Memetic algorithm (MA)

1: population← initializePopulation()
2: while termination criterion is not met do
3: (parent1, parent2)← select(population)
4: child← crossover(parent1, parent2)
5: (child, cc)← tabuSearch(child)
6: population← replace(population, child, cc)
7: end while
8: Return the best element of population

First (line 1), a population of candidate solutions is randomly initialized and a TS
(described in Algorithm 2) is applied to each candidate. Then (line 3), we randomly
select two elements in the population called parents and generate a new element called
a child through a standard crossover operation between the two parents that recombines
their maneuvers (line 4). Afterwards (line 5), the child is improved by applying a TS
until a local minimum is found (with cost cc). Then it replaces the worst element of the
population if its cost is lower and if it does not already belong to the population (line 6).
We iterate this procedure until a given time limit (line 2) or when no improvement is
made for a given number of iterations.

4.1.2. Objective Function
The objective function of our MA represents the function to minimize. Here, we first

focus on finding a conflict-free set of maneuvers, with the smallest cost as a secondary
objective. Therefore, we define the objective function as the linear combination of two
terms, the number of remaining conflicts and the cost of a solution (cf. Definition 5):

f (M) = P ×
∑

∀mi,m j∈M s.t. i< j

Ci, j,mi,m j + cost(M)

where P is a big (enough) integer to guarantee that the cost of a solution is always higher
than the one of another solution if it has more conflicts.

4.1.3. Improvement of New Candidates with Tabu Search
Each generated solution candidate (either at initialization or after a crossover op-

eration) is improved with respect to the objective function by a TS, as described in
Algorithm 2. A TS, like all local search algorithms, modifies the current solution by
successive small changes called moves. The moves used in our TS consist in the modifi-
cation of the maneuver assigned to one of the aircraft, which defines the neighborhood
of a candidate solution called “1-move” neighborhood.

First (line 4), we select the best move mv from the neighborhood of the current
solution that is not in tabuList, i.e. the list of forbidden maneuvers for each aircraft
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Algorithm 2 Tabu Search (TS)

1: Input : s, a candidate solution
2: tabuList← ∅
3: while termination criterion is not met do
4: mv← selectBestMove(s, tabuList)
5: s← move(s,mv)
6: tabuList← update(tabuList, reverse(mv))
7: (sbest, cbest)← saveBest(sbest, s)
8: end while
9: Return (sbest, cbest)

during a given number of iterations (which is initially empty, cf. line 2). Notice that in a
TS, the selected move is not necessarily a move that improves the cost of the candidate
solution, because our TS has two different successive phases involving different roles
during resolution as to mentioned further. In a second step (line 5), we update the
current solution by applying the selected move and add its reverse to tabuList (line 6) to
prevent the change to be undone during a given amount of iterations. Finally (line 7),
we update the best solution and its cost if needed. We iterate this procedure until a fixed
number of iterations (line 3).

Given the objective function, f (M), there are two different successive phases in our
TS process:

Phase 1 When the candidate solution s still involves some remaining conflicts, i.e. s is
not an admissible solution (therefore

∑
∀mi,m j∈M s.t. i< j Ci, j,mi,m j > 0), our TS only

minimizes the number of remaining conflicts. The purple track in Figure 12
represents this first phase of our TS inside the solutions landscape.

Phase 2 When the candidate solution s is a conflict-free set of maneuvers, i.e. s is an
admissible solution (therefore

∑
∀mi,m j∈M s.t. i< j Ci, j,mi,m j = 0), then our TS mini-

mizes the cost of the solution cost(M) without creating new conflicts. The blue
track in Figure 12 represents this second phase of our TS. Notice that during
this second phase, the candidate solution s cannot step outside its admissible
configuration area (represented by green circles in Figure 12). Indeed, the ad-
missible configuration set is not a connected space if we consider the 1-moves
neighborhood.

As a result, if only the TS is used, each of its run will find a solution trapped in an
admissible configuration area. Moreover, the number of admissible configuration areas
might be exponential in the problem size. In such a case, even a multi-start strategy
on top of the TS would be inefficient, so we decided to use a crossover operator to be
able to escape the admissible configuration areas while maintaining relatively structured
solution candidates.

4.1.4. Crossover
We have used a standard crossover operator, named uniform crossover, that generates

a single new candidate solution from two elements of the population. For each aircraft,
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Figure 12: Diagram representing the behavior of our MA in the landscape of solutions. The inside of a green
circle corresponds to a subset of the admissible solutions.

this crossover operator randomly selects one of the two maneuvers of the parents and
assigns it to their child.

The objective function value of a child is generally greater than those of its parents as
the crossover may generate many new conflicts. However, a crossover is systematically
followed by a TS to “repair” the child and mitigate its poor quality. Actually, the
crossover operator essentially has a role of diversification in an MA, i.e. exploring
uncharted part of the search space to avoid being stuck in local minima. In Figure 12,
the crossover of two admissible solutions that enables to explore a new admissible
configuration area is represented in red. Other crossover operators, such as one-point
crossover or k-point crossover, have been tested on our benchmark but with no better
results.

4.2. Integer Linear Programming

Integer Linear Programming (ILP) [23] has become a very powerful tool for mod-
eling and solving real-world combinatorial optimization problems, like planning and
scheduling. The main resolution algorithm, Branch and Cut (BC) [28], uses a simplex
algorithm to solve continuous relaxations of the problem and add cutting planes at each
node of a Branch and Bound search. State of the art ILP solvers like Gurobi [20], which
we used to obtain the results presented in Section 5, significantly improve the efficiency
of the basic BC algorithm with preliminary transformation techniques to reduce the
size of combinatorial problems, as well as heuristics to obtain better objective bounds
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during the search. These sophisticated refinements fall beyond the scope of this paper
and inquisitive readers may refer to [1] to obtain more information.

In the following section, we first present a basic ILP model for conflict resolu-
tion, then we show how to obtain an equivalent but much more compact and efficient
“aggregated” model.

4.2.1. Basic Model
In this section, we describe a straightforward ILP model of the en-route conflict

resolution problem with binary assignment variables. First, the assignment binary
decision variables are defined by:

∀i ∈ {1, . . . , n},∀k ∈ {1, . . . , nman}, xi,k =

{
1 if flight i is assigned to maneuver k
0 otherwise

(2)
As each flight must choose exactly one maneuver, we had the corresponding con-

straint for each flight:

(3)
nman∑
k =1

xi,k = 1, ∀i ∈ {1, . . . , n}

Moreover, conflicting trajectories cannot be chosen simultaneously:

(4)xi,k + x j,l ≤ 1, ∀i, j ∈ {1, . . . , n} s.t. i < j,∀k, l ∈ {1, . . . , nman} s.t. Ci, j,k,m = 1

As the cost of a maneuver does not depend on the aircraft in our model, the objective
function to minimize can be expressed as the sum of the products of the cost c(k) of
each maneuver k by the sum of the corresponding binary decision variables xi,k:

min
nman∑
k=1

c(k) ×
n∑

i=1

xi,k (5)

Note that specific maneuver costs c(i, k) for each aircraft could easily be taken into
account by generalizing equation 5 with:

∑n
i=1
∑nman

k=1 c(i, k)xi,k.
In this basic model, the conflict constraints 4 are straightforward but the resulting

number of equations is in O(n2 × n2
man), which can be huge for large numbers of aircraft

and maneuvers. For example, with an instance with 50 aircraft and 193 maneuvers,
there will be more than 9.3 × 107 constraints.

4.2.2. Aggregated Model
To avoid the large number of constraints (quadratic with n and nman) of the previous

basic model, it is possible to aggregate, for a given trajectory k of a given aircraft i, all
conflicting trajectories belonging to aircraft with indices j > i into a single constraint:

(6)
n∑

j =i+1

nman∑
l =1

Ci, j,k,lx j,l ≤ ni,k(1 − xi,k), ∀i ∈ {1, . . . , n},∀k ∈ {1, . . . , nman}

with ni,k = |{ j ∈ {i + 1, . . . , n} s.t.
∑nman

l=1 Ci, j,k,l > 1}|, the number of aircraft (with indices
greater than i) that have at least one maneuver in conflict with maneuver k of aircraft i.
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If trajectory k of aircraft i is chosen, i.e. xi,k = 1, the right-hand side of constraint 6
becomes 0, so all the x j,l conflicting with it (i.e. Ci, j,k,l = 1) on the left-hand side
must also be assigned 0, as all the corresponding trajectories conflict with trajectory
k of aircraft i. Otherwise, xi,k = 0 and the constraint is relaxed such that any aircraft
j can choose a trajectory conflicting with trajectory i of aircraft k. Conversely, if
any conflicting x j,l of the left-hand side is assigned 1, then xi,k must be assigned 0 as
trajectory k of aircraft i can no longer be chosen.

Combined with constraints 3 and objective 5, this aggregated model is equivalent
to the basic model described in the previous section, but the number of constraints is
reduced by orders of magnitude as there are only O(n × nman) constraints instead of
O(n2 × n2

man). If we still take 50 aircraft and 193 maneuvers into account, there will
be only 9650 constraints (omitting the 50 constraints 3). As this model consistently
outperformed the basic one by orders of magnitude in our experiments, the results
presented in section 5 were all obtained using the aggregated model.

4.3. Cooperation Between Memetic Algorithm and ILP Solver

We presented the MA metaheuristic in Section 4.1 and an exact ILP algorithm
in Section 4.2, two classic techniques to solve Combinatorial Optimization Problems
(COP). If exact algorithms are able to find and prove optimal solution for every instance
of a COP (or its infeasibility), their running times, however, increase dramatically with
the problem size as shown in Section 5. For large instances, especially at the beginning
of the resolution, metaheuristics trade optimality for execution time as they are designed
to obtain good but not necessary optimal solutions in very limited time and without
optimality proof. However, metaheuristics generally visit the same solution more than
once, which costs computation time.

When measuring the advantages and drawbacks of exact and metaheuristic algo-
rithms, especially in terms of performances on the conflict resolution problem, both
approaches can be seen as complementary. On the one hand, as mentioned in [30], in
order to keep the BC search tree relatively small, high-quality solutions and bounds are
very useful. So BC can benefit from the ones provided by a metaheuristic, especially
at the beginning of the resolution. On the other hand, metaheuristics can generally get
stuck in local optima, which might prevent them from converging to the global optimum.
Therefore, they can also benefit from improved solutions shared by the BC algorithm to
explore better parts of the search space.

Several ways exist to hybridize mathematical programming techniques (e.g. ILP)
and metaheuristics [11]. The most traditional approach is to use metaheuristics for
providing high-quality solutions inside a BC algorithm. On the other hand, a frequently
applied approach is Large Neighborhood Search exploration thanks to ILP algorithm.
Here, we use a cooperation approach to run the MA and ILP solvers simultaneously and
both algorithms can share information during the resolution process with the other one.

In the following sections, we first specify a distributed system which can integrate
any combinatorial solver with the suitable interface in Section 4.3.1, and Section 4.3.2
describes the adaptation of the MA and the BC algorithm to fit our cooperation approach.

20



4.3.1. Distributed System for Cooperation
Our distributed system is composed of a central process that acts as a data manager

and any number of solvers that share data through this central process. Currently, the
managed data consist of full solutions, lower bounds for the minimization criterion and
the status of the optimality proof. However, the framework is completely generic, thus
any useful information could be exchanged (e.g. new global cuts found by one of the
solvers). At any time, each solver has the ability to post (possibly) new information, or
to retrieve the current best information for its internal use.

Given this general pattern, we chose to implement it as a client-server architecture,
where the data manager acts as the server and each solver is a client which connects to
the server. The solutions and bounds are exchanged as messages between the server and
clients. Besides its simplicity, this client-server architecture has the advantage of being
distributed over any number of processors on a given network. Also, it is platform- and
language-agnostic, as the only requirement is to be able to connect to the server with
standard protocols.

The problem to solve might be modeled differently in the various clients (i.e. solvers):
e.g. the n decision variables in our MA model directly represent maneuvers, whereas
the n × nman ILP ones only correspond to possible assignments. However, they must
comply to the common interface proposed by the server to exchange information such
as the upper and lower bounds or feasible solutions.

For example, once a client has found a new better solution, it will first translate the
solution to the common interface then send the corresponding message to the server
(i.e. post the solution to the data management process). When the server receives the
message, it checks whether the information is useful, e.g. a feasible solution with a
better cost than the best solution so far, or a higher lower bound than the current best
one. If required, the server updates its own bound and current best solution. Upon
request, each client will receive the latest bound and solution. Any solver that proves
the optimality of a solution can also send this information to the server in order to end
the search.

4.3.2. Collaborative Version of MA and BC
The original MA was modified to build the Collaborative Memetic Algorithm

(CMA), see algorithm 3, which is able to exchange optimization information with other
solvers. First (line 1), the CMA registers to the server and receives the problem to solve,
as well as the current best solution sr if any. If a feasible solution is received, it is
then included in the population (line 4). After the tabu search (line 13), if the CMA
finds a better solution, we update this solution and send it to the server. Then (line 15),
CMA tries to obtain a better solution from the server (or even an optimality proof). If
the optimality is not proved (line 16), but a better solution is received (line 17), then
we include this new solution to improve the population (line 18). Otherwise, if the
optimality has been proved by other clients, the search can be terminated.

Collaborative Branch and Cut (CBC), see algorithm 4, differs from the original
version in several ways. First (line 1), as in the CMA, the CBC algorithm registers to the
server and gets the problem and the current state of the search. If any solution sr or lower
bound lb have been received (line 4), they are updated. During the resolution process,
any better feasible solution, once found by CBC, is sent to the server (line 15). Then
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Algorithm 3 Collaborative Memetic algorithm (CMA)

1: (P0, sr, proof)← register(server) // get problem and current best solution
2: population← initializePopulation(P0)
3: if sr 6= null then
4: population← replace(population, sr)
5: end if
6: while termination criterion is not met and not proof do
7: (parent1, parent2)← select(population)
8: child← crossover(parent1, parent2)
9: (child, cc)← tabuSearch(child)

10: population← replace(population, child)
11: if cc < cbest then
12: cbest ← cc

13: send(server, child) // send better solution
14: end if
15: (sr, proof)← receive(server) // try to receive useful information
16: if not proof then
17: if sr 6= null then
18: population← replace(population, sr)
19: end if
20: end if
21: end while

(line 16) CBC tries to obtain any published information from the server. If applicable
(line 17), the best solution, cost and lower bound are updated (line 18). Better feasible
solutions and costs are always useful for the BC algorithm because they provide efficient
cutting planes. If the LP relaxation cost cP of some active problem in L is even greater
than the received better cost cr (better upper bound), these active problems are removed
from the list by function filter. As a result, the search space can be extremely reduced
in some cases. Finally (line 27), any better lower bound can also be systematically
sent to the server, which can be useful, especially when other algorithms have found a
solution with the same cost, without optimality proof though.

5. Results

The methods described in the previous section have been implemented and thor-
oughly tested on a set of realistic en-route traffic instances. This section details the
construction of these instances, which have been made publicly available, and presents
the results obtained for conflict resolution.

5.1. Benchmark

To assess the performance of our resolution methods, we tested them on custom
traffic scenarios within a fixed airspace volume. Figure 13 describes the construction of
the scenarios. The initial position of each aircraft (the points marked Ok in the figure) is
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Algorithm 4 Collaborative Branch and Cut (CBC)

1: (P0, sr, cs, lbs)← register(server) // get useful information
2: (sP0 , cP0 )← LPrelax(P0)
3: L← [(P0, sP0 , cP0 )]
4: if sr 6= null or lb 6= null then
5: sbest ← sr, cbest ← cs, lb← lbs

6: else
7: sbest ← null, cbest ← +∞, lb← cP0

8: end if
9: while L 6= ∅ and cbest − lb > ε do

10: (P, sP, cP)← pop(L)
11: (Pc, sc, cc)← searchCut(P, sP, cP)
12: if sc 6= null and cc < cbest then
13: if sc is integral then
14: sbest ← sc, cbest ← cc

15: send(server, sbest) // send better solution
16: (sr, cr, lbr)← receive(server) // try to receive useful information
17: if sr 6= null or lbr 6= null then
18: sbest ← sr, cbest ← cr, lb← lbr // update best solution, cost and bound
19: L← filter(L, cr)
20: end if
21: else
22: (P1, P2)← branch(Pc)
23: (sP1 , cP1 )← LPrelax(P1)
24: (sP2 , cP2 )← LPrelax(P2)
25: add(L, (P1, sP1 , cP1 ), (P2, sP2 , cP2 ))
26: lb← min∀P∈L cP

27: send(server, lb) // send better lower bound
28: end if
29: end if
30: end while
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Figure 13: Geometry of conflict scenario generation.

randomly chosen within a 20 NM-wide square whose center lies on a 100 NM-radius
circle. The route for each aircraft (which corresponds to the initial heading in these
scenarios) is also randomly chosen in a ±60◦ interval around the heading that would lead
the aircraft towards the center. Aircraft are equally (and randomly) dispatched among
five FLs, ranging from FL280 to FL320. Finally, the nominal speed for each aircraft
is randomly chosen in a ±20 % interval around 480 kn, a typical speed for airliners.
The nominal vertical speed for maneuvers is set at 600 ft min−1 for all aircraft. The
density of scenarios is controlled by the number of aircraft in the airspace volume.
For the experiments reported in the current study, this number varies from 15 to 60.
Based on this initial state, all possible trajectories are computed for every aircraft, using
the maneuver parameters previously described in Table 1, then conflicts are detected
with a medium uncertainty level corresponding to Et0 = 20 s, Et1 = 20 s, Eα = 2◦,
Evh = 4 % and Evv = 10 % (cf. Table 2), using the method described in Section 3.2.4,
resulting in a conflict matrix. As each scenario is randomly generated, we produced 10
different instances for each density to avoid the bias of some instances being particularly
easy or difficult to solve. All the generated instances are available to download at
clusters.recherche.enac.fr.

Real upper airspace sectors are generally smaller than the airspace volume we
consider (up to 70 NM wide in France), but can be merged together when the traffic
is not dense. Vertically, five FLs is a lower bound of what can be found in the real
upper airspace. With the tools currently available, an air traffic controller can hardly
handle more than 30 aircraft at a time in a 70 NM sector. Also, aircraft flying in the
upper airspace prefer flying a direct routes at optimal FL, while the similarity of current
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airliners performances tend to concentrate the demand on a small set of FLs. Thus,
automatic solvers should favour bigger airspace and may have to deal with high demand
on a small amount of FLs, hence the design of our scenarios.

5.2. Experimental Setup

We report in this section the performances of the various techniques described
in Section 4 to solve the instances of the benchmark described in Section 5.1. All
experiments were carried out on a standard workstation consisting of a 3.4 GHz Intel R©

Xeon R© octo-core processor with 16 GB of memory running Debian GNU/Linux 9.4.
We used the Gurobi Commercial Optimizer [20] for the ILP model and the ZeroMQ
messaging library [2] to implement our cooperation framework.

As the MA is a stochastic algorithm using a pseudo-random number generator,
20 runs with different seeds were attempted for each instance to benefit from the
diversification of the algorithm, and the best one is reported. All tests were done with a
population of 50 individuals with 1000 iterations for the tabu search phase.

In the following sections, we first compare our previous published Constraint Pro-
gramming (CP) approach [4] to the ILP model solved with Gurobi to show the limits of
CP with such large-scale instances. Then, we show that the Memetic Algorithm and
the ILP solver both easily reach optimal solution to small instances of the problem.
We discuss their strengths and weaknesses on larger instances, then detail how their
cooperation described in Section 4.3 largely outperforms any single algorithm and scales
well with larger and more complex instances in a limited amount of time (300 s).

5.3. Analysis

As mentioned in 5.1, the limited number of FLs and high density of the generated
instances make the conflict resolution quite challenging. Moreover, whereas ATC
usually tries to find a feasible maneuver for aircraft involved in a conflict, our approach
also focuses on the cost of the solution in terms of fuel consumption, aiming at an
optimum of the cost function described in Section 3.

Figure 14 shows the mean time (in seconds) needed to compute the optimal solution
for both ILP and CP algorithm for all instances from 15 to 30 aircraft. The ILP solver
clearly outperforms the CP one, up to several orders of magnitude for the largest
instances with 30 aircraft. If we considered 300 s limited time to run each algorithm,
to obtain a first solution with CP can be challenging or even out of reach within the
allocated time. So in the following, we only present performances of MA and ILP
algorithm, especially their cooperation. Note that execution times in Figure 14 are
plotted with a base-10 logarithmic scale.

For small 3D instances up to 40 aircraft, both MA and ILP algorithm obtain an
optimal solution, and the optimality can always be proved by ILP in very limited time.
Figure 15 shows the mean time needed to compute the optimal solution for both MA
and ILP for all instances ranging from 20 to 40 aircraft. Using ILP, the optimum is
found within a few seconds.

For larger instances however, the problem is more challenging, and finding the
optimal might be over-costly. In order to stay within the limits of a potential real-time
application, we decided to limit the computation time to 300 s. Figure 16 shows the
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Figure 14: Comparison of computation times (in logarithmic scale) to find an optimal solution for small
instances with CP and ILP.
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Figure 15: Comparison of computation times to find an optimal solution for small instances with MA and ILP.
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Figure 16: Percentage of success for finding an optimal solution within a 300 s time limit with MA and ILP.

percentages of large instances (ranging from 40 to 60 aircraft) for which an optimal
solution was found. This ratio quickly decreases when the density increases, with ILP
still being able to optimally solve about 20 % of our largest instances.

Next section shows that the cooperation between MA and ILP significantly increases
the success rate of finding an optimum, and thus enhances the cost of the resulting
solution.

5.4. Cooperation
We present in this section the results obtained with the cooperative version of the

MA (cf. Algorithm 3) and of the Branch and Cut (cf. Algorithm 4) integrated in the
distributed framework described in Section 4.3. The behavior of the resulting solver
exhibits a much better behavior when the density of instances increases. It gives optimal
solutions within the 300 s time limit for almost all feasible instances, while MA or ILP
alone could not reach the optimum, as depicted in figure 17.

In figure 18, we compare the cost (averaged over 10 runs for each density) of the
best solutions found by the MA, ILP and their cooperation, with respect to the optimal
value. Here, 100 % represents the optimum cost, while a larger value represents the cost
of a non-optimal solution. As expected from our previous observations, the cooperation
systematically reaches an optimal solution. For even larger instances (with 70 to 100
aircraft), MA or ILP alone can be much farther from the optimal value: up to 3.5 % on
average, and up to 10 % on some particular instances.

Figure 19 shows the evolution of the cost of the best solution during the search for
one of the most difficult instances in our set, involving 59 aircraft. First, we observe
that, at the end of the 300 s limit, the cost of the solutions found by MA and ILP are
similar, but are about 10 % higher than the cost of the cooperation solution. Second, we
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Figure 18: Average cost of the best solution found within 300 s, expressed as the ratio of the difference to the
optimum.
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Figure 19: Convergence of the cost with a 300 s time limit.

can see from the graph that the cooperation proved the optimality of its solution, as the
process stopped at about 260 s. This optimal solution was found after about 110 s. In
the meantime, MA and ILP seemed to be stuck, probably on a locally optimal solution,
after 150 s to 200 s. In the first part of the search, the cooperation follows exactly the
same convergence profile than the MA, while the ILP algorithm does not provide any
solution. This is due to the fact that the solver used for ILP performs some internal
transformations of the problem to provide a more efficient search afterwards. During
this process, no solution can be proposed. The cooperation highly benefits from this
mechanism, as in the meantime the MA can quickly converge to solutions with a good
cost, thus saving time for the ILP solver when it is ready to execute the BC algorithm.

In order to assess how the cooperation impacts the optimality of the solutions, we
performed a new series of tests without the 300 s time limit, and measured the time
needed for the ILP solver alone and for the cooperation to find and prove the optimal
solution on large instances (50 to 60 aircraft). The results of this experiment are shown
on figures 20 and 21 respectively. Note that the y-axis is in log scale on both figures.

Figure 20 shows that the advantage of the cooperation over the ILP solver alone
increases with the density of the problem: for instances around 50 aircraft, it is only 1.2
to 2 times faster to find the optimum, while for larger instances, it can be up to 10 times
faster.

For the proof of optimality, we see on figure 21 that the difference is more consis-
tent, with the cooperation being approximately 2 times better than ILP alone. This is
explained by the fact that the MA does not contribute to the proof of optimality due
to its lack of completeness properties. Thus, once an optimal solution has been found,
the cooperation has no further advantage over the ILP solver alone. Also, we observe
that proving optimality is significantly costlier than finding an optimal solution (by a
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Figure 20: Comparison of computation times to find an optimal solution for the cooperation and the ILP
solver alone.

10 to 100 factor). In the reported experiment, it was even out of reach (in a reasonable
computation time) for most 60-aircraft instances.

5.5. Infeasible Instances

In an operational context, any real-time software that manages a non-interruptible
critical system should provide a fallback scheme, were an instance infeasible, i.e.
without valid conflict-free solutions. In such cases, the solver should provide a set
of maneuvers “as good as possible”, trying to minimize the number and severity of
conflicts, and report perilous situations.

Table 3: Value of the uncertainty bounds w.r.t. the error level l.

uncertainty bound Et0 Et1 Eα Evh Evv

value for level l l × 10 s l × 10 s l × 1◦ l × 2 % l × 5 %

One of the main advantages of combining a complete algorithms (like Branch and
Cut) able to prove optimality or infeasibility with a metaheuristic (like an MA) is that
the latter directly processes candidate solutions in the maneuver space, possibly with
remaining conflicts. Moreover, the minimization of the number of conflicts is the main
criterion used by its objective function, before attempting to minimize its maneuver cost
as described in Section 4.1.2. Consequently, when no legal solution is found, the best
current solution of the MA tends to minimize the number of conflict violations.

Figure 22 shows the mean of the number of remaining conflicts over five scenarios
with 60 aircraft, w.r.t. the level of uncertainty l ∈ {5, . . . , 9} of the detection phase, which
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Figure 21: Comparison of computation times to prove optimality for the cooperation and the ILP solver.

was artificially raised until the problem becomes unfeasible (e.g. for l = 9, the aircraft
may deviate up to 9◦ relatively to the requested heading change, which is much more
than operational error levels). Indeed, envelopes representing the position of aircraft
will expand with the level of uncertainty, as well as the number of conflicts. Table 3
gives the value of the various uncertainty bounds defined in Section 3.2.2 w.r.t. to the
uncertainty level l. Note that the ILP solver is consistently able to report the infeasibility
of the tested instances.

In such a case, our cooperation framework can be adapted in several ways:

• whenever a complete solver proves that the instance is infeasible, the mode of the
cooperation can be switched to report the best solution obtained by a metaheuristic
within the time limit;

• similarly, if no valid solution nor proof of infeasibility were obtained within the
time limit, the best solution of the MA can be reported as well;

• eventually, provided that there is enough time to restart the search, the separation
norm could be reduced until the problem becomes solvable.

Moreover, in an operational context, all conflicts are not equivalent as violations
can be almost inconsequential (e.g. the closest point of approach is 4.5 NM instead
of the required 5 NM in the horizontal plane) or severe (e.g. less than 0.5 NM), only
last a fraction of a second or continue during one minute. To handle infeasibility more
precisely, we could compute the severity of each potential conflict during the detection
phase described in Section 3.2.4 and store the information in the conflict matrix. The
objective function of the MA can then be modified to minimize the sum of conflict
violations weighted by their severity to obtain the safest maneuver set.
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Figure 22: Average of the number of remaining conflicts over 5 instances with 60 aircraft w.r.t. the level of
uncertainty l, resolved by the MA with a 300 s time limit.

Furthermore, in an operational setting, conflict resolution would be iterated over
a Rolling Horizon taking into account a limited time window (e.g. 20 min), which is
then shifted by a given time step (e.g. 5 min). Therefore, the volume of a given aircraft
position envelope (cf. Section 3.2.3) at a given time in the current window will shrink
in the next one, as the envelope will be closer to the initial position of the aircraft.
Consequently, conflicts that cannot be solved in the current time window might be
easier to solve during a later iteration, or even disappear. As explained in Section 4.1.2
concerning the cost of valid solutions, the MA could also be tuned to favor solutions
with remaining conflicts appearing as late as possible, in the hope that the reduction of
uncertainty will make them easier to solve during the next iterations.

Eventually, the range of maneuvers could also be extended to widen the solution
space with, for example, heading changes of 5, 15 and 25◦, vertical changes of ±3000 ft
or speed adjustments greater than a −6 % slow down or greater than a 3 % speed up.

6. Conclusion and Further Work

We have presented an innovative framework for the modeling and resolution of
en-route conflicts in three dimensions. The modeling is clearly separated from the
resolution, thus giving the opportunity to compare various resolution methods on the
same instances. Horizontal, vertical and speed maneuvers are taken into account, and a
comprehensive uncertainty model is described as well. The proposed modeling is also
totally generic, and gives users the possibility to integrate their own maneuvers. Based
on our model, a large set of realistic instances of the problem have been generated, with
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various densities and difficulties. These instances have been made freely available to the
research community at clusters.recherche.enac.fr.

Building on previous work (see [3]), we have proposed two algorithms for the
resolution of the en-route conflict problem: a Memetic Algorithm (MA) and a Branch
and Cut (BC) to solve Integer Linear Programs (ILPs). The MA has the benefit of
finding feasible solutions in a very short time, even for dense instances, while the ILP
was able to find and prove optimal solutions for low to medium density instances. Based
on these observations, we have designed a generic framework for the cooperation of
optimization solvers, in which any algorithm can share information such as partial
solutions, lower or upper bounds for the cost, etc. This framework has been successfully
tested with the MA and ILP solver.

Instances of low density were optimally solved by all three methods within less than
one minute. For larger instances, we have restricted the computation time by 300 s, in
order to make the approach compatible with a real-time context. With this limit, both
the MA and ILP solver were able to provide good solutions to high density instances,
without reaching optimality though. The cooperation between the MA and the ILP
solver outperformed both approaches on all instances, and made it possible to reach
and prove optimality in most cases, even for very dense instances. Moreover, should a
particular instance be infeasible, our solver is able to provide a set of maneuvers that
minimizes the number of remaining conflicts, thanks to the incremental properties of
the MA.

The proposed framework is completely generic, from the model to the cooperation
method, which provides many opportunities for future research. On the optimization
side, we could plug other algorithms in the cooperation tool to further enhance the
performance of the resolution. We could also weigh the conflicts according to their
severity during the detection phase to handle infeasibility with more accuracy and
provide “as-good-as-possible solution”. Regarding the Technology Readiness Level of
our solver, our next step is to integrate this framework into a more realistic air traffic
simulator, with a finer model of aircraft performances, to validate the approach before
assessing its real-life abilities in an operational context.
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