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Abstract  

 

The literature on airlines presents few studies analyzing the airlines network evolution. We believe that this gap is due 

to the difficulty of capturing the network complexity in a simple manner. This paper proposes new simple and 

continuous indicators to measure the airlines’ network structure. The methodology to build them is based on graph 

theory and principal component analysis. We apply this approach to the US domestic market for 2005-2018, and obtain 

three network indicators. The first one measures how close the network is to a single-center structure. The second 

indicator measures the airline’s ability to provide alternative routes. The third indicator captures the network size. We 

analyze the indicators evolution across time and show their robustness under different scenarios.  
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Highlights: 

● Propose a methodology to build airline network structure indicators 

● Combine graph theory and principal component analysis 

● Obtain three indicators to characterize airline network structure for US domestic market 

● Represent the indicators evolution  

● Analyze the impact of the main US mergers on the network structure  
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1. Introduction 
 

The air passenger industry is extremely complex and dynamic, and continues to grow rapidly. Since 

1970, worldwide air traffic has doubled every 15 years, and according to Airbus forecasts (2017) this growth 

rate will persist over the next 20 years. In this context, each air carrier adapts its network structure, i.e., 

airports served and flight schedules. This involves the choice of aircraft type, frequency and finally, number 

of assigned seats on each flight leg. Scheduled flights form a complex network of connected cities whose 

organization depends on airlines’ strategies of expansion. This study applies a methodology based on graph 

theory and principal component analysis to build new indicators that reflect an airline’s individual network 

structure. The new indicators allow to draw an innovative map of airline networks.  

The evolution of airline networks has been a central concern in the airline literature since the emergence 

of the first hubs4 in the U.S. in the 1970s. The hub-and-spoke network seemed at that time to be a more 

profitable structure due to economies of density and scope (Caves, Christensen, and Tretheway 1984; 

Brueckner and Spiller 1994; Nero 1999). Therefore, airlines were expected to implement this type of 

structure while increasing their size.  

However, new operators in the industry that entered the market after the deregulation, namely low-cost 

carriers (LCCs), adopted a totally different network organization, with highly connected or point-to-point 

networks. Their network organization together with an offensive pricing strategy and a cost reducing 

business model allowed them in some cases to achieve higher profits than the legacy carriers. The attention 

of several authors focused on comparing these two distinct network structures, point-to-point versus hub-

and-spoke, as in Brueckner (2004), Alderighi et al.(2005), Barla and Constantatos (2005), Flores-Fillol 

(2009), and Silva, Verhoef, and Van den Berg (2014). In most of the cases, perfect hub-and-spoke networks 

are compared with fully-connected networks. However, reality is more complex and airline network 

organizations often lies between these two extreme cases. Wojahn (2001) shows that a network combining 

hub-and-spoke and fully-connected structures could be optimal and that multi-hub networks are not cost 

minimizing for airlines. Besides, hubbing is only one of several possible network dimensions and is not 

necessarily the only decision for airlines in terms of network structure. To our knowledge, there have been 

no studies attempting to analyze the evolution of airline networks from an economic perspective. We believe 

that this gap is due to the difficulty of capturing the network complexity in a simple manner. The large 

number of interconnected routes, and the diversity of relationships between those routes, impede 

constructing an appropriate model and thereby analyze the structural and dynamical properties of the 

networks. 

In this study, we build continuous indicators of airline network structures combining graph theory 

measures with a principal component analysis. Building continuous indicators has a double purpose. First, 

it allows to compare and classify airlines according to their network structure and to study the airline’s 

network complex evolution in a simple manner. Second, it allows to study the impact of the network 

structure over profits, costs or delays. Both purposes are relevant to determine the optimal airline strategies 

and in consequence the optimal regulation. This article considers the first objective while the second one is 

left for future research. 

To begin with, we consider airlines’ networks as graphs and we select graph theory measures relevant 

to describe the network structure according to the literature on airline networks. Given the large number of 

graph measures, we propose to apply a principal component analysis (PCA) to synthesize the information 

they convey. Using PCA we obtain straightforward continuous indicators, the principal components, to 

characterize the airline networks. We apply this methodology to the airlines operating on the US domestic 

market from 2005 to 2018. We show that three principal components reflect most of the information 

contained in the selected graph measures. These three components allow characterizing the network 

structure and help to represent its evolution. The first component that we denote as NetCenter, measures the 

presence of central cities, central in terms of route concentration. The second component, denoted as 

                                                 
4 The literature considers as hubs the airports where one or several airlines propose a large number of flights, and passengers can 

transfer between flights to get to their intended destination.  

https://en.wikipedia.org/wiki/Airport
https://en.wikipedia.org/wiki/Airline
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NetWeave, represents the airline’s ability to mitigate disturbances by providing alternative flights within its 

network. NetWeave does not measure the airline’s quality in terms of service provided to customers under 

network disturbances, but it measures the airline’s richness of alternative routings. Based on the third 

principal component, we provide the last network indicator NetSize that measures the network size in terms 

of flight segments or nonstop routes served. We illustrate the position of US carriers at the beginning of our 

sample (2005) according to the three indicators, NetCenter, NetWeave and NetSize. On this basis, we identify 

five different network structures ranging from large point-to-point to single-center network. The three 

indicators propose a network classification different from the traditional one which leads to the usual 

distinction between legacy carriers and LCCs. This result is consistent with recent analysis on airlines’ 

business models. Empirical studies by Jarach, Zerbini, and Miniero (2009), Klophaus, Conrady, and Fichert 

(2012) and Bitzan and Peoples (2016) show the convergence in business models between the two categories 

of operators. We confirm these preliminary observations by analyzing the evolution of the network 

structures for the US domestic market over a thirteen-year period. 

The remainder of this paper is organized as follows. The next section presents a literature review. 

Section 3 describes the methodology for constructing indicators, combining through a principal component 

analysis the most important topological measures provided in graph theory. The description of the selected 

graph theory measures is provided in Section 4. In Section 5 we apply this methodology to the US domestic 

market at the beginning of our sample, in 2005. We construct three network indicators based on the principal 

components. A graphical representation of the airline networks through these indicators is provided. Then 

we built indicators of network evolution that reveal development of an airline network structure over the 

whole period of observation. Last, we conclude and suggest further possible applications of the indicators. 

 

2. Literature Review 
 

We can disentangle two branches within the literature on airline network structures: a graph theory 

branch with its focus on network mathematical properties and an economic branch that traditionally 

compares perfect hub-and-spokes and point-to-point networks. In this section, we summarize the main 

results obtained in each area. In our study, we aim to analyze the airlines’ network evolution by linking these 

two branches. We intend to go beyond the comparison of these two opposite network structures: based on 

graph theory measures we seek to obtain simple continuous indicators that represent the complex reality of 

airline network organization.  

Air, road and rail transportation are industries organized in networks connecting separate locations. 

Graph theory provides powerful analytical tools to investigate transportation network structures and their 

evolution. Several studies in transportation use graph theory to identify network characteristics such as the 

network robustness to disturbances, the transmission capabilities in the dissemination of information or in 

spreading communicable diseases, and more generally the evolution of the transport systems. The difficulty 

arises from the large number of measures available. In general, the literature refers to particular graph theory 

measures and justifies their relevance for the study of specific objectives. Háznagy et al. (2015) use graph 

theoretical centrality measures and global characteristics such as network diameter, average path length, 

degree distribution and community structure to understand and compare network characteristics of public 

transportation systems in several Hungarian cities. Studies of transportation network resilience can be found 

in the work of Angeloudis and Fisk (2006) for the world subway system, or Chatterjee, Manohar, and 

Ramadurai (2016) for bus network in India. Zhu and Luo (2016) calculate average values of degree, 

clustering coefficient, betweenness or shortest path among others, to characterize Guangzhou’s subway 

network and analyze the evolution of these parameters for the future development of the subway system.  

In the airline sector, most of the graph theory studies focus on airport properties. Ryerson and Kim 

(2013) present a methodology defining tiers for hubs. Grubesic et al. (2008, 2009) evaluate airport 

hierarchies across time according to passengers flows while Malighetti et al. (2018) study European airport 

hierarchies according to freight flows. Martín and Voltes-Dorta (2008) propose a hubbing concentration 
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index that captures the number of passengers who make some onward connection.5 Burghouwt and Redondi 

(2013) present a compilation of connectivity indicators for airports with most of them coming from graph 

theory. Other studies analyze different network characteristics at the world, country or regional levels. For 

instance, Da Rocha (2009), Gautreau, Barrat, and Barthélemy (2009), Wang et al. (2011), Wandelt and Sun 

(2015), Dunn and Wilkinson (2016) and Du et al. (2016) examine different network properties at the country 

level. Lordan and Sallan (2017) investigate the robustness of the European airport network in case of airport 

isolation caused by random or targeted attacks, while Sun, Gollnick, and Wandelt (2017) study the 

robustness of the worldwide airport network. Diverse applications of the complex network theory to air 

transportation are summarized in Zanin and Lillo (2013) and discussed in Cook et al. (2015). Few works are 

dedicated to the network analysis at the airline level. Reggiani et al. (2009a; 2009b) study Lufthansa’s 

network and Cento (2008) analyzes several European carriers’ networks.  

Although the network structure is a key determinant of airline profitability, costs or delays, the literature 

is sparse and as stated in the introduction, in most of the cases perfect hub-and-spoke systems are compared 

to complete point-to-point networks. Hubs are usually reflected in dummies as in Lee and Luengo Prado 

(2005), Lederman (2008) and Ciliberto and Williams (2010) to study the presence of Hub Premiums in 

pricing or Fageda and Flores Fillol (2016) to study its effects on congestion. We believe that the absence of 

continuous network indicators justifies the limitation of the analysis to these two distinct network structures. 

Some studies, however, have tried to surpass this barrier: Borenstein (1992), Reynolds-Feighan (1998, 2001) 

and Burghouwt, Hakfoort, and Ritsema van Eck (2003) study the airlines hub construction. They use 

measures such as the Gini index, the Theil entropy measures, the Herfindahl Hirschman Index, the 

coefficient of variation, or modifications of these measures, depending on the available sources of 

information, to see whether an airline network has a structure close to a hub-and-spoke. Such measures have 

been applied to study the impact of hubs on the airline’s cost structure (Pels, Nijkamp, and Rietveld 2000; 

Ryerson and Kim 2014), the level of competition (Hendricks, Piccione, and Tan 1997), prices (Tan and 

Samuel 2016), the level of congestion and delays (Brueckner 2002, Mayer and Sinai 2003), or to study 

several of these characteristics combined (Bilotkach, Mueller, and Németh 2014; Brueckner and Zhang 

2001). 

Nevertheless, hubness is only one network property whereas graph theory measures can characterize 

other network attributes. One of the challenges faced while applying graph theory is that among many graph-

theoretical measures there can be several highly correlated concepts. This complicates the choice of the most 

appropriate measure and hampers the simultaneous use of similar variables in econometric analysis. 

Ghobrial (1992) studies the effects of some network characteristics over the aggregated airline’s demand 

and find some “instability” in the estimated coefficients, largely due to the correlation among the network 

characteristics. For these reasons, we propose to apply a PCA on the most common graph theory measures 

used in the literature to build tractable indicators. The use of PCA presents two advantages, firstly it avoids 

choosing a unique graph theory measure to describe individual network structures and secondly it allows 

combining correlated measures that provide different information about the network characterization. The 

constructed indicators, that is the focus of our study, will enable in further studies to analyze the economic 

impact for airlines of their network choices. 

 

3. Methodology  
 

The question we address is the following: can we characterize the structure of an airline network so 

that it could be possible to analyze its evolution, predict airlines’ decisions in terms of hub and route creation 

or evaluate the network optimality? This section presents a methodology to construct network indicators 

that describe the network structure and its evolution. 

                                                 
5 There exists also a vast literature on hub location that we do not consider here. Alumur and Kara (2008) and Campbell and O’Kelly 

(2012) propose reviews on hub location models. 
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The section begins defining airlines’ networks with a mathematical concept: graphs. First, we specify 

the main assumptions to represent networks as graphs. Then we explain the methodological foundation to 

construct the network indicators. 

 

3.1. Network Model and Assumptions 
 

The air transport network is a complex system of flight connections between cities. Such a system can 

be described by a graph and its structure can be studied using techniques developed in graph theory. A 

graph is an abstract representation of interconnected objects. It is defined as a set of nodes that are joined 

by a collection of edges (Diestel 2006). Edges represent relations between the nodes of a graph. We consider 

the air transport network at the airline level and describe an airline network as a graph. Cities served by the 

airline are the graph nodes, and flight segments operated between cities are the edges. We study only the 

network spatial dimension and leave for further research the inclusion of the temporal dimension that is 

considered by Wojahn (2001) or Burghouwt and de Wit (2005).  

In order to apply graph theory tools to study an airline network, a preliminary step devoted to flight 

data representation is required. The objective of this step is to obtain the data in the form of a connection or 

adjacency matrix. For an airline, such a matrix describes the existence or absence of an edge between each 

pair of nodes within the network at a given date. At this stage, we make several assumptions. 

Assumption 1: airlines make network decisions at the city level rather than at the airport level. 

Although an airline may serve several airports in a metropolitan area, these airports are considered as a 

single airport for that airline.6 Under this assumption, airlines using several airports in the same city take 

network decisions based on all the flights proposed from all the airports in the city. This is consistent with 

the airport grouping suggested by Brueckner, Lee, and Singer (2013).  

Assumption 2: a graph associated with an airline network is undirected and unweighted.7 

Our study focuses on structural, or topological, properties of airline networks. This means that we are 

interested in the network structure in terms of connections between city nodes, no matter the direction, nor 

any edge characteristics such as flight frequencies or seats. Under assumption 2, we define a flight segment 

as a dichotomous variable taking value one if a nonstop connection between two cities exists, no matter the 

direction or the frequencies and taking value zero otherwise. 8 

The last assumption is related to the relationship between major airlines and their feeders. Airlines can 

decide to operate all the flights they propose to their customers or to outsource the operations to regional 

carriers or feeder companies. These flights must be coordinated between both carriers. 

Assumption 3: major airlines and feeders coordinate their network decisions. 

The choice of subcontracting or integrating routes in a network is crucial in air transport industry as 

suggested by Forbes and Lederman (2009), Levine (2011) and Gillen, Hasheminia, and Jiang (2015). We 

assume that network choices for the feeders should be done in perfect coordination with their majors and, 

therefore, we recode regional/feeder airlines to their major partners.9 

                                                 
6
 For instance, John F. Kennedy International Airport (JFK) and LaGuardia Airport (LGA) are recoded as NYC for American 

Airlines as it serves both airports. 
7 An edge or a node in a graph can be given a specific quantitative characteristic, or weight. If no weights are assigned to edges or 

nodes, the graph is said to be unweighted. 
8 The use of undirected graphs implies that nonstop flights between New York and Los Angeles and nonstop flights between Los 

Angeles and New York are considered as a single flight segment or route. The assumption on undirected graphs is justified for the 

US domestic market. During the whole period of observation each flight segment has almost the same number of direct and return 

flights: one-way flights without return equivalent represent 0.54% of the total number of flights. 
9 For instance, flights operated by Ravn Alaska (7H) are recoded as Alaska Airlines (AS). This is a common practice in the literature, 

see for instance Malighetti et al. (2018) 
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3.2. Graph Theory and PCA 
 

Under the previous assumptions an airline network can be represented with an adjacency matrix. If a 

network evolves over time, its matrix changes accordingly. Each adjacency matrix allows to compute 

various graph theory measures. In the literature, several of these measures are considered to study the airline 

networks, however some of them are correlated and in fact may reflect the same network property each 

providing slightly different information. This complicates the selection of the most appropriate measures 

and flaws the comparison among existing studies. It is therefore essential to identify the most meaningful 

variables, or to build some combinations of them, which can reflect accurately the network structure 

observed from the data. In this article, we propose to follow the latter: we reduce a sample of selected graph 

theory measures into a small set of indicators built as linear combinations of the measures. The main 

challenge is then to be able to interpret the indicators in line with the airline network structure. 

Reducing the number of variables to a few interpretable linear combinations can be performed by one 

of the two most widely used dimension-reduction techniques: principal component analysis (PCA) or factor 

analysis (FA).10 Although they share the same objective, to simplify a set of variables, PCA and FA differ 

analytically. PCA aims to explain most of the total variance observed in the dataset by a smaller set of new 

components, called principal components. The goal of FA is to understand which factors underlie the 

covariances between the original variables; it defines the original variables as linear combinations of these 

factors. 

Our purpose is to obtain a reduced set of meaningful variables to describe airline networks and network 

evolution, through a combination of graph measures, so that the newly constructed variables can effectively 

identify the network structure and its change over time. Therefore, we focus on the principal component 

analysis as it allows such transformation.11  

Once the PCA is applied and a set of principal components is selected, these components must be 

interpreted with respect to the network structure, so that they can be used in comparing airlines’ networks 

and understanding their evolution. Interpretability of the principal components depends both on the dataset 

and on the selection of the original variables, this is one of the weaknesses while using PCA. The selection 

of graph measures to be included in the analysis is crucial to guarantee this interpretability. 

We consider various graph theory measures, some of which are commonly used in the transportation 

literature. A description for each of them will be provided in section 4. For the sake of convenience, we split 

the graph theory measures into two groups: overall and node-based measures. Overall measures relate to the 

whole network. In this case a single measure need to be computed for the whole network. We argue that all 

the overall graph theory measures are robust to changes in the sample and should be used to build airline 

network indicators with a PCA. Node-based measures assess how nodes (or cities) are related to each other 

within a network: node-based measures are studied at the node level. Then, in order to obtain measures for 

the whole network, we need to summarize node measures through centralization indexes and descriptive 

statistics (maximum, minimum, average, standard deviation, percentiles, etc.). Given this large variety of 

statistics for node-based measures, their final selection for the implementation of the PCA should be driven 

by the market characteristics and the possibility to accurately interpret the obtained principal components. 

Therefore, there is no general rule for the selection of node measures and their contribution to the principal 

components might vary slightly with sample changes. 

 

4. Graph Theory Measures  
 

We now describe all the network measures used in this study and provide their interpretation in terms 

of airline networks. We distinguish overall network measures that characterize the whole network, from 

                                                 
10 See Fodor (2002) for a survey of dimension-reduction techniques. 
11

 A detailed description of the technique can be found in Abdi and Williams (2010) and in appendix B for our application to the 

US domestic market. 
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node-based network measures that are calculated at the node level and express the relative connectivity of a 

node compared to the other nodes in the network. Their respective formulas and some illustrative examples 

are presented in Table A.2. 

 

4.1. Overall Network Measures 
 

The elementary network characteristics, i.e., the number of cities (nbCity) and the number of flight 

segments (nbFS) convey what is called the order of a network and its size, respectively.12 The number of 

flight segments measures the total number of existing nonstop connections between all the cities in the 

network. The size of the network can be one of the criteria used for network selection: a too small size could 

lead to the exclusion of a network. The threshold must be determined according to the sample of analyzed 

networks. 

Another concept of network size is the diameter (diamG). It represents, in the case of airlines, the 

minimum number of nonstop flights needed to connect the two most remote cities in the network. The 

diameter is another criterion that can be used for network selection. It allows to identify networks with a 

very small network size as we will see in the next section. The diameter cannot be measured in the case of 

disconnected networks. As some airlines present disconnected networks, diamG is not included in the 

PCA.13 

The network density (DensG), or graph density, is the number of existing edges with respect to all the 

possible edges. A complete graph, the graph where any pair of nodes has a direct connection, contains all 

possible connections and thus achieves the maximum density, 1, as can be seen from Table A.2. For any 

airline network, the higher the value of network density the more nonstop flights the network offers, that is, 

most of the cities can be reached directly from any city. Typically, a high value of density indicates that the 

network is close to a point-to-point organization. We argue that this measure must be included into PCA.14  

 

4.2. Node-based Network Measures: Transitivity and Centrality Measures 
 

Centrality measures are intended to determine the structural relevance of a single node in a network, 

quantifying in different ways the importance of a node among the other nodes. 

The degree centrality of a node (Cdeg) is a purely local measure. It is the number of direct connections 

the node has with respect to the number of all possible direct connections the node may have. The degree 

centrality of a node reveals how locally well-connected each node is. In an airline network, the more non-

stop flights connect a city with other cities, the higher the degree centrality of this city. For a given network 

there are as many values of degree centrality as nodes. 

A subtler measure of a node’s importance is the closeness centrality, which is based on geodesic 

distance.15 However, closeness centrality becomes useless for disconnected graphs since the distance 

between two nodes belonging to different components is infinite by convention. Da Rocha (2009) extended 

closeness centrality to disconnected graphs by defining the harmonic centrality index (Char). In an airline 

network, the harmonic centrality of a city indicates how fast every other city in the network can be reached 

from this city. A fast trip between two cities means a low number of flight segments required to form the 

trip. Table A.2 shows that disconnected networks generally have low values of harmonic centrality. 

                                                 
12 Note that the network size is measured in terms of segments and not markets. Indeed, airlines can serve markets between two 

cities via connecting flights; however, that information is not available in our database.  
13 If there are nodes in a graph that cannot be reached from others, the graph is disconnected. In other words, a disconnected graph 

splits into several connected components, whereas a graph that is in one piece is connected. In Table A.2, all the graphs are connected 

except in the last two columns which illustrate disconnected graphs. 
14 Given the construction of DensG presented in table A.2, densG, nbCity and nbFS present high correlation levels and can be 

collinear under some scenarios. To avoid collinearity issues, we decide to exclude nbCity from the PCA. 
15 A geodesic distance between two nodes is the minimum number of non-repeated edges that connect the two nodes, i.e., the 

number of edges (flights) in a shortest path connecting the nodes (cities).  
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Betweenness centrality (Cbet) is also derived from geodesics. It quantifies the number of node 

occurrences on all the graph geodesics. In an airline network, betweenness centrality gives a high value to 

the city that may occur most often as an intermediate stop on the routes between any pair of other cities 

containing the least number of stops. In this case a city with a central position will exhibit a high value of 

betweenness centrality. For instance, the largest value of betweenness centrality is achieved in a star graph 

by the central node of the star, and equals 1, whereas all other nodes within the star have betweenness 

centrality equal to 0. Note that a high value of betweenness centrality may also refer to cities that play the 

role of a bridge between two distinct parts of a network as shown in Table A.2 O’Kelly (2016) computes 

betweenness for nodes among the 30 biggest airlines and compare them to extreme cases as the ones 

presented in Table A.2. 

Eigenvector centrality (Ceig) is based on the concept that connections to high-scoring nodes contribute 

more to a node score than connections to low-scoring nodes.16 A high value of eigenvector centrality for a 

city characterizes how well this city is connected to other well-connected cities. When a city has a high 

eigenvector centrality, this may indicate that the city has many direct connections or it is linked to several 

highly connected cities. 

Every centrality measure can be applied to the whole network rather than only to a node, and in that 

case, we address ourselves to descriptive statistics and centralization indexes. Among the descriptive 

statistics we can consider the minimum, maximum, average, standard deviation, or different percentiles. The 

network centralization gives an answer to the question of how central the most central node is in relation to 

how central all the other nodes are. The centralization indexes belong to [0,1]. Degree, betweenness and 

harmonic centralization indexes reach their highest value for a star graph. In terms of eigenvector 

centralization, the most centralized structure is the graph with a single edge (and potentially many isolated 

nodes). For connected graphs, the value is high if the graph has a single star topology (as illustrated in the 

first column of Table A.2). Each centralization index is named concatenating ‘G’ and the original name of 

the index, so that the centralization indexes for Cdeg, Char, Cbet, and Ceig become respectively GCdeg, 

GChar, GCbet, and GCeig. 

Finally, a node and a pair of its neighbors17 form a triplet that can either be open (when the three nodes 

are connected by two edges) or closed (when the three nodes are fully connected). The global clustering 

coefficient, or graph transitivity, is the number of closed triplets over the total number of triplets (both open 

and closed). The transitivity coefficient (transG) of an airline network can be understood as a measure of 

the network connectivity. A star network structure has a zero value for transitivity, however as seen in Table 

A.2 low values of transitivity can also represent other types of structures. Instead, high values of network 

transitivity, imply the presence of dense groups of nodes. Transitivity is an important measure for the 

network characterization in air transportation. For instance, Trapote-Barreira, Deutschmann, and Robusté 

(2016) use network transitivity, associated with network density to study delay propagation.  

All these measures represent different network characteristics. As explained previously, some of them, 

such as the centrality measures, are highly correlated. In order to keep the richness of information provided 

by these measures we apply PCA to transform them into a few network indicators. 

 

5. Application to the US Domestic Market 
 

The methodology proposed in the previous section to construct network indicators is now applied to 

the case of the US domestic market. Although worldwide data is available in our dataset we choose to focus 

on this market. The public databases available for the US domestic market will allow to replicate and extend 

our analysis with complementary information sources such as DB1B database that provides information on 

                                                 
16 The score of a node is proportional to the sum of its neighbors’ scores. Hence a node can have a high eigenvector centrality either 

because it has many neighbors or because its few neighbors are important, or both. A node with high eigenvector centrality will not 

necessarily be highly connected, and a node with many direct connections will not necessarily have a high eigenvector centrality. 
17 Two nodes are said to be neighbors if they are connected by an edge. 
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prices. We start this section describing the data source, then we move on to the PCA results, the network 

characterization and its evolution. Finally, we analyze the robustness of our findings.  

 

5.1.  Data 
 

Our dataset is built from the Official Airline Guide (OAG), which provides information on worldwide 

scheduled traffic such as route characteristics (departure and destination airports or distance) and flight 

characteristics (time of departure and arrival, duration, available seats or operating airlines). We consider 

one-way direct passenger flights between 2005 and 2018 for all the operating carriers within the US 

domestic market. Following assumption 1, we group airports belonging to the same city area. Daily data at 

flight level has been extracted for the third quarter, i.e., July 1st to September 30th, since the third quarter 

presents the highest annual traffic. Collecting the data at daily-flight level is necessary to distinguish 

marketing and operating carriers for each flight. Following assumption 3, we might treat the operating carrier 

as a regional/feeder airline and recode it to its major partner, which is the marketing airline. Whenever the 

operating carrier is different from the marketing carrier, we conduct a detailed analysis of supply at the route 

level to determine if recoding as legacy is relevant.18 Then we aggregate the data at monthly level and finally 

consider the month of August. The restriction to a single month across years avoids a seasonality treatment 

that would add no significant information but would be computationally expensive. We replicate the analysis 

for July and September to show our results’ robustness. 

The data cleaning process leads to the exclusion of some airlines. We delete from the database non-US 

operating carriers. These records, representing less than 1% of the observations, are considered as mistakes 

since cabotage is forbidden. We exclude small airlines that operate networks with extremely short routes 

(none exceeding 200 miles) or that exclusively operate aircrafts with a capacity never exceeding 10 seats. 

In addition, we remove airlines that operate less than 4 years during the period 2005-2018, considering them 

as non-relevant cases for studying the airlines’ network evolution. These two steps in the database cleaning 

represent together less than 2% of the observations. 

We use the diameter to remove small airlines with a specific network type for which the diameter equals 

one. This corresponds to 6 airlines.19 Half of the airlines in our database have networks that are disconnected. 

Diameter is not defined for a disconnected graph and consequently this measure is discarded in the 

subsequent analysis. 

The final dataset contains monthly route level information for each operating carrier, for the third 

quarter of 2005-2018. This represents 157,528 monthly-route observations. The number of operating 

carriers per year ranges from 14 to 22. 20 The number of cities varies from 338 to 516. 

 

5.2.  Three Network Indicators 
 

The graph measures described in the methodology section are calculated monthly for each operating 

carrier for the third quarter of 2005-2018. We calculate overall measures and node-based measures. Further, 

in order to assign node-based measures to the whole network, they are summarized into the usual descriptive 

statistics and the corresponding centralization indexes are compiled. Therefore, the minimum (min) and 

maximum (max) over all nodes in the network as well as the mean (mean), median (med), 5th and 95th 

percentiles (p5 and p95) are computed for degree, harmonic, betweenness and eigenvector centrality 

measures.  

                                                 
18 We analyze all the markets where an operator is a marketing carrier for less than 5% of its flights. Some airlines can operate as 

feeders for several legacy carriers, in this case, the analysis is done at the market level to properly recode the flights of the operating 

carrier to the different major partners. A full list of the recoded carriers and markets can be provided upon request. 
19 We eliminated 6 airlines that operate very small networks, with no more than 3 flight segments. Their IATA codes are: 1X, 3E, 

CH, P1, U5, V2.  
20

 The full list of airlines is presented in Appendix A. 
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However, as discussed in the methodology section, not all the graph measures presented above are 

equally relevant to describe the network structure and obtain interpretable indicators. We select and include 

in the PCA the number of flight segments, network density and network transitivity. Regarding degree, 

harmonic and betweenness, we include their centralization and maximum centrality measures (GCdeg, 

maxCdeg, GChar, maxChar, GCbet, maxCbet).21 This choice is justified as centralization is higher if the 

network contains very central nodes as well as very peripheral nodes. Star-like networks will have high 

centralization measures and the most central city will have a high centrality score (i.e., the maximum values 

of degree, harmonic and betweenness centrality are high). Table A.3 presents the monthly average value 

and standard deviation for these measures for the period 2005-2018 in August. As can be seen in this table, 

the betweenness centrality for Frontier Airlines (F9) hub, i.e., Denver, has a value of 0.86. In point-to-point 

networks, cities have roughly the same importance within the network, therefore the network will present 

low centralization measures while the maximum of degree, harmonic and betweenness centrality measures 

can be high or low.  

Finally, we include eigenvector centralization and the mean of eigenvector centrality (GCeig and 

meanCeig). Eigenvector centrality shows if a city is well-connected to other well-connected cities. Large 

eigenvector centrality characterizes a city that either has many non-stop connections or one that is connected 

to many important cities. A high mean value of eigenvector centrality indicates that the cities in the network 

are on average well connected. Moreover, a value of eigenvector centralization close to zero indicates that 

most of the cities have roughly the same importance, i.e., all are roughly equally well connected either 

having the same number of non-stop connections or being connected to important parts of the network, 

which suggests a point-to-point structure. As we can see in Table A.3, Great Lake Airlines (ZK) network 

has the highest eigenvector centralization index, while Southwest (WN) has the lowest value. This is 

consistent with the graph structure of these two airlines: star topology for Great Lake Airlines versus highly 

connected network for Southwest.  

The 11 selected graph-theoretical measures have been calculated for each airline monthly for the third 

quarter over 14 years: this corresponds to 760 observations on 11 variables. The application of PCA requires 

stationary variables. Under non-stationary time series, PCA may be difficult to interpret as it can result on 

few components with similar loadings to all variables, see for instance Lansangan and Barrios (2008). As 

will be explained in subsection 5.4 our panel data set does not satisfy the stationarity condition. In our case 

there are two possibilities to obtain stationary data: transform the panel data set into cross sectional data, 

splitting it by year, or do an analysis based on first differences that could correct for non-stationarity. We 

combine both approaches by performing first a PCA on the first year of observation, 2005. Through this 

analysis we can characterize the airline networks. In subsection 5.4 we show that first difference variables 

satisfy the stationarity condition and allow to build indicators reflecting network evolution. Combining both 

analysis, we obtain a complete appraisal of the US carriers networks, with first, a characterization of initial 

structures of the airline networks and second, their subsequent evolution. 

The first PCA is performed on the data in 2005 (August), this corresponds to 19 observations on 11 

variables. The first three principal components obtained explain 97.85% of the sample variability. We 

choose to keep these three principal components corresponding to the largest eigenvalues of 5.5239, 3.2750 

and 1.9642 respectively. This choice, as detailed in Appendix B.1, agrees with the commonly used 

eigenvalue one criterion suggested by F. Kaiser (1960) and with the Cattell's scree test (1966). 

The first principal component presents high positive correlations with seven variables (maxCdeg, 

GCdeg, maxChar, GChar, maxCbet, GCbet, GCeig) as shown in Table 1. These variables correspond to 

node centrality measures of a network and the respective centralization indexes. Thus, the first principal 

component can be interpreted as an indicator of the presence of central nodes in the network, or as an 

indicator of a network topology ranging from point-to-point configuration to a star topology. The larger the 

value of such an indicator, the closer the network structure to a star; and reversely, low values of the indicator 

should imply that the network has a point-to-point structure. 

                                                 
21 PCA have been tested for several combinations including different sets of node centrality statistics. Our final selection is driven 

by the possibility to provide an accurate interpretation of the principal components.  
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Table 1 Correlations between the first three principal components and the original variables; August 2005 

 PC1 PC2 PC3 

nbFS -0.50900 -0.23337 0.81229 

densG -0.00614 0.97197 -0.21223 

transG -0.49323 0.83450 -0.02096 

maxCdeg 0.77331 0.49822 0.38993 

GCdeg 0.87891 0.16974 0.44383 

maxChar 0.74777 0.48625 0.44752 

GChar 0.91378 -0.05098 0.39678 

maxCbet 0.89613 -0.21353 -0.36225 

GCbet 0.91237 -0.22425 -0.31323 

meanCeig 0.31833 0.80097 -0.47425 

GCeig 0.72118 -0.57089 -0.31287 

Percentage of 

explained 

variability 

 97.85%  

 

The second principal component is strongly correlated with three variables. It increases with density 

(densG), transitivity (transG) and mean eigenvector centrality (meanCeig). This component can be viewed 

as a measure of network interlacing. A high value of the second principal component may reflect the network 

richness of alternative routings involving non-stop and one-stop flights, whereas its low value shows that 

the network contains few or non alternative paths to attain a destination. 

The third principal component is strongly correlated with only one of the original variables, flight 

segments (nbFS). It increases with increasing nbFS, i.e., the number of connections that are offered with 

nonstop flights. We take this variable in its original form rather than the principal component value and we 

will denote it as NetSize.22  

The two first principal components are interpreted as network indicators. Associated with NetSize they 

allow characterizing the network structure. We denote the first principal component as NetCenter since the 

component measures the presence of central nodes in an airline network. For the second principal 

component, the notation NetWeave will be assigned following its interpretation as a measure of network 

interlacing. We compute the scores on the principal components for each airline in august 2005.23 The way 

the components are constructed gives rough theoretical limits for the components, each one ranging between 

-11 and 11(as explained in Appendix B.1). In our dataset, NetCenter ranges from -3.82 to 3.75, and 

NetWeave, from -1.74 to 5.41. NetSize ranges from 8 to 721. 

 

5.3. Airline Network Characterization  
 

The three indicators constructed in the previous subsection allow comparing the airlines’ networks 

using objective network characteristics.  

Based on the airline scores on the three indicators, NetCenter, NetWeave and NetSize, we can 

characterize the airline networks: 
 

1. An airline network can be classified as a point-to-point network when NetCenter is negative 

and NetWeave positive; in addition, if NetSize is high, the network is a large point-to-point 

network; if NetSize is low, the network is a small point-to-point; 

                                                 
22 For instance, Allegiant Air, G4, presents a NetSize of 242 flight segments in 2005. This means that 242 city pairs are proposed 

with nonstop flights.  
23 We conducted the same analysis for July and for September 2005. The results are alike, confirming the robustness of the proposed 

methodology.  
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2. When NetCenter and NetWeave are both negative, and if NetSize is low, the network has a 

small multi-center structure; 

3. When NetCenter and NetWeave are both negative, and if NetSize is high, the network has a 

large multi-center structure; in this group some airlines, with lower negative values of 

NetCenter tends to converge to a point-to-point structure; 

4. An airline network can be classified as single-centered when NetCenter is high and NetWeave 

is close to zero; 

5. When NetCenter becomes negative and if NetWeave is negative and low, the network should 

have a path or a circle structure, however no airline in our database meets this case. 

 

Figure 1 Network characterization based on NetCenter and NetWeave (a) and on NetCenter and 

NetSize (b). 

 

Figure 1 displays this classification. The obtained indicators can shed new light on the airline 

classification between legacy carriers24 and low-cost carriers (LCCs).25 Figure 2 shows the airlines’ 

positions in August 2005. We observe that LCCs do not exhibit a common pattern in their network structure. 

Spirit Airlines (NK) and Southwest (WN) have low NetCenter and high NetWeave. This position is 

characteristic of a point-to-point network. Interestingly, we observe that the other airlines classified into the 

LCC category are not located in the same area. In August 2005, Frontier Airlines (F9) is a perfect star 

network (with its hub in Denver) although this airline is nowadays developing several hubs (for instance, 

Orlando or Las Vegas). JetBlue (B6) has a hub-and-spoke network with several hubs.  

Jarach, Zerbini, and Miniero (2009) and Bitzan and Peoples (2016) highlight that both type of airlines 

could be converging their management strategies towards a hybrid model. Indeed, as seen from NetCenter, 

there is no clear distinction between legacy carriers and LCCs networks structures. Nonetheless, we observe 

a difference between the two airline categories in terms of NetWeave. All legacies present negative values 

for this indicator while most of LCCs present positive values and all LCCs present higher NetWeave values 

than legacies except Frontier Airlines (F9). This is consistent with the results observed by Lordan and Sallan 

                                                 
24

 We include in this category airlines that were established before the Airline Deregulation Act of 1978 except Southwest Airlines, 

created in 1971, but categorized as LCC: American Airlines (AA), Alaska Airlines (AS), Continental Airlines (CO), Delta Airlines 

(DL), Hawaiian Airlines (HA), Northwest Airlines (NW), United Airlines (UA) and US Airlines (US). Historically, these airlines 

provided a higher service level to their passengers than LCCs although the differences have diminished over time. The full list of 

airlines and their traditional classification is available in Table A.1 
25

 LCCs comprise Allegiant Air (G4), JetBlue (B6), Frontier Airline (F9), Spirit Airlines (NK), Virgin America (VX) and Southwest 

Airlines (WN). 

NetWeave 

NetCenter 
Single-center 

Point-to-point 

Multi-center 

NetSize (nbFS) 

Path or Circle 

Large point-to-point 

Large multi-center 

Small multi-center 

Small point-to-point 

Single-center 

NetCenter 

 1 

 2, 3 

 4 

 1 

 3 

 4 

 2 

 1 
5 

(b) (a) 
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(2017) who study the robustness of airline networks to airport isolation. They find that robustness, their 

equivalent to NetWeave in our study, is higher for LCCs than for full service carriers over a sample of 

airlines from Europe, North America and China. 

 

Figure 2 Airline networks represented in coordinate systems NetCenter-NetWeave (a) and 

NetCenter-NetSize (b) in August 2005. Points are labeled with airline IATA designators. The full 

airline list and their respective codes are provided in Table A.1. 

 

Considering the interactions between NetCenter and the third indicator, NetSize, we observe in Figure 

2b that when NetSize increases, NetCenter decreases to some level between −3 and 0, both for LCCs and 

legacies.  

Given the relationship between NetCenter, NetWeave and NetSize, an increase in NetSize suggests a 

tendency toward a multi-center structure. Only Southwest (WN) is apart from this general tendency. Its 

specific strategy of network expansion will be analyzed in subsection 5.6. The next subsection is dedicated 

to the construction of indicators allowing to study the network evolution for US domestic carriers over the 

last decade. 

 

5.4. Three Network Evolution Indicators 
 

The extension of the airline network characterization over the whole studied period requires a thorough 

analysis of the panel data since PCA should be implemented on stationary datasets. As presented in 

Appendix C we detected many unit roots among the graph theory measures calculated over the whole period 

of observation.26 Therefore, we use first differences (denoted as Δ) to control for non-stationarity and we 

implement PCA on first difference measures. The derived principal components will be interpreted in terms 

of evolution. 

PCA is performed on the dataset made of the 11 first difference variables of selected graph theory 

measures calculated for each airline in August from 2005 to 2018; this corresponds to 231 observations for 

11 variables. 27 The first two principal components obtained from the analysis explain 77.86% of the sample 

                                                 
26 The unit roots are detected whatever the month considered in the third quarter, July, August or September, for the 

period from 2005 to 2018. 
27 Although we select one month, August, our results are robust to any change in the selected month within the third 

quarter. 

(a) (b) 
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variability. We choose to keep these two principal components corresponding to the largest eigenvalues of 

5.9041 and 2.6606 respectively. This choice, as detailed in Appendix B.2, agrees with the commonly used 

eigenvalue one criterion suggested by F. Kaiser (1960). We present in Table 2 the correlations of the first 

three principal components with the first difference variables. The third principal component is shown in 

order to demonstrate its noticeably high correlation with the first difference number of flight segments. 

 
Table 2 Correlations between the first three principal components and first differenced variables for 2005-2018 

(August) 

 PC1 PC2 PC3 

ΔnbFS -0.45223 0.16266 0.83736 

ΔdensG 0.54047 0.77873 -0.03466 

ΔtransG -0.07095 0.80756 -0.21555 

ΔmaxCdeg 0.93891 0.16391 -0.00534 

ΔGCdeg 0.92110 -0.11024 0.02837 

ΔmaxChar 0.92833 0.27665 0.11520 

ΔGChar 0.91426 -0.19688 0.06120 

ΔmaxCbet 0.82104 -0.37411 0.15122 

ΔGCbet 0.81789 -0.41597 0.15094 

ΔmeanCeig 0.77121 0.49835 -0.01087 

ΔGCeig 0.19223 -0.81239 -0.21396 

Percentage of 

explained 

variability 

77.86%  

Δ Indicates variables in first differences 

 

The correlations between the first three principal components and the first difference panel variables 

are similar to the correlations found previously using the initial variables for August 2005. According to the 

eigenvalue one criterion (F. Kaiser (1960)) and Cattell’s scree test (1966), the third principal component is 

not relevant given its low contribution to the total sample variance. However, given that the first difference 

in number of flight segments (ΔnbFS) is highly correlated with PC3, that this variable is the main contributor 

to this principal component, and that it does not have significant contributions neither to PC1 nor to PC2, 

we decide to use directly ΔnbFS as a third indicator of network evolution renaming it as NetSizebod. The 

superscript bod refers to the fact that the indicators of network evolution are built on first differenced 

variables.  

Using first difference panel variables for PCA, the indicators now represent some increase or decrease 

in NetCenter, NetWeave and NetSize. Therefore, we interpret the first two principal components as indicators 

of network evolution in NetCenter and NetWeave. We name the three indicators as NetCenterbod, 

NetWeavebod and NetSizebod. Their evolution analysis will shed light on the airline individual strategic choice 

of network expansion as will be shown in subsection 5.6. 

 

5.5. Robustness 
 

We have conducted some tests to highlight the robustness of our results. We have applied the same 

methodology to several randomly selected subsamples: in each draw, we extract 70% of the observed 

airlines. In all the cases, F. Kaiser's (1960) eigenvalue one criterion and Cattell's (1966) scree test confirm 

the selection of our principal components. The correlations of the principal components with the first 

difference variables remain the same staying their interpretation unchanged. 

If the sample selection is not random, PCA results are modified or not and depend on the selection 

process. Similar results are obtained under constraints such as a sample restriction where minimum 

frequency levels are imposed. We have restricted the sample with two scenarios: a sample where we observe 

at least one flight per week and a sample where we observe at least three flights per week.  
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Instead, we obtain different results when focusing on big carriers. We build a sample with the 7 biggest 

carriers, i.e., carriers with more than 300 flight segments per month over the period of analysis. NetSizebod 

is no longer a relevant indicator, which is consistent with the restricted sample where all carriers have a 

comparable number of flight segments. Only two principal components remain. Although the initial 

variables’ contributions change, the two principal components can be interpreted as NetCenterbod and 

NetWeavebod.  

Finally, similar results are obtained when the original variables (not differenced) are used for the PCA 

over the full period 2005-2018 which confirms the robustness of our results. We argue that the indicators 

built on differences should be used for the analysis of network evolution as they satisfy the conditions to 

properly apply a PCA. The following subsection represents such analysis of the airline network evolution 

through the three network evolution indicators constructed.  

 

5.6. Representing Airline Network Evolution 
 

The indicators built on differences, NetCenterbod, NetWeavebod and NetSizebod, and their respective 

evolutions can be drawn for each airline individually. The figures below present the network expansion of 

three different airlines, Frontier Airlines (F9), Southwest Airlines (WN), and American Airlines (AA), 

through the evolution of the three indicators built on differences. For instance, a positive value of 

NetCenterbod implies an increase in NetCenter and the magnitude shows the intensity of this change. 

We can observe in Figure 3 how Frontier Airlines was developing its network between 2005 and 2018. 

An increase in route number is reflected in Figure 3 by positive values of NetWeavebod and NetSizebod during 

2013-2016. Negative NetCenterbod values during this period reflects the development of the network towards 

a multi-center structure. This is consistent with the airline’s expansion strategy as the airline began 

operations on many routes developing several new hubs since 2013. 

 

  
Figure 3 NetCenterbod, NetWeavebod and NetSizebod evolution for Frontier Airlines. The shadowed 

area stresses the merger period with Midwest Airlines; from 2011 the indicators characterize the 

merged network. 

Figure 4 presents Southwest Airlines’ (WN) network evolution. Southwest, created in 1971, is 

traditionally quoted in the air transportation literature as the main example of the LCC business model. We 

can observe the stability of Southwest Airlines’ network structure through relatively slight changes in 

NetCenterbod and NetWeavebod that remain close to zero taking alternatively positive and negative low values. 

Instead, NetSizebod takes positive values on the whole period, but in 2016, reflecting an increase in the 

number of flight segments. Indeed, Southwest presents a remarkable growth over the studied period: it has 
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multiplied by more than 1.5 its number of flight segments between 2005 and 2018. In 2017, Southwest’s 

NetSize was comparable to the post-merger entities of United Airlines (UA) and Continental Airline (CO). 

Moreover, Southwest’s NetWeave indicator is among the highest in our airline sample, and remains stable 

since 2005. Meanwhile, Southwest’s NetCenter indicator remains negative and low. The scores of 

Southwest’s indicators suggest a large network with a point-to-point structure. We therefore highlight an 

important difference between Southwest’s strategy and the other airlines’ strategies in terms of network 

evolution where network expansion is accompanied by a NetWeave reduction. 

 

 
Figure 4 NetCenterbod, NetWeavebod and NetSizebod evolution for Southwest Airlines. The shadowed 

area stresses the merger period with AirTran Airways; from 2015 the indicators characterize the 

merged network. 

 

Finally, Figure 5 represents changes in the network evolution indicators for American Airlines. In 2013 

the carrier merged with US Airways. The size increase of the carrier’s network just after the merger is 

reflected by high positive value of NetSizebod. At the same time, we observe positive NetWeavebod whereas 

NetCenterbod is negative, which means that the merging of the two networks was accompanied by 

overlapping the two route systems and some disorientation of centers in the structure of the resulting 

network. The carrier rationalizes its network in the post-merger period as reflected by the positive values of 

NetCenterbod. Becoming the largest airline in the U.S., American Airlines continues to grow in its size: the 

value of NetSizebod remains positive. 

The previous example shows how airlines may profoundly modify their networks through mergers. 

During the considered time frame six mergers took place among the US domestic carriers. Delta Air Lines 

(DL) and Northwest Airlines (NW) merged between 2008 and 2010. From 2010, these two airlines are 

considered as one. United Airlines (UA) and Continental Airlines (CO) merged between 2010 and 2012. 

From 2012, these two airlines are considered as one. Southwest Airlines (WN) acquired AirTran Airways 

(FL) between 2010 and 2014. From 2015, these two airlines are considered as one. Frontier Airlines (F9) 

and Midwest Airlines (YX) merged in 2010. From 2011, these two airlines are considered as one. American 

Airlines (AA) and US Airways (US) merged between 2013 and 2015. From 2016, these two airlines are 

considered as one. Finally, Alaska Airlines (AS) and Virgin America (VX) merged between 2016 and 2018. 

From 2018, these two airlines should be considered as one. 
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Figure 5 NetCenterbod, NetWeavebod and NetSizebod evolution for American Airlines. The shadowed 

area stresses the merger period with US Airways; from 2016 the indicators characterize the merged 

network. 

 

The impact from mergers can be different depending on the airlines’ individual characteristics. For 

instance, figures 3 and 4 reflect mergers between LCCs. Figure 4 does not reveal a clear impact from the 

Southwest Airlines merger with AirTran Airways. After the merger, Southwest network characteristics 

dominate in the merged network as AirTran Airways had a relatively low NetSize compared to Southwest. 

Instead, a stronger effect can be expected when airlines with similar sizes merge. As shown in Figure 5, the 

AA-US merger reduced NetCenterbod while NetWeavebod and NetSizebod were positively affected as the 

network resulting after this merger exhibited a higher number of hubs. Similar impacts of the mergers are 

observed in Figure 6 (a,b), where we display the DL-NW and UA-CO mergers, respectively, where again 

the two merging companies were legacies with comparable size before the merger. In both cases, we can 

clearly observe a significant increase in NetSize just after the merger and a NetCenter decrease. However, 

from the mergers creation, 2010 for NW and DL, and 2012 for CO and UA, both merged entities move to 

positive NetCenterbod values and negative NetSizebod, certainly due to a network rationalization. 

The indicators are therefore able to appraise the impact of mergers over network configurations on a 

continuous manner. The use of the indicators to measure the impact, instead of a dichotomous variable 

controlling for mergers shocks, could be advantageous since it allows us to monitor the evolution of the 

merged entities and measure how the new networks are restructured.  
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Figure 6 NetCenterbod, NetWeavebod and NetSizebod evolution: (a) for Delta Airlines (merged with 

Northwest Airlines between 2008 and 2010); from 2010 the indicators characterize the merged 

network; (b) for United Airlines (merged with Continental Airlines between 2010 and 2012); from 

2012 the indicators characterize the merged network. The shadowed areas stress the mergers 

periods for each carrier.  

 

6. Conclusion 
 

The literature review related to airline network analysis revealed the need for some continuous and 

interpretable instruments to measure airline networks. We aimed to improve the existing studies that oppose 

hub-and-spoke to fully-connected network when addressing the dependence between network structure and 

airline economic performances. Some studies propose the use of graph theory measures to characterize a 

network. The choice of the measure in this case is particularly tricky as the measures are all-complementary 

to characterize a network. Our objective was to find a method that characterizes an airline network structure 

through continuous indicators, avoiding the choice of a unique graph measure. To fulfill this objective, we 

propose to implement the following methodology. First, an airline network should be described as a graph, 

so that the airline network is represented in the form of a connection, or adjacency, matrix. Such 

representation must contain information on the existence of nonstop flights provided by each airline between 

any city pair at a given date. Then, the most relevant set of graph theory measures for the airline industry 

should be selected and calculated. Lastly, PCA must be performed to reduce the graph theory measures to a 

small set of new and continuous indicators. These indicators might be interpretable on the basis of relevant 

choice of graph theory measures. As they are continuous, the indicators can represent the most 

comprehensive range of network structures. In addition, the methodology proposed in this paper avoids the 

choice of a unique graph measure to describe the network structure. Instead the indicators combine several 

measures, each one representing different network properties. 

We apply the proposed methodology to the US domestic market and obtain three indicators, NetCenter, 

NetWeave and NetSize. We provide interpretation for each indicator. NetCenter measures the presence of 

central airports in a network. The higher NetCenter value, the closer the network is to a star structure that 

may identify a hub-and-spoke network if connection among flights is ensured. NetWeave indicates the 

network ability to provide alternative routes. The higher NetWeave, the larger number of one-stop alternative 

(b)a  (a)a) 
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paths allowing the airline to join two cities in its network. Finally, NetSize measures the number of flight 

segments operated by the airline.  

According to the three indicators, we can identify five different network structures ranging from large 

point-to-point to single-center network. This network characterization highlights some differences in terms 

of network structure among airlines that are not reflected with the traditional distinction between legacies 

and LCCs. Finally, we illustrate the impact on the indicators of the last main mergers in the US domestic 

market, Delta – Northwest, United – Continental and American - US Airways. We show that in both cases 

the airlines see their NetCenter level reduced the year of the merger due to an increase in the number of 

centers, though afterwards it progressively recovers its initial level. Although this is a known fact, the 

proposed methodology allows to measure these changes in a continuous manner which enables comparison 

of the integration level of the networks after a merger. 

The methodology provided for characterizing airline networks and measuring their evolution in a 

simple manner generates new research opportunities. The new network indicators can be used to measure 

the impact of the network structure on the airlines’ cost and profitability, or could be used in assessing the 

probability to enter a market. These analyses are extremely relevant for the study of airlines strategies. We 

argue that the obtained indicators should be considered jointly for a more appropriate analysis of these 

strategies. Regulators will benefit as well from such analyses, with for instance, the evaluation of the impact 

of networks structures on delays or pollution.  

We focus on the US domestic market as information on delays, financial indicators and data on fares 

are regularly published by the US Department of Transportation for this market. The use of the network 

indicators associated with these datasets will allow to study the network optimal structure leading to the best 

airline performances. However, the methodology can be applied to other markets, to different sectors and 

databases. The indicators can be enhanced using weighted graphs, with weights associated to airports, 

following the approach of Gautreau, Barrat, and Barthélemy (2009) and Da Rocha (2009). Some weights 

could also be applied to the flight segments in terms of seats, frequencies, distance or combinations across 

these variables. The use of weighted graphs increases the difficulty in the calculation of the graph metrics, 

and is left for further research. 

This study focuses on the spatial dimension of the networks which means that we can detect center 

airports without disentangling hubs from focus cities. One of the study weakness is that flight connectivity, 

i.e., connections of passengers at hubs, were not covered by the analysis, which would allow such 

distinction. Further work should consider the temporal dimension as in Wojahn (2001), Burghouwt and de 

Wit (2005) and Alderighi et al. (2007), that probably would mostly contribute to the first principal 

component that measures centrality or result into a fourth principal component of PCA. Given that OAG 

data presents flight information including schedules, potential connectivity among flights can be studied. 

However, such study requires assumptions on the time needed for connections (minimum and maximum 

time) and results should be verified with a deep robustness analysis (modifying one or both limits). This is 

also left for further research. 
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Appendix A: Graph measures and descriptive statistics 

 

Table A.1 Airline name and IATA designator 

Airline Name IATA Code Classification 

Frontier Flying Service 2F Regional 

Gulfstream International Airlines 3M before 2011 Regional 

Silver Airways Corp 3M since 2011 Regional 

American Airlines AA Legacy 

Alaska Airlines AS Legacy 

JetBlue Airways B6 LCC 

Continental Airlines CO Legacy 

Delta Air Lines DL Legacy 

Frontier Airlines F9 LCC 

AirTran Airways FL LCC 

Allegiant Air LLC G4 LCC 

Hawaiian Airlines HA Legacy 

PenAir KS Regional 

Spirit Airlines NK LCC 

Northwest Airlines NW Legacy 

Sun Country Airlines SY LCC 

United Airlines UA Legacy 

US Airways US Legacy 

Virgin America VX LCC 

Southwest Airlines WN LCC 

Island Air WP Regional 

Midwest Airlines YX Regional 

Great Lakes Airlines ZK Regional 
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Description of notation in Table A.2 

Notation Description 

𝐺 or 𝐺(𝑉, 𝐸) The graph with set of nodes 𝑉 and edge set 𝐸. 

𝑉 The set of nodes of a graph 𝐺(𝑉, 𝐸). 

𝐸 The set of edges of a graph 𝐺(𝑉, 𝐸). 

𝑛𝑖  An element of 𝑉, i.e., node i of the graph 𝐺(𝑉, 𝐸). 

𝑒𝑖𝑗  An element of 𝐸, i.e., an edge connecting nodes 𝑛𝑖 and 𝑛𝑗. 

𝐼𝑖  The number of edges between neighbors of node 𝑛𝑖. 

𝑘𝑖  The number of neighbors of node 𝑛𝑖. 

𝑐𝑋(𝑛𝑖) 
One of the centrality measures of node 𝑛𝑖 in a graph. Subscript 𝑋 is assigned to a specific 

centrality measure (for instance, degree, 𝐷, or betweenness, 𝐵, etc.) 

𝑐𝑋(𝑛
∗) The largest value of 𝑐𝑋(𝑛𝑖) in a graph; 𝑛∗ is a node that has such value. 

𝑚𝑎𝑥∑(𝑐𝑋
∗

|𝑉|

𝑖=1

− 𝑐𝑋(𝑛𝑖)) 
The maximum possible sum of differences in node centrality 𝑐𝑋 for any graph with the 

same number of nodes. 

𝑑(𝑛𝑖, 𝑛𝑗) 
The geodesic distance between two nodes 𝑛𝑖 and 𝑛𝑗, i.e., the minimum number of non-

repeated edges that connect the two nodes. 

𝑔𝑗𝑘(𝑖)

𝑔𝑗𝑘
 

The ratio of the number of geodesics from node 𝑛𝑗 to node 𝑛𝑘 passing through node 𝑛𝑖 to 

the total number of geodesics from 𝑛𝑗 to 𝑛𝑘. 

𝜆 A constant. 

𝑎𝑖𝑗  
An element of the adjacency matrix of a graph 𝐺(𝑉, 𝐸), i.e., of a square matrix 𝐴 = (𝑎𝑖𝑗) 

with 𝑎𝑖𝑗 = 1 if nodes 𝑛𝑖 and 𝑛𝑗 are connected by an edge and 0 otherwise. 
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Table A.2 Examples of graph 

measures 

          

Order (number of nodes), |𝑉| nbCity 11 11 11 11 11 11 11 11 11 11 

Size (number of edges), |𝐸| nbFS 10 10 10 10 10 55 20 26 9 25 

Network Density, 𝐷(𝐺) =
|𝐸|

|𝑉|(|𝑉|−1)/2
 DensG 0.1818 0.1818 0.1818 0.1818 0.1818 1 0.3636 0.4727 0.1636 0.4545 

Diameter DiamG 2 3 4 3 4 1 3 3 2 1 

Transitivity, 

𝐶 =
∑ 2𝐼𝑖
|𝑉|
𝑖=1

∑ [𝑘𝑖(𝑘𝑖 − 1)]
|𝑉|
𝑖=1

 
TransG 0 0 0 0 0 1 0.8 0.9091 0 1 

Degree Centrality, 

𝑐𝐷(𝑛𝑖) =
∑ 𝑒𝑖𝑗
|𝑉|
𝑖=1

|𝑉| − 1
 

max 

value, 

maxCdeg 

1 0.8000 0.7000 0.6000 0.5000 1 0.6000 0.6000 0.5000 0.5000 

Degree Centralization, 

𝐶𝐷 =
∑ (𝑐𝐷(𝑛

∗) − 𝑐𝐷(𝑛𝑖))
|𝑉|
𝑖=1

|𝑉| − 2
. 

GCdeg 1 0.7556 0.6333 0.5111 0.3889 0 0.2889 0.1556 0.4111 0.0556 

Harmonic Centrality, 

𝑐𝐻(𝑛𝑖) =
1

|𝑉| − 1
∑

1

𝑑(𝑛𝑖 , 𝑛𝑗)
𝑗≠𝑖

 

max 
value, 

maxChar 

1 0.9000 0.8167 0.8000 0.6833 1 0.8000 0.8000 0.5000 0.5000 

Harmonic Centralization, 

𝐶𝐻 =
2∑ (𝑐𝐻(𝑛

∗) − 𝑐𝐻(𝑛𝑖))
|𝑉|
𝑖=1

|𝑉| − 2
 

GChar 1 0.8592 0.7444 0.6593 0.463 0 0.437 0.3037 0.4667 0.1111 

Betweenness Centrality, 

𝑐𝐵(𝑛𝑖) =

2∑
𝑔𝑗𝑘(𝑖)
𝑔𝑗𝑘

𝑗≠𝑖≠𝑘

(|𝑉| − 1)(|𝑉| − 2)
 

max 
value, 

maxCbet 

1 0.9333 0.8667 0.7778 0.6667 0 0.6667 0.5556 0.2222 0 

Betweenness Centralization, 

𝐶𝐵 =
∑ (𝑐𝐵(𝑛

∗) − 𝑐𝐵(𝑛𝑖))
|𝑉|
𝑖=1

|𝑉| − 1
 

GCbet 1 0.8956 0.7822 0.7111 0.5444 0 0.6111 0.5022 0.2089 0 

Eigenvector Centrality, 

𝑐𝐸𝑉(𝑛𝑖) =
1

𝜆
∑ 𝑎𝑖𝑗𝑐𝐸𝑉(𝑛𝑗)

𝑛𝑗∈𝐺

 

mean 

value, 

meanCeig 

0.2676 0.2635 0.2566 0.2694 0.2765 0. 3015 0. 2375 0. 2548 0. 2080 0.2227 

Eigenvector Centralization, 

𝐶𝐸𝑉 =
∑ (𝑐𝐸𝑉(𝑛

∗) − 𝑐𝐸𝑉(𝑛𝑖))
|𝑉|
𝑖=1

(|𝑉| − 2)/√2
 

GCeig 0.7597 0.7373 0.7459 0.5741 0.3864 0 0.3146 0.2846 0.8627 0.3208 

  



27 

 

Table A.3 Descriptive statistics: monthly means and standard deviations (in parentheses), in August over 2005-2018  
  2F 3M 3M2 AA AS B6 CO DL F9 FL G4 HA KS NK NW SY UA US VX WN WP YX ZK 

nbCity 49 12 20 171 132 44 151 213 57 51 78 18 28 23 185 22 194 162 13 71 11 51 37 

  (24.00) (2.10) (9.40) (22.00) (51.00) (7.60) (26.00) (16.00) (9.50) (10.00) (28.00) (9.20) (9.90) (7.80) (13.00) (10.00) (23.00) (17.00) (4.10) (7.70) (4.30) (21.00) (17.00) 

nbApt 49 12 21 178 134 48 157 221 59 52 79 19 28 23 189 22 202 165 15 74 11 51 37 

  (24.00) (2.10) (9.00) (24.00) (50.00) (9.10) (27.00) (14.00) (10.00) (10.00) (29.00) (9.50) (10.00) (8.30) (14.00) (10.00) (26.00) (17.00) (5.00) (9.70) (4.30) (22.00) (17.00) 

nbFS 72 16 28 433 221 100 314 594 98 117 187 26 32 79 374 25 541 419 22 491 14 63 43 

  (41.14) (2.22) (11.32) (130.29) (74.81) (23.84) (66.50) (70.40) (58.49) (31.55) (112.80) (9.50) (14.20) (56.79) (35.20) (16.35) (125.66) (59.88) (7.96) (73.98) (4.11) (23.95) (21.99) 

densG 0.07 0.25 0.20 0.03 0.03 0.11 0.03 0.03 0.06 0.09 0.06 0.20 0.10 0.28 0.02 0.12 0.03 0.03 0.28 0.20 0.35 0.06 0.08 

  (0.04) (0.06) (0.14) (0.00) (0.01) (0.01) (0.00) (0.00) (0.04) (0.02) (0.01) (0.06) (0.03) (0.04) (0.00) (0.03) (0.00) (0.01) (0.08) (0.02) (0.16) (0.02) (0.05) 

transG 0.20 0.35 0.32 0.09 0.10 0.16 0.07 0.10 0.07 0.14 0.02 0.22 0.13 0.40 0.05 0.02 0.10 0.11 0.28 0.41 0.43 0.05 0.05 

  (0.02) (0.03) (0.08) (0.03) (0.02) (0.03) (0.01) (0.02) (0.10) (0.04) (0.02) (0.09) (0.04) (0.10) (0.01) (0.03) (0.02) (0.02) (0.06) (0.05) (0.08) (0.01) (0.03) 

maxCdeg 0.27 0.61 0.42 0.78 0.50 0.86 0.70 0.69 0.94 0.92 0.63 0.95 0.45 0.80 0.65 0.85 0.61 0.57 0.96 0.81 0.73 0.76 0.56 

  (0.11) (0.27) (0.18) (0.08) (0.16) (0.09) (0.10) (0.07) (0.05) (0.08) (0.12) (0.14) (0.17) (0.08) (0.04) (0.14) (0.05) (0.06) (0.06) (0.04) (0.27) (0.21) (0.08) 

GCdeg 0.22 0.45 0.25 0.76 0.48 0.79 0.68 0.67 0.91 0.86 0.59 0.86 0.40 0.58 0.63 0.83 0.59 0.54 0.81 0.63 0.49 0.74 0.51 

  (0.10) (0.26) (0.08) (0.08) (0.16) (0.09) (0.10) (0.07) (0.07) (0.08) (0.13) (0.12) (0.17) (0.12) (0.04) (0.16) (0.05) (0.06) (0.06) (0.03) (0.18) (0.21) (0.09) 

maxChar 0.57 0.69 0.53 0.89 0.72 0.93 0.85 0.84 0.97 0.96 0.77 0.97 0.62 0.90 0.82 0.91 0.81 0.78 0.98 0.91 0.77 0.88 0.72 

  (0.08) (0.27) (0.17) (0.04) (0.11) (0.04) (0.06) (0.03) (0.03) (0.04) (0.08) (0.07) (0.10) (0.04) (0.02) (0.09) (0.03) (0.03) (0.03) (0.02) (0.27) (0.11) (0.06) 

GChar 0.45 0.52 0.34 0.83 0.69 0.83 0.80 0.77 0.94 0.89 0.67 0.88 0.60 0.62 0.76 0.87 0.71 0.68 0.82 0.66 0.54 0.84 0.72 

  (0.08) (0.22) (0.08) (0.06) (0.11) (0.07) (0.05) (0.05) (0.06) (0.06) (0.12) (0.08) (0.14) (0.11) (0.03) (0.15) (0.04) (0.04) (0.05) (0.03) (0.15) (0.14) (0.07) 

maxCbet 0.67 0.42 0.28 0.59 0.62 0.59 0.60 0.46 0.86 0.70 0.56 0.80 0.46 0.36 0.52 0.86 0.38 0.36 0.62 0.19 0.36 0.85 0.80 

  (0.09) (0.32) (0.15) (0.09) (0.05) (0.14) (0.07) (0.07) (0.16) (0.13) (0.20) (0.07) (0.14) (0.18) (0.03) (0.16) (0.05) (0.04) (0.07) (0.05) (0.19) (0.10) (0.10) 

GCbet 0.62 0.39 0.24 0.58 0.61 0.58 0.59 0.46 0.86 0.69 0.55 0.80 0.44 0.34 0.52 0.85 0.38 0.35 0.60 0.18 0.32 0.84 0.75 

  (0.07) (0.31) (0.13) (0.09) (0.06) (0.14) (0.07) (0.07) (0.16) (0.14) (0.20) (0.07) (0.13) (0.18) (0.03) (0.17) (0.05) (0.04) (0.08) (0.05) (0.18) (0.11) (0.10) 

meanCeig 0.12 0.23 0.18 0.05 0.06 0.12 0.06 0.05 0.11 0.11 0.10 0.21 0.15 0.19 0.05 0.19 0.05 0.05 0.25 0.10 0.27 0.12 0.14 

  (0.04) (0.05) (0.09) (0.00) (0.02) (0.02) (0.01) (0.00) (0.01) (0.01) (0.03) (0.04) (0.03) (0.04) (0.00) (0.04) (0.00) (0.00) (0.05) (0.01) (0.09) (0.03) (0.06) 

GCeig 0.51 0.55 0.45 0.54 0.69 0.54 0.58 0.49 0.74 0.61 0.55 0.58 0.66 0.35 0.59 0.72 0.48 0.49 0.49 0.26 0.48 0.75 0.80 

  (0.02) (0.09) (0.12) (0.08) (0.05) (0.04) (0.02) (0.06) (0.17) (0.08) (0.12) (0.09) (0.14) (0.10) (0.02) (0.10) (0.05) (0.04) (0.03) (0.03) (0.15) (0.07) (0.08) 
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Appendix B: PCA analysis 
 

PCA constructs principal components as linear combinations of observed variables so that the resulting 

components are uncorrelated and preserve the maximum amount of the variance of the original data. The 

weights for the linear combinations are calculated with the constraint that their squares have to sum to 1 

(Jolliffe 2002). This is a sequence of constrained maximization problems, such that the first step in the 

sequence is aimed at finding optimal weights of linear combination for a principal component that accounts 

for a maximum variance. Each subsequent step gives the next principal component by solving a similar 

optimization problem with an additional constraint that requires the principal components to be uncorrelated. 

PCA solves this set of maximization problems, and thus finds all optimal weights for the linear 

transformation of the original variables to the principal components, due to the eigenvalue decomposition 

of the correlation matrix. Namely, each principal component is related to an eigenvalue that reflects the 

variance the component accounts for; the corresponding eigenvector stores the weights of linear 

combination for the principal component. 

 

B.1: PCA on graph theory variables in 2005 
 

Table B.1 displays 11 eigenvalues computed on the basis of the correlation matrix for airlines’ graph 

theory measures in 2005. They are ranked in decreasing order according to the amount of variance they 

account for. Since the correlation matrix provides a standardized measure across all variables, the total 

variance is equal to the number of variables, i.e., 11. The first component explains most of the variance 

(50.22%), as shows Table B.1. The second component accounts for a maximal amount of variance that is 

not accounted for by the first component (29.77%) and it is uncorrelated with it. Each subsequent component 

explains less variance until all the variance has been accounted for. The eigenvalues thus add up to the total 

variance in the data. Since the total variance is equal to the number of variables, the scale of eigenvalues 

can be interpreted in terms of the number of variables with the highest contribution to the variance. 

 

 Eigenvalues of the correlation matrix on original variables in August 2005 

 Eigenvalue Difference Proportion Cumulative 

1 5.5239 2.2490 0.5022 0.5022 

2 3.2750 1.3108 0.2977 0.7999 

3 1.9642 1.8618 0.1786 0.9785 

4 0.1024 0.0208 0.0093 0.9878 

5 0.0816 0.0411 0.0074 0.9952 

6 0.0405 0.0331 0.0037 0.9989 

7 0.0074 0.0042 0.0007 0.9995 

8 0.0032 0.0016 0.0003 0.9998 

9 0.0016 0.0014 0.0001 1.0000 

10 0.0002 0.0001 0.0000 1.0000 

11 0.0000  0.0000 1.0000 

 

The obtained eigenvalues (Table B.1) show that the first three principal components explain 97.85% 

of the sample variability. Therefore, these three principal components should be kept as they correspond to 

the largest eigenvalues of 5.5239, 3.2750 and 1.9642. This choice agrees with commonly used eigenvalue 

one criterion suggested by F. Kaiser (1960) and Cattell's (1966) scree test. In PCA the total amount of 
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variance is equal to the number of variables. Kaiser’s criterion shows that the three first eigenvalues obtained 

correspond to the principal components each capturing most significant amount of data variability greater 

than one. The remaining components with eigenvalues under 1 are less informative accounting for less 

variance than is generated by one variable. The scree plot (Figure B.1) confirms the choice. It is a graph of 

the eigenvalues of all the components. The substantial drop in the magnitude of eigenvalues starts after the 

third component, thus indicating that the three-component solution would be appropriate to retain for 

describing the data. 

 

 
Figure B.1. Scree plot and variance explained by the principal components (PCA on original 

variables in August 2005). 
 

Each of the eigenvectors presented in Table B.2 is associated with a principal component. This table is 

the projection matrix that is used to transform the original dataset to a new coordinate system of the principal 

components. 

 Eigenvectors (PCA on original variables of August 2005) 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 

nbFS -0.2166 -0.1290 0.5796 -0.1750 -0.1298 0.7385 -0.0411 0.0619 0.0266 0.0282 -0.0244 

densG -0.0026 0.5371 -0.1514 -0.2144 0.1299 0.2402 -0.2907 -0.5729 -0.2336 -0.2491 0.1967 

transG -0.2099 0.4611 -0.0150 0.6823 0.3364 0.2454 0.2488 0.1700 0.1028 0.0540 0.0017 

maxCdeg 0.3290 0.2753 0.2782 0.0528 0.0230 -0.0957 -0.2650 0.1341 -0.5088 0.4113 -0.4580 

GCdeg 0.3740 0.0938 0.3167 0.0375 -0.0505 -0.0899 0.2465 0.3283 -0.3545 -0.5182 0.4198 

maxChar 0.3182 0.2687 0.3193 -0.0439 0.0967 -0.1580 -0.4264 0.1200 0.6941 -0.0369 0.0945 

GChar 0.3888 -0.0282 0.2831 -0.0213 0.1186 -0.0325 0.5992 -0.5636 0.1614 0.2163 -0.0523 

maxCbet 0.3813 -0.1180 -0.2585 0.2762 -0.3232 0.2960 -0.1660 -0.0168 -0.0269 0.4495 0.5243 

GCbet 0.3882 -0.1239 -0.2235 0.3012 -0.2785 0.2912 -0.0673 -0.0980 0.1183 -0.4790 -0.5228 

meanCeig 0.1354 0.4427 -0.3384 -0.4970 -0.2131 0.2025 0.3781 0.3719 0.1580 0.1299 -0.1213 

GCeig 0.3068 -0.3155 -0.2232 -0.1934 0.7741 0.2827 -0.0703 0.1815 -0.0456 -0.0003 -0.0032 
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Since PCA was performed based on the correlation matrix, to obtain a value for the principal 

component, first we need to standardize the raw data; that is, for each variable we need to subtract its mean 

value and divide the difference by the standard deviation. Then we multiply the row-vector of standardized 

variables by the eigenvector corresponding to the component. If we denote by 𝑍𝑖 a row-vector of 

standardized data for observation 𝑖 and by 𝑒𝑘 the 𝑘th eigenvector extracted from PCA, the principal 

component 𝑃𝑘(𝑖) for the observation 𝑖, is computed as follows: 
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or using the expression for ij j
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where for observation 𝑖, 𝑋𝑖𝑗 is the value of 𝑗th variable, and jX  and 𝜎𝑗 are respectively the mean and 

standard deviation of the variable.  

The number of elements in each vector, 𝑍𝑖 and 𝑒𝑘, is equal to the number of initial variables, i.e., 11. 

Since 𝑍𝑖 is a vector of standardized data and 𝑒𝑘 is an eigenvector obtained for the correlation matrix, that in 

turn contains standardized data, then the maximum absolute value of the vector-product 𝑍𝑖𝑒𝑘 is 11. This 

means that each principal component 𝑃𝑘(𝑖) = 𝑍𝑖𝑒𝑘 is between −11 and 11. 

 

B.2: PCA on difference variables for 2005-2018 
 

Table B.3 displays the 11 eigenvalues computed on the basis of the correlation matrix for difference 

variables of airlines’ graph theory measures for the period of 2005-2018. The eigenvalues are ranked in 

decreasing order according to the amount of variance they account for. The total variance is equal to the 

number of variables, i.e., 11. The eigenvalues thus add up to the total variance in the data. The first 

component explains most of the variance (53.67%). The second component accounts for a maximal amount 

of variance that is not accounted for by the first component (24.19%) and it is uncorrelated with it. Each 

subsequent component explains less variance until all the variance has been accounted for. 

The eigenvalues obtained (Table B.3) show that the first two principal components explain 77.86% of 

the sample variability. We choose to keep these two principal components corresponding to the largest 

eigenvalues of 5.9041 and 2.6606. This choice agrees with eigenvalue one criterion (F. Kaiser 1960) and 

Cattell's (1966) scree test. Indeed, Kaiser’s criterion shows that the two first eigenvalues obtained 

correspond to the principal components each capturing most significant amount of data variability greater 

than one. The remaining components with eigenvalues under 1 are less informative accounting for less 

variance than is generated by one variable. The scree plot (Figure B.2) confirms this choice. The substantial 

drop in the magnitude of eigenvalues starts after the second component, thus indicating that the two-

component solution would be appropriate to retain for describing the data. 
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 Eigenvalues of the correlation matrix on difference variables for August 2005-2018 

 Eigenvalue Difference Proportion Cumulative 

1 5.9041 3.2434 0.5367 0.5367 

2 2.6606 1.8024 0.2419 0.7786 

3 0.8582 0.2111 0.0780 0.8566 

4 0.6472 0.2354 0.0588 0.9155 

5 0.4117 0.0669 0.0374 0.9529 

6 0.3449 0.2544 0.0314 0.9842 

7 0.0905 0.0381 0.0082 0.9925 

8 0.0523 0.0249 0.0048 0.9972 

9 0.0274 0.0253 0.0025 0.9997 

10 0.0022 0.0013 0.0002 0.9999 

11 0.0009  0.0001 1.0000 

 

 

  
Figure B.2. Scree plot and variance explained by the principal components (PCA on difference 

variables for 2005-2018). 

 

Each of the eigenvectors presented in Table B.4 is associated with a principal component. This table is 

the projection matrix that is used to transform the original dataset to a new coordinate system of the principal 

components. 
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 Eigenvectors (PCA on difference variables for August 2005-2018) 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 

ΔnbFS -0.1861 0.0997 0.9039 0.2600 -0.0275 0.2625 0.0087 -0.0162 0.0199 -0.0175 -0.0100 

ΔdensG 0.2224 0.4774 -0.0374 -0.1717 -0.2698 0.3088 0.2909 0.1412 -0.5899 0.1410 0.2263 

ΔtransG -0.0292 0.4951 -0.2327 0.3324 0.6718 0.3295 -0.1079 0.0360 0.1288 -0.0004 0.0017 

ΔmaxCdeg 0.3864 0.1005 -0.0058 0.3215 -0.0574 -0.1401 0.3782 -0.2213 -0.0975 -0.4874 -0.5245 

ΔGCdeg 0.3791 -0.0676 0.0306 0.4104 0.0065 -0.2116 0.0907 -0.4945 0.0579 0.3620 0.5004 

ΔmaxChar 0.3821 0.1696 0.1244 -0.0422 -0.0443 -0.1859 0.2872 0.5987 0.5479 0.1708 0.0351 

ΔGChar 0.3763 -0.1207 0.0661 0.3141 -0.0042 -0.1572 -0.6354 0.4153 -0.3664 -0.0748 -0.0074 

ΔmaxCbet 0.3379 -0.2294 0.1632 -0.3926 0.3580 0.1656 0.0457 -0.0412 0.0176 -0.5495 0.4369 

ΔGCbet 0.3366 -0.2550 0.1629 -0.3148 0.3858 0.1480 0.0321 -0.1141 -0.1609 0.5220 -0.4613 

ΔmeanCeig 0.3174 0.3055 -0.0117 -0.2319 -0.3807 0.2981 -0.4902 -0.3344 0.3825 -0.0390 -0.1349 

ΔGCeig 0.0791 -0.4980 -0.2310 0.3363 -0.2188 0.6821 0.1510 0.1658 0.1234 0.0218 0.0090 
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Appendix C: Tests for Non-Stationarity 
 

We have implemented several tests for non-stationarity on the graph theory measures selected for the PCA. 

The first one is the Hadri (2000) Lagrange Multiplier (LM) stationarity test for balanced panel data. We 

reduce here the sample to airlines observed during the full period 2005-2018 (August). The test sets the null 

hypothesis that the data are stationary versus the alternative that at least one panel contains a unit root. We 

specify the robust option to obtain a test robust to heteroskedasticity across panels. We use the demean 

option to mitigate the impact of cross-sectional dependence, as suggested by Levin, Lin, and Chu (2002). 

Finally, we include a trend to describe the process by which the series are generated. 

Table C. 1 shows that the null assumption is rejected for the initial panel data, although it is not rejected 

for the fist-difference data. The use of the first differences allows controlling for the presence of unit roots 

in the initial variables. 

Table C. 1 Hadri LM unit root test on balanced panel 

 Test on initial variables Test on first difference variables 

 LM Statistic p-value LM Statistic p-value 

nbFS 8.0195 0.0000 -0.0738 0.5294 

densG 3.5315 0.0002 -0.0310 0.5124 

transG 5.6011 0.0000 0.4918 0.3114 

maxCdeg 4.8129 0.0000 -0.7156 0.7629 

GCdeg 5.6657 0.0000 -0.8506 0.8025 

maxChar 4.6417 0.0000 -1.0497 0.8531 

GCchar 4.9562 0.0000 -1.0540 0.8541 

maxCbet 4.4991 0.0000 -1.4217 0.9224 

GCbet 4.4248 0.0000 -1.4353 0.9244 

meanCeig 1.6276 0.0518 -0.4970 0.6904 

GCeig 6.2170 0.0000 0.1565 0.4378 

 

We have also implemented a second series of tests on the unbalanced panel data. We use the Pesaran 

(2007) Panel Unit Root test (CIPS) which assumes cross-section dependence. Under the null hypothesis of 

the CIPS test, the series are AR(1) and therefore non-stationary. The following table shows the results with 

and without a trend. We cannot reject the null assumption for some of the initial variables when no trend is 

included in the test, and we cannot reject the null assumption for all the initial variables when we include a 

trend. We can reject the null assumption for all the first difference variables, whatever the trend option. 

Given the results of the unit root tests, we use first difference variables for the Principal Component 

Analysis. The derived principal components will be interpreted in terms of evolution.  
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Table C. 2 Pesaran unit root test on unbalanced panel 

 Specification without trend  Specification with trend  

 Initial variable First difference variables 
 

Initial variable First difference variables 

 Zt-bar p-value Zt-bar p-value 
 

Zt-bar p-value Zt-bar p-value 

nbFS -0.754 0.225 -5.029 0.000 
 

1.071 0.858 -4.073 0.000 

densG -3.005 0.001 -6.653 0.000 
 

-0.562 0.287 -2.569 0.005 

transG -2.301 0.011 -5.940 0.000 
 

0.781 0.783 -2.321 0.010 

maxCdeg -2.783 0.003 -5.524 0.000 
 

0.517 0.697 -1.678 0.047 

GCdeg -2.843 0.002 -5.610 0.000 
 

0.397 0.654 -1.903 0.029 

maxChar -2.998 0.001 -5.849 0.000 
 

0.678 0.751 -2.191 0.014 

GCchar -2.065 0.019 -6.436 0.000 
 

0.390 0.652 -2.317 0.010 

maxCbet -2.695 0.004 -6.001 0.000 
 

0.617 0.731 -2.656 0.004 

GCbet -2.744 0.003 -6.101 0.000 
 

0.511 0.695 -2.714 0.003 

meanCeig -1.397 0.081 -5.896 0.000 
 

-0.477 0.317 -2.187 0.014 

GCeig -2.498 0.006 -8.949 0.000 
 

-0.711 0.239 -4.641 0.000 

 

 


