
HAL Id: hal-02614017
https://enac.hal.science/hal-02614017

Submitted on 20 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cryptanalysis of a code-based one-time signature
Jean-Christophe Deneuville, Philippe Gaborit

To cite this version:
Jean-Christophe Deneuville, Philippe Gaborit. Cryptanalysis of a code-based one-time signature.
Designs, Codes and Cryptography, 2020, �10.1007/s10623-020-00737-8�. �hal-02614017�

https://enac.hal.science/hal-02614017
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Cryptanalysis of a code-based one-time signature

Jean-Christophe Deneuville · Philippe
Gaborit

Received: date / Accepted: date

Abstract In 2012, Lyubashevsky introduced a new framework for building lattice-
based signature schemes without resorting to any trapdoor (such as GPV [6] or
NTRU [7]). The idea is to sample a set of short lattice elements and construct
the public key as a Short Integer Solution (SIS for short) instance. Signatures are
obtained using a small subset sum of the secret key, hidden by a (large) Gaussian
mask. (Information leakage is dealt with using rejection sampling.) Recently, Per-
sichetti proposed an efficient adaptation of this framework to coding theory [12].
In this paper, we show that this adaptation cannot be secure, even for one-time
signatures (OTS), due to an inherent difference between bounds in Hamming and
Euclidean metrics. The attack consists in rewriting a signature as a noisy syn-
drome decoding problem, which can be handled efficiently using the extended bit
flipping decoding algorithm. We illustrate our results by breaking Persichetti’s
OTS scheme built upon this approach [12]: using a single signature, we recover
the secret (signing) key in about the same amount of time as required for a couple
of signature verifications.

Keywords Post-Quantum Cryptography · Coding Theory · Signature ·
Cryptanalysis · MSC 94A60, 11T71, 14G50

1 Introduction

Building efficient and secure full-time (stateless) signature schemes from coding
theory assumptions is a long standing open problem. Few years ago, Lyubashevsky
proposed a new method for obtaining digital signatures from lattice assumptions,
that does not require the use of a trapdoor [8]. This method follows the baseline
of Pointcheval-Stern [13]. The construction works by sampling relatively short

J.-C. Deneuville
École Nationale de l’Aviation Civile, Federal University of Toulouse, France
E-mail: jean-christophe.deneuville@enac.fr

P. Gaborit
XLIM-MATHIS, University of Limoges, France
E-mail: philippe.gaborit@unilim.fr



2 Jean-Christophe Deneuville, Philippe Gaborit

lattice vectors, used as the secret key. The public key is an instance of the SIS
problem. To produce a digital signature, the signer commits a masking value,
receives a challenge depending on the message to sign and the committed value,
and computes a combination of the challenge and the secret key, hidden by the
committed mask (the scheme is recalled in more details in Sec. 2.2). The verifier
accepts the signature if it satisfies some property (small Euclidean norm) and the
verifier did use the challenge.

Recently, Persichetti proposed an efficient (using quasi-cyclic codes) adaptation
of this scheme with two major differences: the underlying hard problem is differ-
ent and there is no rejection sampling. The underlying problem is the renowned
Syndrome Decoding (SD) problem, which has been proved NP-hard [2]. The secret
key is a vector of small Hamming weight, and the public key is the syndrome of
this vector by a public (random) parity-check matrix. According to the author, re-
jection sampling is not necessary since the signature only depends on the message,
the commitment and the challenge (meaning not the secret key).

One of the most technical aspects in the design of a signature scheme is to
make the signature distribution statistically independent from the secret key. This
allows (by programming the random oracle in the security reduction) the forger
to produce valid signatures without knowing the secret key, which can then be
used to solve the underlying hard problem. This technicality provides guidance
for the choice of the parameters, especially for the Hamming weight (or `1 norm
for Lyubashevsky) of the challenge. Indeed, in order for SD problem to admit a
unique solution, the weight of the signature must be below the Gilbert-Varshamov
bound. In the meantime, the weight of the secret key should be big enough in
order not to be exhibited easily. This implies that the challenge should have an
exceptionally low weight for the signature scheme to work. This is indeed the case
for all the proposed parameters: the “biggest” (least sparse) challenge has weight
δ = 10 for length n = 4801.

From a cryptanalytic point of view, a signature can be rewritten as a noisy de-
coding problem with known generator matrix: the cyclic matrix obtained through
the challenge. Roughly speaking, signatures can be viewed as McEliece encryp-
tions of the secret key under public unscrambled sparse generator matrix. Using
such an approach, the matrix corresponds to a Low/Moderate Density Parity-
Check (LDPC / MDPC) code. We show that it is possible to use the extended Bit
Flipping (xBF) algorithm [5, 9, 1] to decrypt these ciphertexts, hence retrieving
both the secret key and one-time randomness from a single signature, for all the
proposed parameters.

Conceptually speaking, the cryptanalysis is possible because the Hamming
weight of the challenge is way too small. Increasing this weight would require
to lower the weight of the secret key, opening the door for other small weight
codeword finding attacks.

Contributions. In this work, we provide evidences that a direct translation
of Lyubashevsky’s framework to build signatures without trapdoors from lattice
assumptions to coding theory assumptions can only yield insecure signatures. It
was suspected [12] that such signatures could not reach full-time security due to
a statistical bias of the information leaked by the signature. As explained above,
the information leakage mostly comes from the sparsity of the challenge vector.
As to illustrate our claim, we propose a full cryptanalysis of all the parameters of



Cryptanalysis of a code-based one-time signature 3

Persichetti’s OTS scheme based upon an adaptation of Lyubashevsky’s framework.
As an example, our attack recovers the signing key of the most secure instance (n =
9857, 128 bits of security) in ≈ 450ms (versus 100ms for signature verification).

Techniques. To conduct a full-cryptanalysis of efficient code based signatures
without trapdoors, we begin by formulating the signature cryptanalysis as a decod-
ing problem. The decoding involves a relatively sparse generator matrix (similar
to LDPC or MDPC codes). To do so, the signature is split into two halves.

The secret key x = (x0,x1) has a global weight of w1, meaning that wt (x0)+
wt (x1) = w1. But for the cryptanalysis, no hint is provided about the weight
of each part, and the same holds for the one-time randomness y = (y0,y1) used
for signing. Therefore, we relax the requirements for decoding the first instance,
and reverberate on the second instance using the solutions of the first problem.
Once the instances are set up, the xBF algorithm is used to efficiently solve both
instances.

Related works. In an independent work, Santini et al. also proposed a cryptanal-
ysis of Persichetti’s OTS [14]. While their attack exploits the same design weakness
(namely the sparsity of the challenge), they resort to a statistical analysis on the
signature to approximate the secret key x. This approximation allows the authors
to complete the cryptanalysis by running an Information Set Decoding (ISD) al-
gorithm. On the positive side, the authors do not report failure of their crypt-
analysis, whereas the xBF decoding algorithm has a non-negligible probability of
failing. Fortunately, failures are very unlikely for MDPC codes (∼ 10−7) and even
less likely for LDPC codes and parameters considered in [12] (w ≈ n1/4) are much
closer to LDPC parameters than MDPC parameters (w ≈ n1/2). Additionally, it is
sufficient for an attack against a scheme S to work with non-negligible probability
to break S with significant advantage. From an efficiency point of view, their at-
tack requires a syndrome computation (considered negligible in [14]) plus an ISD
whose complexity heavily depends on the quality of their initial approximation.
The attack we propose only requires two syndrome computations (asymptotically,
the Bit Flipping algorithm has a complexity linear in the length n of the code).
Santini et al. provide an ISD worst-case complexity for a successful attack, that is
above 235 elementary operations (and asymptotically at least sub-exponential in
n), undubiously more expensive than another syndrome computation.

Roadmap. The remainder of this paper is organized as follows: Sec. 2 introduces
the notations used throughout this work as long as relevant notions in coding
theory and Lyubashevsky’s signature scheme. Sec. 3 presents a general adaptation
of Lyubashevsky’s framework to coding theory, not restricted to specific (quasi-
cyclic) codes. Sec. 4 is devoted to expressing key recovery from a single signature
as a decoding problem, and arguing that this problem is efficiently solvable. A
general purpose algorithm to solve the latter problem is presented in Sec. 5. We
finally instantiate the key recovery with Persichetti’s OTS in Sec. 6, presenting a
full cryptanalysis, before concluding in Sec. 7.

Acknowledgement. The authors are grateful to the WCC 2019 and DCC re-
viewers for their careful reading and relevant comments that helped improving the
quality of the present work.



4 Jean-Christophe Deneuville, Philippe Gaborit

2 Preliminaries

2.1 Notations and definitions

Throughout the paper, F2 denotes the binary field. Vectors (resp. matrices) will be
represented in lower-case (resp. upper-case) bold letters, and are row represented.
A vector u = (u0, . . . , un−1) ∈ Fn2 will be interchangeably seen as a vector or
polynomial in F2[x]/〈xn − 1〉. Hence for u, v ∈ Fn2 , w = uv denotes the vector
such that:

wk =
∑

i+j=k mod n

uivjx
k, for k ∈ {0, . . . , n− 1}.

Finally, the set of binary vectors of length n and weight exactly w is denoted
Snw (F2). We now recall some basic definitions and facts about coding theory that
will be helpful for the comprehension of Persichetti’s OTS and its cryptanalysis.

Definition 1 (Parity-check matrix) Let n, k be integers. The parity-check ma-
trix of an [n, k] linear code C is a matrix H ∈ F(n−k)×n

2 that generates the dual
code C⊥. Formally, if G ∈ Fk×n2 is a generator matrix of C, then H satisfies
GH> = 0.

Definition 2 (Syndrome Decoding problem) Let H ∈ F(n−k)×n
2 be a parity-

check matrix of some [n, k] linear code over F2, and s ∈ Fn−k2 a syndrome, and w
an integer. The Syndrome Decoding problem asks to find a vector e ∈ Fn2 of weight
less than or equal to w such that s> = He>.

The SD problem has been proved to be NP-hard [2]. Assuming a solution
to the SD problem exists, the target weight w determines whether the solution
can be unique or not. This property is captured through the well-known Gilbert-
Varshamov (GV) bound.

Definition 3 (Gilbert-Varshamov bound) Let C be an [n, k] linear code over
Fq. The Gilbert-Varshamov bound dGV is the maximum value d such that

d−1∑
i=0

(
n

i

)
(q − 1)i ≤ qn−k.

This bound is used in the security proof of Persichetti [12], hence providing
guidance for setting the parameters of the OTS. This results in a challenge of
exceptionally low weight, that as we show hereafter can be used to retrieve the
secret key efficiently.

2.2 Lattice signatures without trapdoors

We now recall Lyubashevsky’s signature scheme. We keep the description in its
general form but as mentioned by the author, key sizes can be shrunk by a factor k
using more structured matrices and relying on the ring version of the SIS problem.
Also notice that in lattice-based cryptography, vectors are column represented, so
in order to keep the same presentation as in the original paper, we deviate from
our row-vector representation in this subsection.



Cryptanalysis of a code-based one-time signature 5

Private and public keys are respectively uniformly random matrices S ∈
{−d, . . . , 0, . . . , d}m×k and A ∈ Fn×m2 (T = AS also belongs to pk) and the sig-
nature process invokes a hash function Hκ : {0, 1}∗ →

{
v ∈ {0, 1}k , ‖v‖1 ≤ κ

}
.

A signature (z, c) of a message m corresponds to a combination of the secret key
and the hash of this message, shifted by a committed value also used in the hash
function. The signature and verification procedures are summarized in Figure 1,
the reader is referred to the original paper for full details [8].

Sign(pk, sk,m):

1. y $← Dmσ
2. c←Hκ(Ay,m)

3. z ← Sc+ y

Output (z, c) with pr. min

(
Dmσ (z)

M .Dm
Sc,σ

(z)
, 1

)

Verify(pk, (z, c) ,m):

If Hκ(Az − Tc,m) = c and ‖z‖2 ≤ ησ
√
m

Accept
Else

Reject

Fig. 1 Sketch of Lyubashevsky’s (lattice-based) signature scheme.

Above, Dσ denotes the discrete Gaussian distribution centered at 0 and of
standard deviation σ. The parameters σ, η, and κ are threshold parameters specific
to [8] and won’t be used hereafter.

3 Code-based signatures without trapdoors

In this Section we describe two general code-based adaptations of Lyubashevsky’s
signature scheme, not restricted to quasi-cyclic codes: a vectorial one, similar to
Persichetti’s OTS, and a matrix version. The aim of this description is to demon-
strate that the weakness of such an adaptation comes from the vectorial version,
not from the additional structure added for efficiency. We discuss about the relative
(un)security of the matrix adaptation at the end of this section. Both adaptations
require a hash function that outputs pseudorandom words of length n and small
weight δ. Formally, we denote such a function Hn : {0, 1}∗ → Snδ (F2).

A vectorial adaption. This version is a generalization of Persichetti’s OTS to
not just quasi-cyclic codes. In this vectorial version, the secret key is a vector x of
small weight w1, and the public key is a random parity-check matrix H together
with the syndrome of the secret key: s>x = Hx>. (In Persichetti’s proposal, H
admits a quasi-cyclic systematic representation: H = (1 h), allowing to reduce
the pk size.) This adaptation is summarized in Figure 2.

Sign(pk, sk,m):

1. y $← Snw2
(F2)

2. c←Hn
(
yH>,m

)
3. z ← cx+ y

Output (z, c)

Verify(pk, (z, c) ,m):

If Hn(zH> − sxc,m) = c and wt (z) ≤ w = δw1 + w2

Accept
Else

Reject

Fig. 2 Description of a code-based vectorial adaptation of Lyubashevsky’s framework.



6 Jean-Christophe Deneuville, Philippe Gaborit

To sign a message m, a mask y of small weight w2 is sampled uniformly at
random, then committed by its syndrome, together with the message, to get the
challenge c = Hn

(
yH>,m

)
. The response to this challenge is the polynomial

product of the secret key and the challenge, hidden by the committed mask: z =
cx+ y. The signature consists of the challenge and the response: σ = (z, c).

Matrix version. We now describe a generalization of Persichetti’s OTS to ma-
trices. Our generalization is actually closer to Lyubashevsky’s original work [8] for
general lattices, not just ideals. It is also more connected to the SD problem in
some sense since the response computation involves a syndrome computation in-
stead of just a polynomial multiplication. Yet while this generalization permits to
avoid the full cryptanalysis directly from one signature, it still leaks some informa-
tion that reveals the secret key within a few signatures. Actually, this construction
is similar to a submission to NIST post-quantum standardization process1 named
RaCoSS [10]. One of the main difference with this proposal lies in the distribution
of the secret key rows (probabilistic vs deterministic). RaCoSS has already been
attacked [3], then patched [11], then attacked again [15].

The secret key consists ofm vectors x0, . . . ,xm−1 of small weights w1, that con-
stitute the row of the private matrix X ∈ Fm×n2 . As in the previous subsection, the
public key is a random parity-check matrix H ∈ F(n−k)×n

2 (not necessarily quasi-
cyclic) together with the syndromes of the secret key S> = HX> ∈ F(n−k)×m

2 .
This adaptation is summarized in Figure 3.

Sign(pk, sk,m):

1. y $← Dnw2

2. c←Hm
(
yH>,m

)
∈ Fm2

3. z ← cX + y

Output (z, c)

Verify(pk, (z, c) ,m):

If Hm
(
zH> − cS>,m

)
= c and wt (z) ≤ w = δw1 + w2

Accept
Else

Reject

Fig. 3 Description of a code-based matricial adaptation of Lyubashevsky’s framework.

The main difference between the vector and matrix versions lies in the signature
computation. Indeed, while the first steps are identical, the response computation
is pretty different. It resembles more a McEliece encryption of “message” c, with
generator matrix X and error y. However, the message c is public here, while
matrix X is not. Yet this does not prevent information leakage, and the secret key
can still be recovered using a limited number of signatures as exhibited by attacks
on RaCoSS [3, 15].

Information leakage and rejection sampling. The most important (and
costly) step in Lyubashevsky’s full-time signature scheme is the final one: rejec-
tion sampling. This step is performed before publishing any signature to ensure
that the candidate response z = Sc+ y does not leak any information about the
secret key. In other words, it enforces the signature distribution to be statistically
(or at least computationally) independent from the secret key. As mentioned be-
fore, this is done to let an adversary against the existential unforgeability under

1 See https://csrc.nist.gov/projects/post-quantum-cryptography.

https://csrc.nist.gov/projects/post-quantum-cryptography


Cryptanalysis of a code-based one-time signature 7

chosen message attack (EUF-CMA for short) successfully produce a valid signa-
ture without knowing the secret key, in order to then exploit this forgery to solve
the underlying hard problem (namely SIS for [8]).

This has for main consequence that the candidate response is output only with
some probability smaller than one. Persichetti’s OTS does not use rejection sam-
pling at all. This is probably done in the hope that the information leaked in the
OTS is not sufficient to retrieve the secret key. We show in the next sections that
the leak is inherent to the signature design and the difference between Hamming
and Euclidean metrics, and not due to the lack of rejection sampling.

4 One-time signature as a decoding problem

In this section, we focus on the vector adaptation to rewrite the cryptanalytic
problem as a decoding problem. Recall that in (the general version of) Persichetti’s
OTS, the signature is a couple (z, c) with z = cx + y, wt (x) = w1, wt (y) = w2

and wt (c) = δ so that wt (z) ≤ w = δw1+w2. The author claims [12, Sec. 4 p. 6]:

“A big advantage of our proposal is that this issue (introducing extra alge-
braic structure can compromise the secrecy of the private matrix used for
decoding) does not apply. In fact, since there is no decoding involved, an
entirely random code can be used, and the code itself is public, so there is
no private matrix to hide. In this sense, our scheme is closer, to an extent,
to the work of [1], which is centered on random quasi-cyclic codes.”

We show that this statement is not accurate, and that the problem of recovering
the secret key (and one time randomness) from the OTS can indeed involve de-
coding. Polynomial multiplication in F2[x]/ 〈xn − 1〉 can be interchangeably seen
as a matrix-vector multiplication in Fn×n2 × Fn2 . To do so, we use the following
notation: for a vector v = (v0, . . . , vn−1) ∈ Fn2 , we denote by rot (v) the cyclic
matrix obtained using the cyclic right shifts of v. Formally:

rot (v) =


v0 vn−1 . . . v1
v1 v0 . . . v2
...

...
. . .

...
vn−1 vn−2 . . . v0

 ∈ Fn×n2 (1)

Using the notation above, any polynomial multiplication a × b can now be
written rot (a) b> (resulting in a column vector). We can apply this rewriting to
line 3. of the signature algorithm (we re-introduce the transpose > notation to be
consistent with the row representation):

z> = (cx)> + y> = rot (c)x> + y>. (2)

Due to the constraint mentioned in the previous section, namely the GV bound,
c has to be of particularly low weight δ. To give an idea of the order of magnitude,
if n is the length of the code being used, the challenge should have weight approx-
imately δ ∈ O

(
n1/4

)
for the signature to be unique. This implies in particular

that the matrix rot (c) is sparse, and defines an LDPC or MDPC code C.



8 Jean-Christophe Deneuville, Philippe Gaborit

From a cryptanalytic point of view, we have that the response z in the signature
is equal to the syndrome of the secret key x by the sparse matrix rot (c), hidden
by a random error y of small weight w2. But the challenge c is part of the signature
so that any adversary A against the EUF-CMA of the scheme has access to c (and
hence rot (c)). Therefore, to recover the secret key x (and one time randomness
y), A is left with a noisy version of the syndrome decoding problem, involving
a public MDPC code, which contradicts Persichetti’s claim as stated. We now
present an efficient algorithm to solve this decoding problem.

5 Extended Bit Flipping algorithm

In this Section, we briefly describe a simple xBF algorithm version. The bit flipping
algorithm was originally introduced by Gallager [5] to decode LDPC codes. It later
proved to be much more versatile, allowing to efficiently decode MDPC codes [9],
even with noisy syndromes [4]. It is actually a natural approach for decoding: using
the fact that every codeword has a null syndrome, the algorithm aims at reducing
the number of unsatisfied parity-check equations at each iteration. By maximum
likelihood, a bit xi of x is flipped if it allows to reduce more than a certain number
(threshold) τ of unsatisfied parity check equations sj = Hjx

> (with Hj the row
of H indexed by j). The algorithm stops when the updated syndrome is null, or
has weight less than some bound for the noisy version (the algorithm can also fail
and stop after a predefined maximum number N of iterations). The complete xBF
algorithm is described in Algo. 1.

Algorithm 1 extended-Bit-Flipping(H, s, n, k, w,we, τ,N)

Input: Parity-check matrix H ∈ F(n−k)×n
2 , noisy syndrome s ∈ Fn−k2

Output: (x, e) ∈ Fn2 × Fn−k2 such that s> = Hx> + e>, wt (x) ≤ w, and wt (e) ≤ we

1: t← s, x← 0 ∈ Fn2 , e← 0 ∈ Fn−k2 , round← 0.
2: repeat
3: y ← 0 ∈ Fn2
4: for i ∈ {0, . . . , n− 1} do
5: count← 0
6: for j ∈ {0, . . . , n− k − 1} do
7: if tj = 1 and Hj,i = 1 then
8: count← count+ 1

9: if count ≥ τ then yi ← 1
10:

x← x⊕ y
11: t← t⊕ yH>

12: round← round+ 1
13: until wt (t) ≤ we or round > N
14: if round ≤ N then return

(
x, s− xH>

)
15: else return ⊥

We are now equipped with all the tools to perform the full cryptanalysis of the
(generalization of the) efficient OTS of Persichetti.



Cryptanalysis of a code-based one-time signature 9

6 Full cryptanalysis of Persichetti’s one time signature scheme

In this section, we put the previous pieces together and report a full cryptanalysis
of Persichetti’s OTS. We show that it is possible to recover the secret key (and
hence the one time randomness used for signing too) from a single signature in less
than a second, for all the proposed parameters. The cryptanalysis is summarized
in Algo. 2. Persichetti uses a special ring instantiation to try to add more confusion
to the signature. Let n = 2p. In Persichetti’s scheme, the secret key consists of
x = (x0,x1) ∈ Fp2 ×Fp2 of global weight w1, meaning that wt (x0)+wt (x1) = w1.
A signature is a couple (z, c) ∈ Fn2 × Fp2 with z = (z0, z1) and zi = xic+ yi, such
that wt (z) = wt (z0) + wt (z1) ≤ w = δw1 + w2, and wt (c) ≤ δ ≈ n1/4. The
one-time randomness y = (y0,y1) ∈ Fp2×Fp2 has global weight w2. The goal of the
cryptanalysis is to retrieve x0 and x1 from z and c.

The first step of the cryptanalysis is to decompose the target into two halves:
z0 = x0c+y0 and z1 = x1c+y1. Each equation of this system can then be viewed
independently as a noisy syndrome decoding problem, with public MDPC matrix
rot (c) as explained in Sec.4. Using the xBF algorithm described in Sec. 5, one can
solve each line of the system (τ and N will be specified later in this Section):

(xi,yi)← extended-Bit-Flipping (rot (c) , zi, n, p, w1/2, w2/2, τ,N) . (3)

A tiny technical caveat needs to be handled for breaking the scheme in practice:
the repartition of the noise. Indeed, while the global weight of x (resp. y) is w1

(resp. w2), it is unlikely to always have wt (x0) = wt (x1) = w1/2 and wt (y0) =
wt (y1) = w2/2. We therefore introduce a relaxation parameter: the integer relax ∈
{0, . . . ,min (w1, w2)}, and will allow the weight of the candidate solution x̃i and
ỹi to be respectively within w1/2± relax and w2/2± relax. Experimentally, setting
relax = w2/4 = max{w1, w2}/4 provides satisfactory results for the cryptanalysis.

Algorithm 2 BreakOTS(params, z, c, τ,N, relax)
Input: Public parameters n = 2p, w1, w2, δ, valid signature (z, c) on message m
Output: (x, y) ∈ Snw1

(F2)× Snw2
(F2) such that x = sk and z = cx+ y

1: (s0, s1)← (z0, z1), (x0,x1)← (0,0), (y0, y1)← (0,0)
2: (x0, y0)← extended-Bit-Flipping (c, z0, n, p, w1/2, w2/2 + relax, τ,N)
3: (x1, y1)← extended-Bit-Flipping (c, z1, n, p, w1 − wt (x0) , w2 − wt (y0) , τ,N)
4: return (sk = (x0,x1) , y)

Finally, a basic implementation of the cryptanalysis is available at https:
//github.com/deneuville/PersichettiOTScryptanalysis. The code was com-
piled using GCC 5.4.0 using flags -std=c++11 -fpermissive -O3, and run on a
single Intel R© Coretm i7-6920HQ CPU @ 2.90GHz with TurboBoost disabled. The
timings reported in Table 1 are expressed in milliseconds. The verification timings
come from the original paper [12]. While they were obtained on a seemingly less
powerful device, they compare favorably to our highly unoptimized proof of con-
cept implementation of Persichetti’s OTS. Therefore we conservatively chose to
refer to these timings.

Notice that Algo. 2 is presented using quasi-cyclic codes: the parity-check ma-
trix given to the xBF algorithm consists of the cyclic shift of vector c. The crypt-
analysis timings reported in Table 1 correspond to a generic version of the xBF

https://github.com/deneuville/PersichettiOTScryptanalysis
https://github.com/deneuville/PersichettiOTScryptanalysis


10 Jean-Christophe Deneuville, Philippe Gaborit

Table 1 Parameters for Persichetti’s OTS (from [12]) and for the xBF algorithm. All timings
are in milliseconds. The timings for the cryptanalysis roughly correspond to two xBF runs (one
for each part of the secret key). The verification timings were taken directly from [12]. The
last xBF parameter relax (not shown in this table) is always set to w2/4.

Persichetti’s OTS parameters xBF parameters Verification Cryptanalysis

security n w1 w2 δ τ N tverify (ms) tbreak (ms)

80
4801 90 100 10 7 5 22.569 165.459
3072 85 85 7 5 5 14.271 68.858

128
9857 150 200 12 9 10 99.492 453.680
6272 125 125 10 7 10 42.957 288.442

algorithm. Due to the very peculiar structure of the parity-check matrix (cyclic
and sparse), it is actually possible to optimize much more the xBF algorithm. Per-
sichetti’s verification requires one syndrome computation: sz = z0 + hz1, equiv-
alent to one full-sparse polynomial multiplication and one addition, a sparse-full
polynomial multiplication: csx, and another polynomial addition: csx + sz. An
xBF essentially corresponds to a syndrome computation, plus some polynomial
additions on positions flipped during execution. Therefore, an optimized xBF al-
gorithm taking advantage from this cyclic and sparse structure would require one
syndrome computation: cx̃b (b ∈ {0, 1}), x̃b being the guessed secret, equivalent
to one sparse-sparse polynomial multiplication, w1 polynomial additions (equiva-
lent to another sparse-sparse polynomial multiplication), and some other overhead
polynomial additions and memory access for threshold verification and syndrome
updates. Two xBF runs are required for the full cryptanalysis, involving twice as
many polynomial multiplications (the most expensive operation) as for the sig-
nature verification. This reasonably lets us believe that a fully optimized crypt-
analysis implementation should completely break Persichetti’s OTS scheme in no
longer than twice the verification time.

7 Conclusion

In this paper, we have presented an attack on efficient OTS without trapdoors,
based on codes (not necessarily quasi-cyclic). This attack targets the vectorial
adaptation of Lyubashevsky’s signature scheme. Viewing the commitment as an
LDPC/MDPC code, it is possible to rewrite the signature as a noisy syndrome
decoding problem, for which the xBF algorithm is especially suited. Applied to
Persichetti’s scheme, we retrieve the secret key in less than a second for all pa-
rameters, disproving the claimed 80 to 128 bits security. While the matrix version
of this adaptation seems less sensitive to this attack, it clearly leaks information
on the support of the secret key, that can be retrieved using a few signatures, as
noticed in the original adaptation [12].

References

1. Aguilar Melchor, C., Blazy, O., Deneuville, J., Gaborit, P., Zémor, G.: Efficient
encryption from random quasi-cyclic codes. IEEE Trans. Information Theory
64(5) (2018) 3927–3943 2, 7



Cryptanalysis of a code-based one-time signature 11

2. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent in-
tractability of certain coding problems (corresp.). IEEE Trans. Information
Theory 24(3) (1978) 384–386 2, 4

3. Daniel Julius, B., Andreas, H., Tanja, L., Panny, L.: OFFICIAL COMMENT:
RaCoSS. Official comments about NIST PQC submissions (December 2017)
6

4. Deneuville, J.C., Gaborit, P., Zémor, G.: Ouroboros: A simple, secure and ef-
ficient key exchange protocol based on coding theory. In: International Work-
shop on Post-Quantum Cryptography, Springer (2017) 18–34 8

5. Gallager, R.: Low-density parity-check codes. IRE Transactions on informa-
tion theory 8(1) (1962) 21–28 2, 8

6. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In Ladner, R.E., Dwork, C., eds.: 40th ACM
STOC, ACM Press (May 2008) 197–206 1

7. Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: An NTRU lattice-based sig-
nature scheme. In Pfitzmann, B., ed.: EUROCRYPT 2001. Volume 2045 of
LNCS., Springer, Heidelberg (May 2001) 211–228 1

8. Lyubashevsky, V.: Lattice signatures without trapdoors. In Pointcheval, D.,
Johansson, T., eds.: EUROCRYPT 2012. Volume 7237 of LNCS., Springer,
Heidelberg (April 2012) 738–755 1, 5, 6, 7

9. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.: Mdpc-mceliece: New
mceliece variants from moderate density parity-check codes. In: Information
Theory Proceedings (ISIT), 2013 IEEE International Symposium on, IEEE
(2013) 2069–2073 2, 8

10. Partha Sarathi, R., Rui, X., Kazuhide, F., Shinsaku, K., Kirill, M., Tsuyoshi,
T.: RaCoSS: Random code-based signature scheme. Submission to NIST
post-quantum standardization process (November 2017) 6

11. Partha Sarathi, R., Rui, X., Kazuhide, F., Shinsaku, K., Kirill, M., Tsuyoshi,
T.: Code-based signature scheme without trapdoors. IEICE Tech. Rep., vol.
118, no. 151, ISEC2018-15, pp. 17–22 (July 2018) https://www.ieice.org/
ken/paper/20180725L1FF/eng/. 6

12. Persichetti, E.: Efficient one-time signatures from quasi-cyclic codes: A full
treatment. Cryptography 2(4) (2018) 30 1, 2, 3, 4, 7, 9, 10

13. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
signatures. Journal of cryptology 13(3) (2000) 361–396 1

14. Santini, P., Baldi, M., Chiaraluce, F.: Cryptanalysis of a one-time code-based
digital signature scheme. In: 2019 IEEE International Symposium on Infor-
mation Theory (ISIT), IEEE (2019) 2594–2598 3

15. Xagawa, K.: Practical attack on racoss-r. Cryptology ePrint Archive, Report
2018/831 (2018) https://eprint.iacr.org/2018/831. 6

https://www.ieice.org/ken/paper/20180725L1FF/eng/
https://www.ieice.org/ken/paper/20180725L1FF/eng/
https://eprint.iacr.org/2018/831

	Introduction
	Preliminaries
	Code-based signatures without trapdoors
	One-time signature as a decoding problem
	Extended Bit Flipping algorithm
	Full cryptanalysis of Persichetti's one time signature scheme
	Conclusion

