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Abstract Following Schnorr framework for obtaining digital signatures, Song et
al. recently proposed a new instantiation of a signature scheme featuring small pub-
lic keys from coding assumptions in rank metric, which was accepted at PKC’19.
Their proposal makes use of rank quasi-cyclic (RQC) codes to reduce the public
key size. We show that it is possible to turn a valid, legitimate signature into an
efficiently solvable decoding problem, which allows to recover the randomness used
for signing and hence the secret key, from a single signature, in about the same
amount of time as required for signing.
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1 Introduction

Post-quantum cryptography has drawn a lot of attention since Shor’s disruptive
quantum algorithm for factoring integers in polynomial time [26]. More recently,
the National Institute of Standards and Technology (NIST) has initiated a stan-
dardization process for quantum-safe key exchange protocols, public-key encryp-
tion and digital signature schemes.
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Among the candidate primitives, code-based cryptography stands as one of
the most serious quantum-safe alternatives. While code-based encryption schemes
rely upon well-studied assumptions such as the so-called Syndrome Decoding (SD)
problem, the design of an efficient and secure signature scheme remains a challeng-
ing task. There are essentially two approaches to obtain digital signature schemes:
the hash-and-sign and Fiat-Shamir paradigms.

In the first paradigm, the signer generates a signature by finding a small pre-
image (with respect to some norm, Euclidean, Hamming or rank for instance)
of a challenge word. Several signature schemes following this approach were pro-
posed: CFS [4], or WAVE [8, 7] for code-based cryptography in Hamming met-
ric, RankSign [14] for code-based cryptography in rank metric, or GPV [15] or
NTRUsign [16] for lattice-based cryptography (Euclidean metric).

This first approach is usually more efficient than Fiat-Shamir paradigm, even
if some discrepancies occur. For instance, the signature procedure of CFS needs to
be repeated an exponential (in the error weight t) number of time before hitting
a decodable syndrome, but signatures have size linear in the security parameter.
For WAVE the situation is different, the key size is quadratic in the security pa-
rameter to defeat best known attacks. This results in e.g. 3.2 megabytes keys for
128 bits of classical security (although this might be mitigated using more struc-
tured codes). Beyond this relative efficiency, this first approach suffers from an
important drawback: the trapdoor used for inverting (with non-negligible prob-
ability) the challenge word should not be efficiently recoverable from the public
key. The trapdoor is an efficient decoding (or approximate decoding) algorithm
which is hidden in the public matrix that describes the code, or the lattice. Due to
the specificity of the Euclidean norm, provable methods for randomizing the trap-
door exist [15, 19] for lattice-based cryptography. This however remains an open
problem for code-based cryptography both in Hamming and rank metrics: to date
there are two such proposals for code-based signature, CFS [4] and RankSign [14].
Unfortunately, both proposals feature public keys that can be distinguished from
random matrices [10, 6], enforcing a thoroughly choice of parameters.

The second paradigm inherits from Schnorr’s signature scheme [25] and the
Fiat-Shamir transformation [11]. For a random secret key matrix S of small weight
vectors, the public key is a random matrix H and the associated “syndromes”
matrix T =HS>. A signature consists in a proof-of-knowledge of the small weight
matrix S from a sparse challenge c.

In Lyubashevsky’s signature scheme [18], the signature has the form z = y+cS,
for y a random vector of moderate weight. The signer proves his knowledge of S
by involving it in z, meanwhile without disclosing it using the mask y.

This Schnorr-Lyubashevsky approach allows to circumvent the high number of
repetitions usually required in zero-knowledge protocols due to the non-negligible
cheating probability, yielding much shorter signatures. Signature schemes relying
on coding theory in either metrics can straightforwardly be obtained by adapt-
ing this technique, but the randomization part is more tricky (see KKS for in-
stance [17]). Indeed, it has to be considered on the whole length of the word, and
not only on independent coordinates as when dealing with the Euclidean metric
(see Durandal signature scheme [3] for instance). This task seems challenging. As
an example, RaCoSS signature scheme [20] was quickly broken by exploiting the
information leakage from a few signatures [5], and later patches [21] did not seal
the leak appropriately [28].
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The situation is even worse for Hamming metric, Persichetti proposed to use
a similar approach for issuing only a single signature [22], but the sparsity of
the challenge vector c can be turned into a Low/Moderate Density Parity-Check
(LDPC/MDPC) code decoding problem efficiently solvable [9, 24], leading to a
secret key recovery.

Recently, Song et al. proposed a similar (full-time) signature scheme in rank
metric [27] (that we will refer to as the SHMW scheme in the rest of this pa-
per)1. This scheme uses Rank Quasi-Cyclic (RQC) codes [1, 2] for efficiency. Un-
like Lyubashevsky’s scheme or more recent code based scheme such as WAVE [8],
SHMW does not use rejection sampling techniques to ensure that issued signatures
follow an expected distribution. In SHMW, the secret key is a couple of small rank
words x and y, and the public key is a random word h and the syndrome associ-
ated with the secret key s = x+hy. The signature generation works in two steps:
the signer first generates two random small rank vectors r1 and r2 and computes
a commitment t = r1 + hr2. He then obtains the challenge vector g = H (t,m)
and signs it by computing u = (x,y) · g + r (blockwise multiplication and addi-
tion). The signature onm is the couple (g,u). The signature gets accepted by the
verifier if H (u1 + hu2 − sg,m) = g, and u is small enough. In order to prove the
security of their construction, Song et al. require that the rank of the generated
signature to remain below the Rank Gilbert-Varshamov (RGV) bound. We show
that this assumption offers an adversary the ability to recover the secret key from
a single signature in about the same amount of time as required for generating the
signature itself, invalidating the claimed security of the SHMW parameters.

Contributions. Similarly to Persichetti’s one time signature scheme, we show
that it is possible to turn a valid signature into an efficiently solvable decoding
problem, leading to a secret key recovery using a single signature.

Organization of the paper. The remainder of this paper is organized as follows:
Section 2 introduces some necessary backgrounds. We recall in Section 3 both
Schnorr’s framework and the SHMW instantiation in rank metric. Section 4 is
devoted to the presentation of the attack on the SHMW signature scheme. We
conclude our work in Section 5.

2 Preliminaries

2.1 Notations

Throughout the paper, q denotes a power of a prime p, Fq denotes the finite field
with q elements and for m a positive integer, Fqm denotes an extension of Fq of
degree m. Vectors (resp. Matrices) will be denoted in bold lower (resp. upper)

1 Their results got accepted on Dec. 21st 2018 at PKC’19, made available
as ePrint 2019/053 (https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/053&
version=20190125:204017&file=053.pdf) on Jan. 25th 2019, a cryptanalysis imple-
mentation was publicly released on Jan. 30th 2019 (https://github.com/deneuville/
cryptanalysisSHMW), Lau and Tan (https://arxiv.org/pdf/1902.00241.pdf) then Xagawa
(https://eprint.iacr.org/2019/120.pdf) published independently a description of the at-
tack. The paper has been withdrawn since, both from ePrint and PKC’19, around Feb. 26th

2019. This work merges the implementation of Aragon et al., and the works of Lau and Tan,
and Xagawa.

https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/053&version=20190125:204017&file=053.pdf
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/053&version=20190125:204017&file=053.pdf
https://github.com/deneuville/cryptanalysisSHMW
https://github.com/deneuville/cryptanalysisSHMW
https://arxiv.org/pdf/1902.00241.pdf
https://eprint.iacr.org/2019/120.pdf
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case. We denote by H a collision-resistant hash function whose (fix-length) output
will be specified where needed.

Definition 1 (Circulant matrix) A square matrix M of size n × n is said
circulant if it is of the form

M =


m0 m1 . . . mn−1

mn−1 m0
. . . mn−2

...
. . .

. . .
...

m1 m2 . . . m0


We denoteMn(Fqm) the set of circulant matrices of size n× n over Fqm .

The following proposition states an important property of circulant matrices.

Proposition 1 Mn(Fqm) is an Fqm-algebra isomorphic to Fqm [X]/(Xn− 1), the
set of polynomials with coefficients in Fqm modulo Xn − 1. The canonical isomor-
phism is given by

ϕ : Fqm [X]/(Xn − 1) −→ Mn(Fqm)

n−1∑
i=0

miX
i 7−→


m0 m1 . . . mn−1

mn−1 m0
. . . mn−2

...
. . .

. . .
...

m1 m2 . . . m0


In the following, in order to simplify the notation, we will identify the poly-

nomial G(X) =
∑n−1
i=0 giX

i ∈ Fqm [X] with the vector g = (g0, . . . , gn−1) ∈ Fnqm .
We will denote ug mod (Xn − 1) the vector of the coefficients of the polynomial(∑n−1

j=0 ujX
j
) (∑n−1

i=0 giX
i
)

mod (Xn − 1) or simply ug.

Definition 2 (Rank metric over Fnqm) Let x = (x1, . . . , xn) ∈ Fnqm and (β1, . . . , βm) ∈
Fmqm a basis of Fqm viewed as an m-dimensional vector space over Fq. Each coordi-
nate xj is associated to a vector of Fmq in this basis: xj =

∑m
i=1mijβi. The m×n

matrix associated to x is given by M(x) = (mij)16i6m
16j6n

.

The rank weight ‖x‖ of x is defined as

‖x‖ def
= RankM(x).

The associated distance d(x,y) between elements x and y in Fnqm is defined by
d(x,y) = ‖x− y‖.

Finally, we denote by Snw (Fqm) the set of words of length n in Fqm with rank
weight w. Formally,

Snw (Fqm) =
{
x ∈ Fnqm , ‖x‖ = w

}
.
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2.2 Coding theory in rank metric

Definition 3 (Fqm-linear code) An Fqm -linear code C of dimension k and length
n is a subspace of dimension k of Fnqm embedded with the rank metric. It is denoted
[n, k]qm . C can be represented by two equivalent ways:

– by a generator matrix G ∈ Fk×nqm . Each rows of G is an element of a basis of C,

C = {xG,x ∈ Fkqm}

– by a parity-check matrix H ∈ F(n−k)×n
qm . Each rows of H determines a parity-

check equation verified by the elements of C:

C = {x ∈ Fnqm :HxT = 0}

We say thatG (respectivelyH) is under systematic form iff it is of the form (Ik|A)
(respectively (In−k|B)).

Definition 4 (Support of a word) Let x = (x1, . . . , xn) ∈ Fnqm . The support
E of x, denoted Supp(x), is the Fq-subspace of Fqm generated by the coordinates
of x:

E = 〈x1, . . . , xn〉Fq

and we have dimE = ‖x‖.

The number of supports of dimension w of Fqm is denoted by the Gaussian
coefficient [

m
w

]
q

=

w−1∏
i=0

qm − qi

qw − qi

To describe an [n, k]qm linear code, we can give its systematic generator matrix
or its systematic parity-check matrix. In both cases, the number of bits needed to
represent such a matrix is k(n−k)m dlog2 qe. To reduce the size of a representation
of a code, we introduce the double circulant codes.

Definition 5 (Double circulant codes) An [2n, n]qm linear code C is said dou-
ble circulant if it has a generator matrix G of the form G = (A|B) where A and
B are two circulant matrices of size n.

With the previous notations, we have C = {(xa,xb),x ∈ Fnqm}. If a is invert-
ible in Fqm [X]/(Xn − 1), then C = {(x,xg),x ∈ Fnqm} where g = a−1b. In this
case we say that C is generated by g (mod Xn−1). Thus we only need nm dlog2 qe
bits to describe an [2n, n]qm double circulant code.

Relation between polynomial and matrix forms for the syndrome com-
putation. We need to be careful when we use these notations in the case of parity-
check matrix. Indeed, if we have a syndrome σ = e1h1+e2h2 mod (Xn−1), this
equality is equivalent in term of product matrix-vector to (H1|H2)(e1|e2)T = σT

where

H1 =


h1 mod (Xn − 1)
Xh1 mod (Xn − 1)

...
Xn−1h1 mod (Xn − 1)


T

and H2 =


h2 mod (Xn − 1)
Xh2 mod (Xn − 1)

...
Xn−1h2 mod (Xn − 1)


T
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Thus, we say that (h1,h2) and (Xn − 1) generate a parity-check matrix of a
code C if (HT

1 |HT
2 ) is a parity-check matrix of C.

For the rest of the paper, the double circulant codes considered are restricted
to (In | ϕ (h)), where ϕ is defined in Prop. 1, and h is (part of) the public key.

2.3 Difficult problems in rank metric

There are difficult problems in coding theory in rank metric. Among these prob-
lems, one of them is of peculiar importance for this work: the syndrome decoding
problem in rank metric.

Problem 1 (Rank Syndrome Decoding (RSD)) Given a full-rank matrix
H ∈ F(n−k)×n

qm , a syndrome σ and a weight ω, it is hard to sample a vector
x ∈ Fnqm of weight lower than ω such that HxT = σT .

The RSD problem has recently been proven hard in [12] on probabilistic re-
duction. The SHMW signature scheme has been proved EUF-CMA under the
assumption that the RSD problem is hard for Quasi-Cyclic codes. We hereafter
redefine the RQCSD for completeness.

Problem 2 (Rank Syndrome Decoding for Quasi-Cyclic codes (RQCSD))
Let H = (In | ϕ (h)), h ∈ Fnqm , be a parity-check matrix of a systematic double
circulant [2n, n] code C. Given a syndrome σ and a weight ω, it is hard to sample
a vector x ∈ F2n

qm of weight lower than ω such that HxT = σT .

2.4 The Low Rank Parity Check codes

LRPC codes have been introduced in [13].

Definition 6 (LRPC codes) Let H = (hij)16i6n−k
16j6n

∈ F(n−k)×n
qm a full-rank

matrix such that its coefficients generate an Fq-subspace F of small dimension d:

F = 〈hij〉Fq

Let C be the code with parity-check matrix H. By definition, C is an [n, k]qm

LRPC code of weight d.
Such a matrix H is called homogeneous matrix of weight d and support F .

3 Digital signature schemes

3.1 Schnorr signature scheme

In 1989, Schnorr proposed a new framework for building digital signature schemes [25].
We briefly recall his signature scheme here, and refer the reader to [18] for a lattice
adaptation, or to [20] or [22] for a code-based adaptation.

In Schnorr’s scheme, the secret key is a large random integer s, and the public
key is

(
p, q, α, v = α−s

)
such that p, q are primes satisfying q | p−1 and α has order
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q mod p. To sign a message m, the signer generates a random value r, computes
e = H (αr,m) and outputs (e, y = r + se). The verifier accepts the signature if
and only if H (αyve,m) = e.

Even if the lattice and code-based adaptations are relatively straightforward, it
is necessary to introduce a norm condition on the signature to replace the discrete
logarithm problem. This is exactly what has been done in the aforementioned
adaptations (plus some other technicalities).

3.2 SHMW signature scheme

We now recall the scheme by Song et al. To simplify the description of the scheme
and without loss of generality, we assume that the collision-resistant hash function
(CRHF) H : {0, 1}∗ → Snwg

(Fqm) used in SHMW [27] takes as input random
binary strings, and outputs words in Fnqm of rank weight wg.

Algorithm 1 SHMW.KeyGen(n,w,wr, wg)

Input: Public parameters (n,w,wr , wg) depending on the security parameter 1λ

Output: (pk, sk) with pk = (h, s) and sk = (x, y)

1: h $← Fnqm

2: x, y $← Fnqm such ‖x‖ = ‖y‖ = w
3: s← x+ hy
4: return (pk = (h, s) , sk = (x, y))

Algorithm 2 SHMW.Sign(pk, sk,m)

Input: Public and private keys, message m ∈ {0, 1}∗ to be signed
Output: Signature (g,u) of message m

1: r = (r1, r2)
$← F2n

qm such that ‖r1‖ = ‖r2‖ = wr

2: t← r1 + hr2
3: g ←H (t,m)
4: u = (u1,u2)← (x, y) · g + r = (xg + r1, yg + r2)
5: return (g,u)

Algorithm 3 SHMW.Verify(pk, (g,u = (u1,u2)) ,m)

Input: Public key, message m, and the signature (g,u = (u1,u2)) to verify
Output: Accept if (g,u) is a valid signature on m, Reject otherwise
1: if H (u1 + hu2 − sg,m) = g and ‖ui‖ ≤ wwg + wr then
2: return Accept
3: else
4: return Reject

Fig. 1 Description of the SHMW signature scheme.

We recall in Table 1 the parameters suggested by Song et al. for different
security levels. In that Table, δ refers to the RGV bound, approximated by δ ≈
1
2

(
m+ 2n−

√
(m− 2n)2 + 4nm

)
[27].
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Table 1 Suggested parameters for the SHMW signature scheme [27]. All sets of parameters
use q = 2 and w = wr = wg .

Security n m w δ

128 67 89 5 31
192 97 121 6 43
256 101 139 6 48

4 Cryptanalysis of SHMW signature scheme

In this section, we present a way to turn a valid signature into a decoding problem.
We show that this problem can be efficiently solved using the LRPC decoding
algorithm. This leads to a full cryptanalysis of Song et al. signature scheme, from
a single signature. We also provide an implementation of both the SHMW signature
scheme and our cryptanalysis. Timings for both softwares are reported in Tab. 2.

4.1 Signature as a decoding problem

We now focus on a single signature of the SHMW scheme. Let σ = (g,u) be a
valid signature on the message m. Therefore, we have:

– g = H (r1 + hr2,m), for some r1, r2 unknown of small rank,
– u1 = xg + r1 for some unknown (secret key part) x of small weight,
– u2 = yg + r2 for some unknown (secret key part) y of small weight,

– ‖g‖ ≤ wg with
1

17
n ≤ wg ≤

1

13
n depending on the SHMW parameters.

The relatively low weight of g is a necessary condition for the security of the
signature scheme (see [27]) that stems from the RGV bound. However, since g is
public (given in the signature), it is possible to use techniques coming from the
decoding of LRPC codes in order to recover the support of x and y.

4.2 Decoding LRPC codes

Let us denote H the matrix associated to g = H (t = r1 + hr2,m). To recover
the secret key in SHMW scheme, we have the following system of equations:{

u1 =Hx> + r>1
u2 =Hy> + r>2

We are first going to recover the support of the secret key (x, y) and, thus,
recovering the vectors x and y from the above equations reduces to linear algebra.

Notation. In the following, we denote by :

– F the support of H of weight wg

– E the support of (x, y) of weight w
– R the support of (r1, r2) of weight wr
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Let S denote the vector space generated by the coordinates of the vector u :

S = 〈u11, ...,u1n,u21, ...,u2n〉

Its dimension is at most wwg + wr, and it is a subspace of E.F + R, where
E.F is the product vector space 〈E1.F1, E2.F1, ..., Ew.Fwg 〉, with {F1, ..., Fwg} a
basis of F and {E1, ..., Ew} a basis of E.

4.2.1 Algorithm

We use the decoding algorithm from [13] to recover E from the coordinates of u1

and u2. The algorithm is depicted Fig. 4.
This algorithm relies on the fact that E ⊂ Si, where Si = F−1

i .S, in order to
recover the support of the error. Since adding (r1, r2) to the signature does not
remove this inclusion, the algorithm still works in the same way.

Algorithm 4 SupportRecoverer(F , s, r)
Input: F , (u11, ...,u1n,u21, ...,u2n) (a vector), w (the dimension of E)
Output: A candidate for the vector space E
1: Compute S = 〈u11, ...,u1n,u21, ...,u2n〉 . Part 1 : Compute the vector space E.F +R

2: Compute every Si = F−1
i .S with Fi an element of a basis of F , for i = 1 to wg

3: E ← S1 ∩ ... ∩ Swg . Part 2 : Recover the vector space E
4: return E

This algorithm is the same as the one described in [13], except that S is a
subspace of E.F +R instead of E.F .

Proposition 2 If 2n > wwg + wr, then Alg. 4 recovers E with a probability
1− q−(2n−(wwg+wr)+1).

Proof In order for the algorithm to succeed, parts 1 and 2 both need to succeed.
We treat each part separately.

Part 1. First we need S = 〈u11, ...,u1n,u21, ...,u2n〉 to be equal to E.F +R,
that is to say the 2n coordinates from u1 and u2 must span the whole vector space
of dimension wwg + wr. This is possible as long as :

2n > wwg + wr

The probability that this step fails is the probability that the 2n× (wwg +wr)
matrix formed by unfolding the coordinates of u1 and u2 in a basis of E.F +R is
not full rank, which is equal to (see [13] for more details) :

q−(2n−(wwg+wr)+1)

Part 2. As in [13], we know that each of the E ⊂ Si for i = 1 to wg. For

the considered parameters, the probability that dim(
wg⋂
i=1

Si) > dim(E) is negligible

compared to the probability that part one fails, hence the result. ut

Once the support E of x and y is recovered, we can compute the coordinates
of the secret key using linear algebra. From the equations s = x + hy we can
build a linear system consisting of nm equations (from s) and 2nw unknowns (the
coordinates of x and y) in the base field.
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4.3 Putting the pieces together

Implementation. In order to gauge the cryptanalysis efficiency, we implemented
both Song et al. signature scheme and the proposed attack. Both implementa-
tions are available online at github.com/deneuville/cryptanalysisSHMW. The
code was compiled using gcc v5.4.0 with flags -O3, and ran on an Intel R© Coretm

i7-6920HQ CPU @ 2.90GHz with TurboBoost disabled. The timings are reported
in Tab. 2.

Table 2 Performance of SHMW signature generation versus cryptanalysis for all the proposed
sets of parameters. pfail denotes the probability that (part 1 of) the cryptanalysis fails (see
Prop. 2).

Instance Claimed security tsign (ms) tbreak (ms) pfail

RQCS-I 128 4 45 2−105

RQCS-II 192 8 165 2−153

RQCS-III 256 11 200 2−161

Complexity analysis. As claimed by the Song et al. [27], a signature generation
requiresO

(
n2m log (m) log (log (m))

)
operations in the base field Fq. The decoding

algorithm of LRPC codes requires (wg − 1)(wwg + wr)
2m operations in Fq to

recover the support E (the cost of wg−1 intersections of vector spaces of dimension
wwg + wr), plus (nw)3 operations in order to solve the linear allowing to recover
sk = (x,y).

5 Conclusion

In this paper, we have presented a cryptanalysis of the Song et al. signature scheme
accepted to PKC’19. Our attack breaks the (full-time) signature scheme using
only a single signature, for all the proposed parameters, in less than a second,
invalidating their security claims. Both the attacked scheme and the proposed
cryptanalysis have been implemented and made publicly available. The attack
uses a structural flaw: the weight of the commitment needs to be relatively small,
allowing an adversary to turn a valid signature into an efficiently solvable decoding
problem. This unfortunately leaves few hope for an efficient reparation of the
scheme.
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