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Following Schnorr framework for obtaining digital signatures, Song et al. recently proposed a new instantiation of a signature scheme featuring small public keys from coding assumptions in rank metric, which was accepted at PKC'19. Their proposal makes use of rank quasi-cyclic (RQC) codes to reduce the public key size. We show that it is possible to turn a valid, legitimate signature into an efficiently solvable decoding problem, which allows to recover the randomness used for signing and hence the secret key, from a single signature, in about the same amount of time as required for signing.

Introduction

Post-quantum cryptography has drawn a lot of attention since Shor's disruptive quantum algorithm for factoring integers in polynomial time [START_REF] Shor | Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[END_REF]. More recently, the National Institute of Standards and Technology (NIST) has initiated a standardization process for quantum-safe key exchange protocols, public-key encryption and digital signature schemes.

Among the candidate primitives, code-based cryptography stands as one of the most serious quantum-safe alternatives. While code-based encryption schemes rely upon well-studied assumptions such as the so-called Syndrome Decoding (SD) problem, the design of an efficient and secure signature scheme remains a challenging task. There are essentially two approaches to obtain digital signature schemes: the hash-and-sign and Fiat-Shamir paradigms.

In the first paradigm, the signer generates a signature by finding a small preimage (with respect to some norm, Euclidean, Hamming or rank for instance) of a challenge word. Several signature schemes following this approach were proposed: CFS [4], or WAVE [START_REF] Debris-Alazard | Wave: A new code-based signature scheme[END_REF]7] for code-based cryptography in Hamming metric, RankSign [START_REF] Gaborit | New results for rank-based cryptography[END_REF] for code-based cryptography in rank metric, or GPV [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF] or NTRUsign [16] for lattice-based cryptography (Euclidean metric).

This first approach is usually more efficient than Fiat-Shamir paradigm, even if some discrepancies occur. For instance, the signature procedure of CFS needs to be repeated an exponential (in the error weight t) number of time before hitting a decodable syndrome, but signatures have size linear in the security parameter. For WAVE the situation is different, the key size is quadratic in the security parameter to defeat best known attacks. This results in e.g. 3.2 megabytes keys for 128 bits of classical security (although this might be mitigated using more structured codes). Beyond this relative efficiency, this first approach suffers from an important drawback: the trapdoor used for inverting (with non-negligible probability) the challenge word should not be efficiently recoverable from the public key. The trapdoor is an efficient decoding (or approximate decoding) algorithm which is hidden in the public matrix that describes the code, or the lattice. Due to the specificity of the Euclidean norm, provable methods for randomizing the trapdoor exist [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF][START_REF] Micciancio | Trapdoors for lattices: Simpler, tighter, faster, smaller[END_REF] for lattice-based cryptography. This however remains an open problem for code-based cryptography both in Hamming and rank metrics: to date there are two such proposals for code-based signature, CFS [4] and RankSign [START_REF] Gaborit | New results for rank-based cryptography[END_REF]. Unfortunately, both proposals feature public keys that can be distinguished from random matrices [START_REF] Faugère | A distinguisher for high rate McEliece cryptosystems[END_REF][START_REF] Debris-Alazard | Two attacks on rank metric codebased schemes: Ranksign and an IBE scheme[END_REF], enforcing a thoroughly choice of parameters.

The second paradigm inherits from Schnorr's signature scheme [25] and the Fiat-Shamir transformation [START_REF] Fiat | How to prove yourself: Practical solutions to identification and signature problems[END_REF]. For a random secret key matrix S of small weight vectors, the public key is a random matrix H and the associated "syndromes" matrix T = HS . A signature consists in a proof-of-knowledge of the small weight matrix S from a sparse challenge c.

In Lyubashevsky's signature scheme [START_REF] Lyubashevsky | Lattice signatures without trapdoors[END_REF], the signature has the form z = y+cS, for y a random vector of moderate weight. The signer proves his knowledge of S by involving it in z, meanwhile without disclosing it using the mask y.

This Schnorr-Lyubashevsky approach allows to circumvent the high number of repetitions usually required in zero-knowledge protocols due to the non-negligible cheating probability, yielding much shorter signatures. Signature schemes relying on coding theory in either metrics can straightforwardly be obtained by adapting this technique, but the randomization part is more tricky (see KKS for instance [START_REF] Kabatianskii | A digital signature scheme based on random error-correcting codes[END_REF]). Indeed, it has to be considered on the whole length of the word, and not only on independent coordinates as when dealing with the Euclidean metric (see Durandal signature scheme [3] for instance). This task seems challenging. As an example, RaCoSS signature scheme [START_REF] Sarathi | RaCoSS: Random code-based signature scheme[END_REF] was quickly broken by exploiting the information leakage from a few signatures [5], and later patches [START_REF] Sarathi | Code-based signature scheme without trapdoors[END_REF] did not seal the leak appropriately [START_REF] Xagawa | Practical attack on racoss-r[END_REF].

The situation is even worse for Hamming metric, Persichetti proposed to use a similar approach for issuing only a single signature [START_REF] Persichetti | Efficient digital signatures from coding theory[END_REF], but the sparsity of the challenge vector c can be turned into a Low/Moderate Density Parity-Check (LDPC/MDPC) code decoding problem efficiently solvable [START_REF] Deneuville | Cryptanalysis of a code-based one-time signature[END_REF]24], leading to a secret key recovery.

Recently, Song et al. proposed a similar (full-time) signature scheme in rank metric [27] (that we will refer to as the SHMW scheme in the rest of this paper) 1 . This scheme uses Rank Quasi-Cyclic (RQC) codes [START_REF] Aguilar Melchor | Rank Quasi-Cyclic (RQC)[END_REF][START_REF] Aguilar Melchor | Efficient encryption from random quasi-cyclic codes[END_REF] for efficiency. Unlike Lyubashevsky's scheme or more recent code based scheme such as WAVE [START_REF] Debris-Alazard | Wave: A new code-based signature scheme[END_REF], SHMW does not use rejection sampling techniques to ensure that issued signatures follow an expected distribution. In SHMW, the secret key is a couple of small rank words x and y, and the public key is a random word h and the syndrome associated with the secret key s = x + hy. The signature generation works in two steps: the signer first generates two random small rank vectors r 1 and r 2 and computes a commitment t = r 1 + hr 2 . He then obtains the challenge vector g = H (t, m) and signs it by computing u = (x, y) • g + r (blockwise multiplication and addition). The signature on m is the couple (g, u). The signature gets accepted by the verifier if H (u 1 + hu 2 -sg, m) = g, and u is small enough. In order to prove the security of their construction, Song et al. require that the rank of the generated signature to remain below the Rank Gilbert-Varshamov (RGV) bound. We show that this assumption offers an adversary the ability to recover the secret key from a single signature in about the same amount of time as required for generating the signature itself, invalidating the claimed security of the SHMW parameters.

Contributions. Similarly to Persichetti's one time signature scheme, we show that it is possible to turn a valid signature into an efficiently solvable decoding problem, leading to a secret key recovery using a single signature.

Organization of the paper. The remainder of this paper is organized as follows: Section 2 introduces some necessary backgrounds. We recall in Section 3 both Schnorr's framework and the SHMW instantiation in rank metric. Section 4 is devoted to the presentation of the attack on the SHMW signature scheme. We conclude our work in Section 5.

Preliminaries

Notations

Throughout the paper, q denotes a power of a prime p, F q denotes the finite field with q elements and for m a positive integer, F q m denotes an extension of F q of degree m. Vectors (resp. Matrices) will be denoted in bold lower (resp. upper) case. We denote by H a collision-resistant hash function whose (fix-length) output will be specified where needed.

Definition 1 (Circulant matrix)

A square matrix M of size n × n is said circulant if it is of the form M =       m 0 m 1 . . . m n-1 m n-1 m 0 . . . m n-2 . . . . . . . . . . . . m 1 m 2 . . . m 0       We denote M n (F q m ) the set of circulant matrices of size n × n over F q m .
The following proposition states an important property of circulant matrices.

Proposition 1 M n (F q m ) is an F q m -algebra isomorphic to F q m [X]/(X n -1)
, the set of polynomials with coefficients in F q m modulo X n -1. The canonical isomorphism is given by

ϕ : F q m [X]/(X n -1) -→ M n (F q m ) n-1 i=0 m i X i -→       m 0 m 1 . . . m n-1 m n-1 m 0 . . . m n-2 . . . . . . . . . . . . m 1 m 2 . . . m 0      
In the following, in order to simplify the notation, we will identify the polynomial G(X) = n-1 i=0 g i X i ∈ F q m [X] with the vector g = (g 0 , . . . , g n-1 ) ∈ F n q m . We will denote ug mod (X n -1) the vector of the coefficients of the polynomial n-1 j=0 u j X j n-1 i=0 g i X i mod (X n -1) or simply ug.

Definition 2 (Rank metric over F n q m ) Let x = (x 1 , . . . , x n ) ∈ F n q m and (β 1 , . . . , β m ) ∈ F m q m a basis of F q m viewed as an m-dimensional vector space over F q . Each coordinate x j is associated to a vector of F m q in this basis:

x j = m i=1 m ij β i . The m × n matrix associated to x is given by M (x) = (m ij ) 1 i m 1 j n .
The rank weight x of x is defined as

x def = Rank M (x).
The associated distance d(x, y) between elements x and y in F n q m is defined by d(x, y) = xy . Finally, we denote by S n w (F q m ) the set of words of length n in F q m with rank weight w. Formally,

S n w (F q m ) = x ∈ F n q m , x = w .

Coding theory in rank metric

Definition 3 (F q m -linear code) An F q m -linear code C of dimension k and length n is a subspace of dimension k of F n q m embedded with the rank metric. It is denoted [n, k] q m . C can be represented by two equivalent ways:

by a generator matrix G ∈ F k×n q m . Each rows of G is an element of a basis of C,

C = {xG, x ∈ F k q m } -by a parity-check matrix H ∈ F (n-k)×n q m
. Each rows of H determines a paritycheck equation verified by the elements of C:

C = {x ∈ F n q m : Hx T = 0} We say that G (respectively H) is under systematic form iff it is of the form (I k |A) (respectively (I n-k |B)).
Definition 4 (Support of a word) Let x = (x 1 , . . . , x n ) ∈ F n q m . The support E of x, denoted Supp(x), is the F q -subspace of F q m generated by the coordinates of x: E = x 1 , . . . , x n F q and we have dim E = x .

The number of supports of dimension w of F q m is denoted by the Gaussian coefficient m w q =

w-1 i=0 q m -q i q w -q i

To describe an [n, k] q m linear code, we can give its systematic generator matrix or its systematic parity-check matrix. In both cases, the number of bits needed to represent such a matrix is k(n-k)m log 2 q . To reduce the size of a representation of a code, we introduce the double circulant codes.

Definition 5 (Double circulant codes) An [2n, n] q m linear code C is said double circulant if it has a generator matrix G of the form G = (A|B) where A and B are two circulant matrices of size n.

With the previous notations, we have

C = {(xa, xb), x ∈ F n q m }. If a is invert- ible in F q m [X]/(X n -1), then C = {(x, xg), x ∈ F n q m }
where g = a -1 b. In this case we say that C is generated by g ( mod X n -1). Thus we only need nm log 2 q bits to describe an [2n, n] q m double circulant code.

Relation between polynomial and matrix forms for the syndrome computation. We need to be careful when we use these notations in the case of paritycheck matrix. Indeed, if we have a syndrome σ = e 1 h 1 + e 2 h 2 mod (X n -1), this equality is equivalent in term of product matrix-vector to (H 1 |H 2 )(e 1 |e 2 ) T = σ T where

H 1 =      h 1 mod (X n -1) Xh 1 mod (X n -1)
. . .

X n-1 h 1 mod (X n -1)      T and H 2 =      h 2 mod (X n -1) Xh 2 mod (X n -1) . . . X n-1 h 2 mod (X n -1)     
T Thus, we say that (h 1 , h 2 ) and (X n -1) generate a parity-check matrix of a code C if (H T 1 |H T 2 ) is a parity-check matrix of C. For the rest of the paper, the double circulant codes considered are restricted to (I n | ϕ (h)), where ϕ is defined in Prop. 1, and h is (part of) the public key.

Difficult problems in rank metric

There are difficult problems in coding theory in rank metric. Among these problems, one of them is of peculiar importance for this work: the syndrome decoding problem in rank metric.

Problem 1 (Rank Syndrome Decoding (RSD)) Given a full-rank matrix

H ∈ F (n-k)×n q m
, a syndrome σ and a weight ω, it is hard to sample a vector x ∈ F n q m of weight lower than ω such that Hx T = σ T .

The RSD problem has recently been proven hard in [START_REF] Gaborit | On the hardness of the decoding and the minimum distance problems for rank codes[END_REF] on probabilistic reduction. The SHMW signature scheme has been proved EUF-CMA under the assumption that the RSD problem is hard for Quasi-Cyclic codes. We hereafter redefine the RQCSD for completeness.

Problem 2 (Rank Syndrome Decoding for Quasi-Cyclic codes (RQCSD))

Let H = (I n | ϕ (h)), h ∈ F n q m ,
be a parity-check matrix of a systematic double circulant [2n, n] code C. Given a syndrome σ and a weight ω, it is hard to sample a vector x ∈ F 2n q m of weight lower than ω such that Hx T = σ T .

The Low Rank Parity Check codes

LRPC codes have been introduced in [START_REF] Gaborit | Low rank parity check codes and their application to cryptography[END_REF].

Definition 6 (LRPC codes) Let H = (h ij ) 1 i n-k 1 j n ∈ F (n-k)×n q m
a full-rank matrix such that its coefficients generate an F q -subspace F of small dimension d:

F = h ij F q
Let C be the code with parity-check matrix H. By definition, C is an [n, k] q m LRPC code of weight d. Such a matrix H is called homogeneous matrix of weight d and support F .

3 Digital signature schemes

Schnorr signature scheme

In 1989, Schnorr proposed a new framework for building digital signature schemes [25].

We briefly recall his signature scheme here, and refer the reader to [START_REF] Lyubashevsky | Lattice signatures without trapdoors[END_REF] for a lattice adaptation, or to [START_REF] Sarathi | RaCoSS: Random code-based signature scheme[END_REF] or [START_REF] Persichetti | Efficient digital signatures from coding theory[END_REF] for a code-based adaptation. In Schnorr's scheme, the secret key is a large random integer s, and the public key is p, q, α, v = α -s such that p, q are primes satisfying q | p-1 and α has order q mod p. To sign a message m, the signer generates a random value r, computes e = H (α r , m) and outputs (e, y = r + se). The verifier accepts the signature if and only if H (α y v e , m) = e.

Even if the lattice and code-based adaptations are relatively straightforward, it is necessary to introduce a norm condition on the signature to replace the discrete logarithm problem. This is exactly what has been done in the aforementioned adaptations (plus some other technicalities).

SHMW signature scheme

We now recall the scheme by Song et al. To simplify the description of the scheme and without loss of generality, we assume that the collision-resistant hash function (CRHF) H : {0, 1} * → S n w g (F q m ) used in SHMW [27] takes as input random binary strings, and outputs words in F n q m of rank weight w g .

Algorithm 1 SHMW.KeyGen(n, w, w r , w g )

Input: Public parameters (n, w, wr, wg) depending on the security parameter 1 λ Output: (pk, sk) with pk = (h, s) and sk = (x, y) We recall in 4 Cryptanalysis of SHMW signature scheme

1: h $ ← F n q m 2: x, y $ ← F n q m such x = y = w 3: s ← x +
In this section, we present a way to turn a valid signature into a decoding problem. We show that this problem can be efficiently solved using the LRPC decoding algorithm. This leads to a full cryptanalysis of Song et al. signature scheme, from a single signature. We also provide an implementation of both the SHMW signature scheme and our cryptanalysis. Timings for both softwares are reported in Tab. 2.

Signature as a decoding problem

We now focus on a single signature of the SHMW scheme. Let σ = (g, u) be a valid signature on the message m. Therefore, we have:

g = H (r 1 + hr 2 , m), for some r 1 , r 2 unknown of small rank, u 1 = xg + r 1 for some unknown (secret key part) x of small weight, u 2 = yg + r 2 for some unknown (secret key part) y of small weight, g ≤ w g with 1 17 n ≤ w g ≤ 1 13 n depending on the SHMW parameters.

The relatively low weight of g is a necessary condition for the security of the signature scheme (see [27]) that stems from the RGV bound. However, since g is public (given in the signature), it is possible to use techniques coming from the decoding of LRPC codes in order to recover the support of x and y.

Decoding LRPC codes

Let us denote H the matrix associated to g = H (t = r 1 + hr 2 , m). To recover the secret key in SHMW scheme, we have the following system of equations:

u 1 = Hx + r 1 u 2 = Hy + r 2
We are first going to recover the support of the secret key (x, y) and, thus, recovering the vectors x and y from the above equations reduces to linear algebra.

Notation. In the following, we denote by : -F the support of H of weight w g -E the support of (x, y) of weight w -R the support of (r 1 , r 2 ) of weight w r

Fig. 1

 1 Fig. 1 Description of the SHMW signature scheme.
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  Their results got accepted on Dec. 21 st 2018 at PKC'19, made available as ePrint 2019/053 (https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/053& version=20190125:204017&file=053.pdf) on Jan. 25 th 2019, a cryptanalysis implementation was publicly released on Jan. 30 th 2019 (https://github.com/deneuville/ cryptanalysisSHMW), Lau and Tan (https://arxiv.org/pdf/1902.00241.pdf) then Xagawa (https://eprint.iacr.org/2019/120.pdf) published independently a description of the attack. The paper has been withdrawn since, both from ePrint and PKC'19, around Feb. 26 th 2019. This work merges the implementation of Aragon et al., and the works of Lau and Tan, and Xagawa.

  Table 1 the parameters suggested by Song et al. for different security levels. In that Table, δ refers to the RGV bound, approximated by δ ≈

	1 2 m + 2n -(m -2n) 2 + 4nm [27].

Table 1

 1 Suggested parameters for the SHMW signature scheme[27]. All sets of parameters use q = 2 and w = wr = wg.

	Security	n	m	w	δ
	128	67	89	5	31
	192	97	121	6	43
	256	101	139	6	48

This work was partially supported by the French DGA.

Let S denote the vector space generated by the coordinates of the vector u : S = u 11 , ..., u 1n , u 21 , ..., u 2n

Its dimension is at most ww g + w r , and it is a subspace of E.F + R, where E.F is the product vector space E 1 .F 1 , E 2 .F 1 , ..., E w .F w g , with {F 1 , ..., F w g } a basis of F and {E 1 , ..., E w } a basis of E.

Algorithm

We use the decoding algorithm from [START_REF] Gaborit | Low rank parity check codes and their application to cryptography[END_REF] to recover E from the coordinates of u 1 and u 2 . The algorithm is depicted Fig. 4.

This algorithm relies on the fact that E ⊂ S i , where S i = F -1 i .S, in order to recover the support of the error. Since adding (r 1 , r 2 ) to the signature does not remove this inclusion, the algorithm still works in the same way.

Algorithm 4 SupportRecoverer(F , s, r) This algorithm is the same as the one described in [START_REF] Gaborit | Low rank parity check codes and their application to cryptography[END_REF], except that S is a subspace of E.F + R instead of E.F .

Proposition 2 If 2n

ww g + w r , then Alg. 4 recovers E with a probability 1 -q -(2n-(ww g +w r )+1) .

Proof In order for the algorithm to succeed, parts 1 and 2 both need to succeed. We treat each part separately.

Part 1. First we need S = u 11 , ..., u 1n , u 21 , ..., u 2n to be equal to E.F + R, that is to say the 2n coordinates from u 1 and u 2 must span the whole vector space of dimension ww g + w r . This is possible as long as :

The probability that this step fails is the probability that the 2n × (ww g + w r ) matrix formed by unfolding the coordinates of u 1 and u 2 in a basis of E.F + R is not full rank, which is equal to (see [START_REF] Gaborit | Low rank parity check codes and their application to cryptography[END_REF] for more details) :

q -(2n-(ww g +w r )+1) Part 2. As in [START_REF] Gaborit | Low rank parity check codes and their application to cryptography[END_REF], we know that each of the E ⊂ S i for i = 1 to w g . For the considered parameters, the probability that dim(

compared to the probability that part one fails, hence the result.

Once the support E of x and y is recovered, we can compute the coordinates of the secret key using linear algebra. From the equations s = x + hy we can build a linear system consisting of nm equations (from s) and 2nw unknowns (the coordinates of x and y) in the base field.

Putting the pieces together

Implementation. In order to gauge the cryptanalysis efficiency, we implemented both Song et al. signature scheme and the proposed attack. Both implementations are available online at github.com/deneuville/cryptanalysisSHMW. The code was compiled using gcc v5.4.0 with flags -O3, and ran on an Intel R Core tm i7-6920HQ CPU @ 2.90GHz with TurboBoost disabled. The timings are reported in Tab. 2. ) operations in the base field F q . The decoding algorithm of LRPC codes requires (w g -1)(ww g + w r ) 2 m operations in F q to recover the support E (the cost of w g -1 intersections of vector spaces of dimension ww g + w r ), plus (nw) 3 operations in order to solve the linear allowing to recover sk = (x, y).

Conclusion

In this paper, we have presented a cryptanalysis of the Song et al. signature scheme accepted to PKC'19. Our attack breaks the (full-time) signature scheme using only a single signature, for all the proposed parameters, in less than a second, invalidating their security claims. Both the attacked scheme and the proposed cryptanalysis have been implemented and made publicly available. The attack uses a structural flaw: the weight of the commitment needs to be relatively small, allowing an adversary to turn a valid signature into an efficiently solvable decoding problem. This unfortunately leaves few hope for an efficient reparation of the scheme.