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Abstract

4D trajectory prediction is the core element of the future air transportation system. It aims to improve

the operational ability and the predictability of air tra�c. In this paper, a novel automated data-driven

framework to deal with the prediction of Estimated Time of Arrival (ETA) on the runway at the entry

point of Terminal Manoeuvring Area (TMA) is introduced. The proposed framework mainly consists of

data preprocessing and machine learning models. Firstly, the dataset is divided, analyzed, cleaned, and

estimated. Then, the ights are clustered into partitions according to di�erent runway-in-use (QFU). Several

candidate machine learning models are trained and selected on the corresponding dataset of each QFU.

Feature engineering is conducted to transform raw data into features. After that, the experiments are

performed on real ADS-B data in Beijing TMA with nested cross validation. By comparing the prediction

performance on the preprocessed and un-preprocessed datasets, the results demonstrate that the proposed

data preprocessing is able to improve the data quality. It is also robust to outliers, missing data, and noise.

Finally, an ensemble learning strategy named stacking is introduced. Compared to other individual models,

the stacked model has a more complex structure and performs best in ETA prediction. This fact reveals

that the framework proposed in this study could make accurate and reliable ETA predictions.
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1. Introduction

4D trajectory and ight information are crucial factors for the Trajectory Based Operation (TBO) and
Collaborative Decision Making (CDM). Highly accurate 4D Trajectory Prediction (TP) capability is the
cornerstone of TBO deployment. Through accurate 4D TP, the air tra�c operational e�ciency could be
improved. The ight cost and adverse environmental impact could also be lowered. More importantly, the5

workload of Air Tra�c Controllers (ATCO) could be alleviated, which means that the maximum Air Tra�c
Management (ATM) capacity could be augmented [2].

Previous studies on TP could be divided into model-driven methods and data-driven methods. Classical
model-based TP methods made the ideal assumptions about the motion of the aircraft, the atmospheric
environment, and the ight performance, along with either parametric or physics-based trajectory models.10

They generally do not take the intersections between di�erent trajectories and the real Air Tra�c Control
(ATC) human behavior factors into account. In addition, lacking su�cient data support, computation
resources, and learning ability, the model-based TP method is much less e�ective when facing massive real-
time data in large-scale ATM systems. To overcome the drawbacks of model-driven approaches, nowadays,
the focus of 4D TP has been gradually shifted to data-driven approaches.15

The Data-driven AiRcraft Trajectory prediction research (DART) project is one of the recently launched
research projects supported by SESAR joint undertaking, aiming to explore the applicability of data-driven
approaches to the ATM domain [3]. As pointed by DART, data-driven techniques are able to train ap-
propriate models from all relevant and actual historical data with no or few prior assumptions and few
requirements for data quality. Compared to classical model-driven approaches, contextual features can be20

extracted, including ATC information, meteorological condition, human factors, which will be bene�cial in
modeling the ATM socio-technical system and taking operational constraints into account.

Machine learning models are the most prevailing techniques in data-driven approaches. They have
solid and widely accepted mathematical foundations and can provide insights on the air tra�c dynamics
[4, 5, 6, 7, 8, 9, 10, 11, 12]. However, most prediction models have di�culties in handling 4D TP scenarios25

with high-complexity, multi-dimensions and high-nonlinearity. A well-performed prediction framework is
supposed to deal with outliers, missing, or noisy data [13]. In addition, some studies require complicated
preprocessing steps, which are trade-o�s between prediction performance and computational e�ciency, which
need to be weighed carefully. Furthermore, most current models lack generalizability and automaticity. They
are only applicable to one or a few ights, aircraft types, or departure/arrival procedures. If the problem is30

extended to other ights, airports, airspaces, or scenarios, the de�ned model architectures and parameters
need to be greatly modi�ed. Last but not least, the data used in some researches are not openly shared
due to security reasons and business interests. Some other ight data sources, e.g., Quick Access Recorder
(QAR) data, Flight Data Recorder (FDR) data, are not possible to implement real-time 4D TP.

The objective of this paper is to improve ETA prediction accuracy by means of data preprocessing35

and machine learning. The trade-o� between computational e�ciency and prediction performance is also
studied. Based on open historical ADS-B data of BCIA, 6 machine learning models are applied to predict the
Estimated Time of Arrival (ETA) of ights on the runway at the entry point of Terminal Manoeuvring Area
(TMA). Due to complex tra�c patterns, meteorological conditions, ATC command, and human behavior,
the entry point is one of the most challenging and important areas for ETA prediction. Besides, the40

information at the entry of TMA is of great interest to the controllers (ATCO). Several preliminary e�orts
have been made by authors. For example, [12] introduced an ETA trajectory prediction framework, including
clustering-based preprocessing and Multi-Cells Neural Networks (MCNNs). However, this model is not fully
automated. Firstly, only ights with the same magnetic orientation of the runway in use (QFU) can be
handled by the model. If ights with multiple QFUs are taken into account, the trajectories will overlap and45

mix, which will greatly bring di�culties for the clustering algorithm to extract meaningful tra�c patterns.
Secondly, hyperparameters need to be retuned if we generalize the model to other TMAs. As an extension
of [1], this paper re�nes and optimizes the preprocessing steps. In the prediction section, more prevailing
machine learning models are compared. Moreover, a more powerful ensemble learning strategy named
stacking is utilized in this study. As a result, a more powerful ETA prediction framework is proposed.50

The main contributions of this paper could be listed as the following:
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1. A re�ned preprocessing method is applied to handle more complicated tra�c patterns. It is robust and
generalizable. It is capable of processing 4D trajectory data of all landing ights in TMA, even with
outliers, missing points, and noise. Besides, the approach could be extended to other TMAs, without
manually tuning the hyperparameters. In addition, the preprocessing step is supposed to improve the55

prediction performance with very few computational complexities.
2. An automated ETA prediction model is developed to handle routine tra�c at the entry of TMA.

A comparative study is conducted for selecting the base learners from candidate machine learning
models. Furthermore, base learners and stacking strategies are utilized to deal with the highly-dense
arrival trajectories in TMA. The prediction framework is more complex, e�ective, and accurate than60

previous models.

2. Data Preprocessing

2.1. Data preparation
2.1.1. Airport and TMA

Beijing Capital International Airport (BCIA, ICAO: ZBAA) is selected as the study case. It is one of65

the busiest airports in the world, with three parallel runways: 18R/36L, 18L/36R, and 01/19. In 2017,
BCIA was the airport with the most irregular ights in China, reaching 87,300 [14]. According to the China
Electronic Aeronautical Information Publication (EAIP) [15], the lateral limits of Beijing TMA are plotted
as blue boundaries in Fig. 1. To illustrate the range of Beijing TMA more clearly, we draw green concentric
circles with radius from 10Nm to 70Nm.

Figure 1: the lateral limits of Beijing TMA

70

2.1.2. Data description
The data source of this study is ADS-B data, which is easily accessible and can provide accurate real-

time reports of aircraft's information. The dataset used throughout this study includes ADS-B records in
July 2017 that belong to Beijing TMA. Since the range of Beijing TMA is relatively small, Geographic
Coordinate System (GCS) can be projected into the Projection Coordinate System (PCS). Each record of75

ADS-B data contains the following information:
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� Type of operation (departure/arrival),

� Runway in use,

� Coordinated Universal Time (UTC) timestamp t,

� Flight number i ,80

� Position (X; Y; Z ),

� Heading H ,

� Horizontal ground speedVh

� Vertical ground speedVv

Here, each record with ight number i belongs to the same ight. The collection of all records for that ight85

forms the trajectory Ti , i = 1 ; :::; n, where n is the total number of trajectories in the raw dataset. In this
dataset, n = 12775.

2.1.3. Data volume
Unlike the dataset used in our previous work [12] that only considered a certain tra�c operational

direction, the dataset used in this study consists of all operational directions of arrival ights in Beijing90

TMA. Note that the runway in use information about each ight can be obtained from the ight plan.
Raw trajectories in these two studies are compared in Figure 2. In the previous model, the clustering

algorithm is suitable for handling trajectories of a speci�c QFU, for example, QFU-36, see Figure 2a.
However, It is di�cult to handle very complex and overlapping trajectories of multiple QFUs. The new
model used in this study will overcome the shortcoming of the previous model. It is able to handle multiple95

runway-in-use directions at the same time, both QFU-36 and QFU-18, see Figure 2b. These raw trajectory
data are much messier, and it is di�cult to observe obvious clusters. These ights can be seen as negative
contributing factors to the prediction task. Thus, it is a challenge to conduct an accurate 4D trajectory
prediction in Beijing TMA with classic approaches.

(a) Trajectories of QFU-36 (b) Trajectories of QFU-36 and QFU-18

Figure 2: Trajectories in the dataset of previous study and this study
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2.1.4. Data split100

The trajectories in the raw dataset are randomly split into two parts. Both parts account for 50%. The
�rst part is �rstly preprocessed with the following steps introduced in this section. The objective of the
�rst part is to select basic learners. Another 50% dataset is used for experiments on the stacked model and
other machine learning models.

2.2. Data cleaning105

The raw dataset is relatively messy. It even contains some unusual trajectories and missing values. These
outliers and inconsistent values can lead to misdirected predictions. Therefore, before making predictions,
cleaning the raw data is necessary. Data cleaning refers to identifying incomplete, incorrect, inaccurate,
or irrelevant parts of the data and then replacing, modifying, or deleting the dirty or coarse data. In this
paper, the raw dataset is �rstly cleaned according to the following criteria:110

2.2.1. Data receiving problem
When integrating multiple data sources, di�erent records of the same trajectory may be provided with

the same timestamp. In this case, we keep one of them. Besides, trajectories with very few recording points
were eliminated from the dataset. 50 points are set to be the threshold.

2.2.2. The landing points115

In order to get the Actual Time of Arrival (ATA), the �rst grounded point of each trajectory is regarded
as the landing point. The landing points of all trajectories are shown in Figure 3a. The landing points can
be clustered into 6 main partitions according to con�guration and region of runways through analysis. Most
landing points are along the runway. Nevertheless, due to the unstable receiving quality of ADS-B data,
some trajectories are not complete. Few landing points are out of runway. These incomplete trajectories120

account for nearly 2%, which have to be �ltered. Overall, the data validity rate reaches over 98%, which
ensures the quality of the dataset. The �ltered landing points are shown in Figure 3b. The 6 partitions
were labeled with magnetic orientations of runway-in-use. Centroids of each cluster are also calculated and
plotted. The results demonstrate that all incomplete trajectories can be successfully �ltered.

2.2.3. Transit time in TMA125

The transit time of an aircraft represents the elapsing time from entering the TMA to landing. After
data cleaning, the distribution of transit time of ights in terms of QFUs is respectively plotted in Figure
4. In each sub�gure, transit times are sorted in ascending order. For each magnetic orientation of landing,
It can be observed that very few ights have long transit time, accounting for about 1%. The trajectories
of these ights are further visualized in Figure 5. It can be seen that most trajectories include holding130

patterns, large vectors, go-around procedures. Though ETA prediction of outliers is also an important
topic, this research only focuses on typical behavior. In addition, the data size of outliers is not enough for
using data-driven techniques. As negative contributing factors for ETA predictions, these unrepresentative
ights are regarded as stochastic and irregular ights that need to be �ltered. In addition, for new inputs,
if the predicted transit time exceeds the threshold (1% longest transit time of corresponding QFU, listed135

in table 1). The prediction results cannot reect the actual performance and should be neglected. Figure
6 portrays the remaining 99% trajectories in terms of each QFU. It can be seen that these trajectories are
much more regular after removing noises. In addition, most entry points of QFU-18R, 18L, and 19 are
aggregated on the top, while the entry points of QFU-36L, 36R, and 01 are concentrated on the top. This
fact also proves that landing points clustering can improve data quality. In each QFU, most trajectories140

follow similar patterns, which could lead to better predictability.

2.2.4. Area of study
As illustrated in Figure 1, the nearest distance between entry points of TMA and runways of BCIA is

approximately 20 to 25 Nm, which is the maximum radius where all ights are present. Therefore the model
can take them all into account with this choice of area. The trajectory points between 2 circles with a radius145
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(a) Landing points before �ltering

(b) Landing points after �ltering

Figure 3: Landing points before and after �ltering in terms of QFUs in Beijing TMA

of 20 NM and 25 NM are kept. In addition, in order to introduce more valuable time-dependent features in
the following section, we also keep a few points before each trajectory point. According to the experience,
the previous 4 points are set to be kept.
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Figure 4: Distribution of transit time of di�erent QFUs in Beijing TMA

Table 1: Transit time threshold of di�erent QFUs in Beijing TMA

QFU Transit time threshold (s)

18R 1068
18L 1286
19 1190
36L 1080
36R 1340
01 1336

2.2.5. Missing points estimation
The update interval is referred to as the time interval between succeeding reports. Through analysis150

of the ADS-B dataset, nearly 98.9% update frequency is within 10 seconds, but only 72.5% update fre-
quency is within 2 seconds. To estimate the missing information and to enrich the dataset, piecewise linear
interpolation is employed for estimation.

Given N + 1 real numbers yi , 0 � i � N , and N + 1 distinct real numbers x0 < x 1 < ::: < x N , we
consider the N linear curves l i (x) = ai x + bi on the intervals [x i ; x i +1 ] for i = 0 ; :::; N � 1. Each l i (x) has
to connect two points (x i ; yi ) and (x i +1 ; yi +1 ) according to the following equations:

yi = ai x i + bi (1)

yi +1 = ai x i +1 + bi (2)

For all attributes in the dataset, the update interval is upsampled to 1 second.

2.3. Feature engineering155

2.3.1. Feature selection
In our previous research [1], for timestampt, only the information of one trajectory point ( X t ; Yt ; Z t ; H t ,

Vh;t ; Vv;t ) is contained in each input. Although fewer numbers of features can accelerate the training process
of the prediction model, they also increase the uncertainty and may lead to satisfactory results. More
speci�cally, there are no speci�c rules to exactly calculate the position, heading and speed of a ight at a160

given time. Only one trajectory point is di�cult to represent the current state. To this end, we introduce
features at each trajectory point and its previousM points. The choice ofM is a trade-o�, as the longer time
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Figure 5: Trajectories of ights with top 1% longest transit time of di�erent QFUs in Beijing TMA

Figure 6: with other 99% trajectories of di�erent QFUs in Beijing TMA

passes, the less important the information becomes. According to experience,M is set to be 4. Therefore,
the feature vector becomes (X t � 4; Yt � 4; Z t � 4; H t � 4; Vh;t � 4; Vv;t � 4; :::; X t ; Yt ; Z t ; H t ; Vh;t ; Vv;t ).
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2.3.2. Feature scaling165

The selected features have di�erent units, for instance, Nm, Knot, Deg, making their magnitudes di�er-
ent. If left alone, each feature would be directly put into the prediction model, neglecting their units. This
will make the objective functions of most machine learning models work less e�ectively. To this end, we
scale the features for all attributes. Given attribute vector a, the transformation is de�ned as follows:

a� =
a � Median(a)

IQR( a)
(3)

where Median(a) returns the median value of a. IQR( a) stands for the interquartile range of a. That is,170

the di�erence between �rst quartile Q1 and third quartile Q3 of a. This scaler is also called a robust scaler,
as it is robust to outliers.

3. ETA Prediction models

The goal of this section is to predict the ETA of aircraft at the entry of TMA. This is a regression
problem. The idea is to approximate the mapping function h from input vector x 2 RD in the input space175

X to the corresponding output vector t 2 R in the output space Y :

t = h(x) + � (4)

where � is random noise.
The prediction framework is illustrated in Figure 7. Firstly, we propose Nm prevailing machine learning

models as candidates. On the �rst 50% dataset, nested cross validation is conducted on each model to
tune the hyperparameters and to evaluate the prediction performance. To decrease the computational180

burden, the number of base learnersM m is less than that of candidate machine learning modelsNm . The
�rst M m machine learning models with the smallest prediction errors are selected as base learners. The
hyperparameters of these base learners are also tuned to be optimal. Then,M m base learners are ensembled
by a speci�c strategy called stacking, which will be introduced detailly in section 3.3. It is a great challenge
to select the hyperparameters for each individual model in the stacked model. That's why we conduct this185

process when selecting the base learners. The stacked model is trained by the rest 50% dataset and then
make predictions of ETA. A comparative study is also performed on this dataset.

3.1. Machine learning candidate models

In order to get the optimal prediction performance, we �rstly propose Nm prevailing machine learning
models as candidates. They are described in table 2 andNm = 6. Then, a comparative study is conducted on190

the dataset generated in section 2 to selectM m base learners. In order to increase computational e�ciency
without degrading prediction performance, M m is set to 3.

Table 2: Machine learning candidates models

Type Algorithm

Linear Multiple Linear Regression (MLR)

Non-Linear
Feed-Forward Neural Networks (FFNNs)
K-Nearest Neighbors (KNN)

Ensemble
Gradient Boosting Machine (GBM)
Random Forests (RF)
ExtraTrees (ET)

9



Figure 7: ETA prediction framework based on data cleaning and machine learning

3.1.1. Multiple Linear Regression
Multiple Linear Regression (MLR) is one of the most classical machine learning models. It aims to

estimate the function f (�) under linear assumption. Given multiple independent variablesx0; x1; :::; xD ,195

where x0 = 1, then the output can be estimated as:

y(x; w) =
DX

d=1

wdxd + w0 (5)

where w = ( w0; w1; :::; wD )T are weights.
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To prevent over�tting, the error function is chosen as the modi�ed form and calculated on the training
set S = f (x1; t1); :::; (xN ; tN )g:

L (w) =
1
2

NX

n =1

(y(xn ; w) � tn )2 +
�
2

kwk2 (6)

Where � is the regularization term. This particular case with a quadratic regularizer is also known as ridge200

regression [16].
The optimal w � is given by the least-squares method:

w � = ( X T X + �I D ) � 1X T t (7)

where t = ( t1; :::; tN )T and

X =

0

B
B
B
B
@

1 xT
1

1 xT
2

...
...

1 xT
N

1

C
C
C
C
A

3.1.2. Feed-Forward Neural Networks
In these experiments, a speci�c class of NNs is introduced to approximate the functionf (�), referred to

as Feed-Forward Neural Networks (FFNNs), which is one of the most quintessential deep learning models.
FFNNs have an input layer, L hidden layersh(1) ; :::; h(L ) (L � 1), and an output layer. Given input vectors
x = ( x1; :::; xD )T , the output y(x; w) is expressed as follows:

h(1) = � (1) (w (1) >
x) (8)

h( l ) = � ( l ) (w ( l )>
h( l � 1) ); l = 2 ; :::; L (9)

y(x; w) = 	( w (L +1) >
h(L ) ) (10)

Where w (1) , w ( l ) (l = 2 ; :::; L ), w (L +1) are respectively weights assigned to the connections between
input layer and �rst hidden layer, between ( i � 1)-th hidden layer and i -th hidden layer, and betweenL-th
hidden layer and output layer. � ( l ) is the activation function applied to the weighted output of the i -th layer
of NNs. 	 is the function applied to the weighted sum of the activations of the last hidden layer. Note that
if L = 1, DFNNs degenerate to shallow neural networks with 1 hidden layer. Frequently used � including
Recti�ed Linear Unit (ReLU) function, hyperbolic tangent (tanh) function and sigmoid function, which are
respectively de�ned as follows:

� ReLU (x) = max(0 ; x) (11)

� tanh (x) =
ex � e� x

ex + e� x (12)

� sigmoid (x) =
1

1 + e� x (13)

	 is the identity function:
	( z) = z (14)

The error function on a training set T is de�ned as follows:205

L i (w) =
X

(x ;t )2 T

(yi (x ; w) � t)2 + �
X

l



 w ( l )





2

2
(15)
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where � is the regularization coe�cient. A properly selected � can avoid over�tting.
The backpropagation method was used to compute the gradient of the error function, and Adam [17] was

used to minimize the error between our predictions of ETA and the ATA. We used an algorithm commonly
known as reduce the learning rate on plateauto reduce the learning rate when a metric stopped improving
[18]. The learning rate can be adaptively adjusted by this algorithm and need not be tuned. In this paper,210

the initial learning rate is set to be 0.1. The learning rate will be reduced by a factor of 0.5 once there is no
improvement of the error on the training set for 10 epochs. After the learning rate has been reduced, wait
for 10 epochs before resuming normal operation. The lower bound on the learning rate is 10� 4. All layers
of each NNs are �ne-tuned with 1000 epochs of training. All these methods were implemented in PyTorch
[19].215

3.1.3. K-Nearest Neighbors
K-Nearest Neighbors (KNN) [20] is a lazy learning algorithm, in which the prediction is made locally on

the delayed training set. In the regression analysis, KNN approximates the target by local interpolation of
the nearest neighbors in the training set. The pseudocode of KNN is given in Algorithm 1.

Algorithm 1 KNN for regression
Input:

X : Input of the training set, in RN � D

Y : Output of the training set, in RN � 1

x: New input vector, in RD

Output:
y: Output of x, in R

1: procedure KNN Regression (X , Y , x)
2: for n = 1 to N do
3: Compute distanced(X n ; x)
4: end for
5: NK  K -NN of x according to f d(X n ; x)g1� n � N

6: y  
P

n 2 N K
Y n w(d(X n ; x))

7: return y
8: end procedure

The distance metric of KNN describes feature similarity. It is commonly set as Minkowski distance:220

d(m; n) =

0

@
DX

j =1

�
�mj � nj

�
�p

1

A

1=p

(16)

where m; n are vectors in RD , p is the order. For example, whenp = 2, the distance corresponds to the
Euclidean distance. w(�) is the weight function. This function has two frequently used types: uniform
weighting and inverse distance weighting.

Uniform weighting function assuming all neighbors are weighted equally:

w(d(X n ; x)) =
1

card(NK )
; 8n 2 NK (17)

where card(�) assigns the cardinality of a set.225

Inverse distance weighting function weighs neighbors by the inverse of their distance:

w(d(X n ; x)) =
1=d(X n ; x)

P
m 2 N K

1=d(X m ; x)
; 8n 2 NK (18)
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3.1.4. Gradient Boosting Machine
Gradient Boosting Machine (GBM) is a famous ensemble learning method [21]. It can be viewed as

iterative functional gradient descent algorithms, which produces a prediction model formed by an ensemble
of weak prediction models, typically tree-based models. Gradient Boosting Decision Tree (GBDT) is a230

frequently used boosting type of GBM. Other methods include Dropouts meet Multiple Additive Regression
Trees (DART) [22], Gradient-based One-Side Sampling (GOSS) [23]. The advantage of GBM is that even
missing data can be handled. Besides, all di�erentiable loss function can be applied, making the model more
exible and more resistant to noise.

Given a training set f (x1; t1); :::; (xN ; tN )g and expected number of weak learnersM , where xn 2 RD ,235

GBM learns weak learners incrementally. Initializing the model with a di�erentiable loss function L(�; �):

F0(x) = arg min


NX

n =1

L(tn ;  ) (19)

Then the m-th weak learner hm (�) is trained by set f (x1; r 1m ); :::; (xN ; rNm )g, where m = 1 ; :::; M , and

r nm = �
�

@L(tn ; F (xn ))
@F(xn )

�

F (x )= Fm � 1 (x )
; n = 1 ; :::; N (20)

r nm is also known as pseudo-residuals. Then the prediction model is updated by the following equation:

Fm (x) = Fm � 1(x) +  m hm (x) (21)

where the multiplier  m is computed by:240

 m = arg min


NX

n =1

L
�
yn ; Fm � 1(xn ) + h m (xn )

�
(22)

3.1.5. Random Forests
Random Forests (RF) [24] are a popular tree-based ensemble learning method. They are a combination

of tree predictors such that each tree in the forest depends on the values of a random vector sampled
independently and with the same distribution. By combination of weak learners, a stronger learner is
generated.245

As an ideal candidate and an extended variant for bootstrap aggregating (bagging) algorithm, the idea
in RF is to improve the variance reduction of bagging by reducing the correlation between the trees, without
increasing the variance signi�cantly. Because of the law of large numbers, over�tting is seldom seen in RF
with a su�cient data. Based on tree models, RF is also robust to outliers.

The pseudo-code of RF is given in Algorithm 2 [25].250

3.1.6. ExtraTrees
ExtraTrees (ET) is very similar to RF, in that it is also a popular tree-based model and belong to

ensemble learning algorithms [26]. There are essentially 2 main di�erences:

1. RF performs bagging, but ET uses all the training samples to train each decision tree. In other words,
each decision tree is trained on the same training samples.255

2. RF selects the "best split" in a random subset. However, ET makes a small number of randomly
chosen split value, then yield the best split from all the randomly generated splits. Such splitting
makes ET more random than RF.

For better comparison with RF, the special splitting technique of ET is described in Algorithm 3.
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Algorithm 2 RF for regression
Input:

X : Input of the training set, in RN � D

Y : Output of the training set, in RN � 1

x: New input vector, in RD

Output:
y: Output of x, in R

1: procedure RF Regression (X , Y , x)
2: for i = 1 to L do
3: Draw a bootstrap sampleDb with replacement of sizeNb from training data D = ( X ; Y )
4: Build regression treeTi on Db, by recursively repeating the following steps for each terminal node

of the tree, until the minimum node size nmin is reached:

1. Selectm variables at random from the D variables.
2. Pick the best variable among them.
3. Split the node into two daughter nodes.

5: end for
6: y  1=L

P L
i =1 Ti (x)

7: return y
8: end procedure

Algorithm 3 ET splitting
Input:

S: The local learning subset
Output:

A: split [ a < a c] or void
1: procedure Split A Node (S)
2: if jSj < n min or all attributes are constant in S or The output is constant in S then
3: return
4: else
5: SelectK attributes f a1; ::; ak g among all non constant candidate attributes in S.
6: for i = 1 to K do
7: aS

i; max = max
a2 S

(a); aS
i; min = min

a2 S
(a)

8: Draw a random split-point ac uniformly in [ aS
i; max ; aS

i; min ]
9: si = [ a < a c]

10: end for
11: Score(s� ; S) = max

i =1 ;::;K
Score(si ; S)

12: return s�

13: end if
14: end procedure

3.2. Hyperparameter tuning and base learners selection260

After introducing candidate machine learning models, hyperparameter tuning and base learners selec-
tion are conducted subsequently. These steps are shown in the left part of Figure 7, the ETA prediction
framework.

In order to well select the hyperparameters and to achieve an unbiased performance of machine learning
models, Nested Cross Validation (NCV) is proposed. It corresponds to the blue box on the left side of Figure265

7. It consists of the outer loop and the inner loop. AK 1-fold cross validation splits the dataset S into K 1

subsetsSi , i 2 f 1; :::; K 1g. For each outer iteration i , K 1 � 1 folds S� i = SnSi act as training sets and one

14



fold Si is test set. Then, there is anotherK 2-fold cross validation, which will further split the training sets
S� i into K 2 subsetsS� i;j , j 2 f 1; :::; K 2g. For each inner iteration j , K 2 � 1 folds S� i nS� i;j play the part
of training sets and the remaining fold S� i;j is validation set. The purpose of the inner loop is to select270

hyperparameters, and the outer loop aims to assess the model's performance.
Taking K 1 = 5, K 2 = 5, the proportion of training sets, validation sets and test is set as 64%=16%=20%.

Figure 8 illustrates the trajectory points of the training, validation, and test set of a possible cross validation
fold in terms of QFUs. It can be seen that these trajectory points are between 20 and 25 Nm away from
corresponding runways of BCIA. This fact proves that the spatial distribution of these sets is as close as275

possible, which helps to avoid training unbalanced models.

Figure 8: Trajectories in a possible fold of training, validation and test set in terms of QFUs

The random search algorithm is used for hyperparameter tuning in the inner CV. The idea of random
search is to draw the hyperparameter independently from a probability distribution in the grid or range of
hyperparameters. It is proved to be much more e�cient than the classical grid search algorithm, especially
in high-dimensional search space [27]. The random search is conducted 64 times for each model. The280

grids or ranges of hyperparameters and their probability distributions are presented in table 3. Other
hyperparameters not in this table are set to default values.

The selection of base learners corresponds to the black box on the left side of Figure 7. To select theM m

base learners for stacking amongNm candidate models, some performance metrics are proposed to compare
their prediction performances. The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
are used as the error measures:

MAE =
1
N

NX

i =1

jŷi � yi j (23)

RMSE =

vu
u
t 1

N

NX

i =1

(ŷi � yi )
2; (24)

where ŷi is the i -th predicted value of ETA and yi is the i -th observed value of ETA.
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Table 3: Hyperparameters optimized in random search

Method Hyperparameter Range or grid Distribution

MLR � [10� 5; 10] log-uniform

FFNNs
M f 2; 3; :::; 10g [ f 16; 32; 64; 128g uniform
loss function f 'MAE', 'MSE' g uniform
� f 'ReLU', 'tanh', 'sigmoid' g uniform

KNN
K f 1,2,...,20g uniform
weight function f 'uniform', 'inv distance'g uniform
p c f 1,2,3,4,5,6g uniform

GBM

boosting type f 'GBDT', 'GOSS', 'DART' g uniform
max number of leavesf 10, 20, ..., 100g uniform
fraction of bagging f 0.5, 0.7, 0.8, 0.9g uniform
fraction of feature f 0.5, 0.7, 0.8, 0.9g uniform
loss function f 'MAE', 'MSE' g uniform

RF
number of estimators f 10, 20, ..., 100g uniform
max features [1, 2, 4, 8, 16, 32, 64, 128] uniform
loss function f 'MAE', 'MSE' g uniform

ET Same as RF
a w kernel is 'poly'.
b Only used when kernel is 'rbf', 'poly' or 'sigmoid'.
c Only used when weight function is 'inv distance'.

For each QFU, the cost function of i -th candidate model is de�ned as follows:

L (i ) = � MAE i + � RMSEi (25)

where � and � are weights for di�erent performance metrics. In this paper, MAE is considered to be as285

important as RMSE. Therefore, � and � are set to be equal. Then we select theM m minimum value among
L(i ); i = 1 ; :::; Nm . These models are selected as the base learners for stacking in each QFU.

3.3. Model stacking

To further improve the prediction performance, the ensemble learning technique is proposed. Its main
concept is to combine multiple models with a certain strategy to achieve better results than any individual290

model. More speci�cally, stacking [28] will be used in this study. Stacking can be regarded as a speci�c
combination method that is combined by learning. Stacking �rst trains the �rst-level learners (individual
learners) using the original dataset, and then generates a new dataset for training the second-level learner
(combiner). In this new dataset, the output of the �rst-level learners is considered as input features, while the
original output is still treated as output. In our case, individual learners are heterogeneous. The pseudocode295

of stacking is shown in Algorithm 4.
As illustrated in the right side of Figure 7, we use 2-layers stacking. In the �rst level of stacking with

the i -th base learner, the dataset for stacking is �rstly split into the training set (80%) and test set (20%).
To avoid over�tting, the training set will be further split into new training sets and new test sets, similar
to K -fold cross validation. The i -th base learner is trained from the new training set (in yellow) and makes300

predictions both on the new test sets (in red) and the initial test set (in blue). Then, the combined predicted
values of new test sets are considered as training data, and the averaged predicted values of the initial test
set are set to be test data. After concatenatingi -th training and test data from i = 1 to M , we obtain the
dataset for the second level of stacking. Conducting the same steps as the �rst layer, the dataset for the
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Algorithm 4 Stacking
Input:

S = f (x1; y1); (x2; y2); :::; (xN ; yN )g: Training set
L1;:::;M : M Base learners
L: Meta learner

Output:
H (x): Prediction output

1: procedure Stacking (S, L1;:::;M , L)
2: for m = 1 to M do
3: hm = Lm (D )
4: end for
5: D � = ?
6: for n = 1 to N do
7: for m = 1 to M do
8: znm = hm (xn )
9: end for

10: D � = D � [ ((zn 1; zn 2:::; zn M ); yn )
11: end for
12: h� = L(D � )
13: H (x) = h� (h1(x); :::; hM (x))
14: return H (x)
15: end procedure

next level of stacking is generated. The �nal averaged output of the test data, which is the prediction of305

ETA, can be obtained by making use of the best base learners.

3.4. Performance evaluation

The performance evaluation of this study involves the evaluation of the e�ect of data preprocessing and
stacking on ETA prediction. The performance metrics used are MAE and RMSE.

Firstly, The error measures of candidate machine learning models on the un-preprocessed dataset are310

computed. To evaluate the bene�ts of data preprocessing, for each prediction model, the overall performance
metrics on the preprocessed dataset are computed using the prediction results of each QFU:

MAE =
NumX

i =1

pi MAE i (26)

RMSE =

vu
u
t

NumX

i =1

pi (RMSE i )2 (27)

where Num = 6, which is the total number of QFU. pi is the proportion of ights for each QFU.
Next, the prediction performance of candidate machine learning models and the stacked model on the

dataset for stacking will be evaluated and compared.315

4. Experiment results and discussion

As mentioned before, the dataset for selecting base learners are used to evaluate the e�ect of data
preprocessing and to select candidate machine learning models. The proportions of ights for each QFU are
analyzed and presented in table 4.
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Table 4: The proportions of ights for each QFU in the dataset for selecting base learners and for stacking

QFU
Percentage

For selecting base learners For stacking

18R 21.32% 24.44%
18L 4.21% 3.23%
19 9.51% 5.40%

36L 23.72% 28.69%
36R 15.09% 13.03%
01 26.14% 25.21%

Table 5: ETA prediction results in terms of each QFU on the preprocessed dataset for selecting base learners

Models
QFU-18R QFU-18L QFU-19

MAE (s) RMSE (s) MAE (s) RMSE (s) MAE (s) RMSE (s)

MLR 48.81 73.86 75.68 125.84 80.44 104.47
FFNNs 44.90 71.74 74.69 135.84 76.91 110.00
GBM 44.02 67.40 63.68 101.69 75.35 99.83
KNN 58.92 85.35 75.90 109.53 83.92 110.36
RF 50.21 78.03 77.06 147.84 78.26 104.75
ET 49.45 76.34 73.71 135.82 73.06 97.37

Models
QFU-36L QFU-36R QFU-01

MAE (s) RMSE (s) MAE (s) RMSE (s) MAE (s) RMSE (s)

MLR 47.86 64.62 68.30 97.66 85.45 154.18
FFNNs 35.67 55.12 54.29 86.08 58.01 122.19
GBM 36.90 52.86 58.97 97.30 64.38 110.16
KNN 51.53 72.64 75.55 116.57 86.34 139..05
RF 38.99 60.90 61.34 101.52 68.05 161.25
ET 38.26 58.60 59.48 96.36 67.04 157.11

We then evaluate the ETA prediction performance of 6 proposed candidate machine learning models on320

the preprocessed and un-preprocessed dataset.
The prediction results of candidate machine learning models for 6 QFUs are summarized in table 5. The

best MAE and RMSE value of each QFU is bolded. The second and third best performance metrics are
bolded and colored in gray. Among these candidate models, FFNNs are the best model in 3 QFUs, GBM
has the best performance in 2 QFUs, and ET performs best in only one of the QFU. KNN performs the325

worst. In addition, for all QFUs, FFNNs and GBM are in the top 3 best models. MLR occasionally has
good performance. According to the loss function, FFNNs, GBM, and ET are selected as the base learners
for QFU-18L, QFU-19, QFU-36L, QFU-36R, and QFU-01. MLR, FFNNs, and GBM are selected as the
base learners for QFU-18R. Note that, during the nested cross validation, hyperparameters of these models
are optimized and are utilized in the stacked model.330

The error metrics of the candidate models on the preprocessed and un-preprocessed dataset are shown
in Table 6. After preprocessing the dataset, the predictions of all candidate models become much more
accurate, especially for MLR. It can be seen that the prediction of MLR is not satisfying on the raw dataset.
However, The preprocessing step greatly improves its prediction accuracy. Though MLR is a linear model,
Its predictive performance is even close to other complex machine learning models in the un-preprocessed335

dataset. This fact proves that data preprocessing proposed in this study could greatly improve the quality
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Table 6: Overall ETA prediction results on the preprocessed and un-preprocessed dataset for selecting base learners

Models
Preprocessed dataset Un-preprocessed dataset

MAE (s) RMSE (s) MAE(s) RMSE (s)

MLR 65.25 107.30 88.96 131.15
FFNNs 51.86 93.64 57.61 108.41
GBM 53.71 87.27 55.85 90.88
KNN 69.94 107.58 78.38 125.55
RF 57.69 111.78 60.70 119.97
ET 56.18 107.66 58.27 109.53

of raw data and boost the prediction accuracy. It is also robust to outliers, missing data, and noise.
Then, the overall ETA prediction performance is analyzed on the dataset for stacking. Similar to the

previous steps, the prediction results in terms of each QFU are summarized, and the overall prediction results
are calculated according to the proportions of ights for each QFU, depicted in table 4. In this way, the340

prediction results of all candidate machine learning models and the stacked model are summarized in Table
7. The minimum error metrics for each QFU is bolded. Thanks to data preprocessing, the ETA prediction
results of all models seem satisfying. More speci�cally, it can be observed that the e�ect of stacking in this
prediction task is signi�cantly positive. In comparison with other candidate models, the stacked model has
the minimum prediction error for all QFUs, except for QFU-01. Though the performance improvement of a345

few QFUs is not obvious, for most QFUs, the stacked model reduces the MAE by nearly 2 seconds and the
RMSE by over 3 seconds. This fact reveals that stacking is more capable of extracting hidden information
in the ETA prediction task.

Table 7: ETA prediction results of candidate machine learning models and stacked model on the dataset for stacking

Models
QFU-18R QFU-18L QFU-19

MAE (s) RMSE (s) MAE (s) RMSE (s) MAE (s) RMSE (s)

MLR 49.77 68.72 65.15 91.69 74.63 100.17
FFNNs 44.35 62.86 51.82 71.40 70.75 97.54
GBM 44.92 63.86 74.74 99.48 68.46 89.14
KNN 53.98 75.52 109.02 290.13 80.53 106.36
RF 47.87 68.51 95.39 223.08 75.43 98.57
ET 47.60 67.21 88.61 183.57 73.82 96.54
Stacked model 44.26 62.84 49.62 67.18 66.25 87.98

Models
QFU-36L QFU-36R QFU-01 Total

MAE (s) RMSE (s) MAE (s) RMSE (s) MAE (s) RMSE (s) MAE (s) RMSE (s)

MLR 47.27 64.64 69.92 112.94 79.65 126.31 61.03 94.07
FFNNs 36.06 56.72 51.83 109.38 67.04 124.20 50.32 89.52
GBM 36.29 57.82 56.22 118.12 61.79 113.02 50.38 87.98
KNN 47.55 70.71 70.21 146.46 73.99 125.91 62.48 113.79
RF 39.51 61.69 62.76 135.67 68.88 120.09 55.71 102.00
ET 39.17 60.42 57.29 116.68 66.11 118.00 53.83 95.00
Stacked model 35.31 55.45 48.45 104.97 61.23 113.42 47.86 84.19
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5. Conclusion

In this paper, a novel automated data-driven ETA prediction framework is presented, implemented, and350

experimented. Based on open historical ADS-B data of BCIA, the proposed framework mainly consists of
data preprocessing and machine learning prediction models. The data preprocessing is capable of processing
dense 4D trajectory data of all arrival ights in TMA and handling complicated tra�c patterns. It even can
be extended to other TMAs without manually tuning the hyperparameters. The experiments were �rstly
performed on the dataset for selecting base learners, using candidate machine learning models with nested355

cross validation. A comparative study on the preprocessed and un-preprocessed dataset is conducted and
proves that the proposed preprocessing steps are robust in dealing with outliers, missing points, and noises.
It could greatly improve the accuracy of ETA prediction. The base learners for each QFU are selected and
their hyperparameters are determined. Furthermore, an ensemble learning strategy stacking is introduced.
The concept of stacking is to combine well-performed individual models with certain strategies. The result360

proves that the stacked model outperforms other individual models both in terms of accuracy and stability.
In future work, we will extend our approach to other TMAs, and make ETA prediction on larger datasets

with more special scenarios. In addition, the prediction of ETA on irregular ights should be studied as
well.
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