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Abstract
In the case of deep dense neural networks, un-
der random noise attacks, we propose to study
the probability that the output of the network de-
viates from its nominal value by a given thresh-
old. We derive a simple concentration inequal-
ity for the propagation of the input uncertainty
through the network using the Cramer-Chernoff
method and estimates of the local variation of the
neural network mapping computed at the train-
ing points. We further discuss and exploit the re-
sulting condition on the network to regularize the
loss function during training. Finally, we assess
the proposed tail probability estimate empirically
on three public regression datasets and show that
the observed robustness is very well estimated by
the proposed method.

1. Introduction
Deep neural networks have been found to be very sensi-
tive to data uncertainties (Fawzi et al., 2017; Szegedy et al.,
2014) to the point that a whole research community is now
addressing the so-called network attacks. Attacks may be
random, when data are corrupted by some random noise or
may be adversarial, when the noise is specifically designed
to alter the network output (Szegedy et al., 2014). In this
article, we will focus on the random case. Most data are
usually uncertain, either because the data are related to nat-
urally noisy phenomenon and we only have access to some
of its statistics or because assessing devices to do not have
sufficient accuracy to record precisely the data.
Most people have addressed the problem of robustness to
bounded input perturbations through the use of regulariza-
tion techniques (Gouk et al., 2018; Oberman & Calder,
2018; Virmaux & Scaman, 2018; Finlay et al., 2018). The
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main idea is to consider the neural network as a Lipschitz
map between the input and output data. The Lipschitz con-
stant of the network is then estimated or upper bounded by
the norm of the layer-by-layer weights product. This es-
timates the expansion or contraction capability of the net-
work and is then used to regularize the loss during training.
Often, there is a price to pay: the expressivity of the net-
work may be reduced, especially if the weights are too con-
strained or constrained layer by layer instead of constrained
accross layers (Couellan, 2019). Such strategies are enforc-
ing robustness but do not provide guarantees or estimates
on the level of robustness that has been achieved. In the
case of adversarial perturbation, some authors have pro-
posed methods for certifying robustness (Kolter & Wong,
2017; Boopathy et al., 2018). Recently, a probabilistic ap-
proach has also been proposed in the case of random noise
for convolutional neural networks (Weng et al., 2019). The
authors derive probabilistic bounds based on the idea that
the output of the network can be lower and upper bounded
by two linear functions. The work proposed here is along
the same line but distinct in several aspects. It combines
upper bounds on tail probabilities calculated by deriving a
specific Cramer-Chernoff concentration inequality for the
propagation of uncertainty through the network with a net-
work sensitivity estimate based on a network gradient cal-
culation with respect to the inputs. The network gradient
is computed by automatic differentiation and estimates the
local variation of the output with respect to the input of the
network. The estimation is carried out and averaged over
the complete training set. A maximum component-wise
gradient variation is also calculated in order to give prob-
abilistic certificates rather than estimates. The certificates
can be used in place of estimates whenever guaranteed up-
per bounds are needed, however they are often not as ac-
curate since they are based on variation bounds rather than
averages. We then discuss the use of the derived bounds
and estimates in the design of deep robust neural networks
and conduct experiments in order to assess the robustness
probabilitic estimates for various regularization strategies.



Probabilistic Robustness Estimates for Deep Neural Networks

2. Probabilistic certificates of robustness
Consider feed-forward fully connected neural networks
that we represent as a successive composition of lin-
ear weighted combination of functions such that xl =
f l((W l)>xl−1 +bl) for l = 1, . . . , L, where xl−1 ∈ Rnl−1

is the input of the l-th layer, the function f l is the Lf -
Lipschitz continuous activation function at layer l, and
W l ∈ Rnl−1×nl and bl ∈ Rnl are the weight matrix and
bias vector between layer l − 1 and l that define our model
parameter θ = {W l, bl}Ll=1 that we want to estimate dur-
ing training. The network can be seen as the mapping
gθ : x0 → gθ(x

0) = xL. The training phase of the net-
work can be written as the minimization of the empirical
loss L(x, y, θ) = 1

n

∑n
i=1 lθ(gθ(xi), yi) where lθ is a mea-

sure of discrepancy between the network output and the
desired output.
Assume now that we only have access to noisy observations
xi of the input sample. However, we know that these obser-
vations are drawn from a distributionD with finite support.
We first consider the special case where the functions fl are
linear or piece-wise linear (this includes the case of ReLu
activation functions) and then extend the analysis to more
general functions.
We first consider the one layer simple case where the out-
puts of the network y = xL (with L = 1 in this case)
depends linearly of the inputs x = x0 ∈ Rn as follows:
w>x+ b where w = W 1 is the single layer weights vector
and b = b1 is the layer bias.
We assume that our input observations are corrupted by
some additive noise ε such that ε ∼ D and ∀i = 1, . . . , n,
we have εi ∈ [−γ, γ] with γ < +∞. Our objective is to
ensure the following property:

Pε∼D (‖y − yε‖ ≤ Γ) ≥ 1− α (1)

where yε = w>(x+ ε) + b, Γ is the allowed output uncer-
tainty and 1− α is some predefined level of confidence.
In the following proposition, we give a condition on w that
will ensure, with probability greater than 1 − α, that the
output uncertainty remains below Γ.

Proposition 2.1 If the network inputs are subject to an ad-
ditive uncertainty ε where ∀i = 1, . . . , n, εi ∼ D and
supp(D) ∈ [−γ, γ] (γ < +∞), then for a given α ∈ [0, 1]
and a given output uncertainty level Γ, the following con-
dition holds:
If the layer weights vector w satisfies ‖ww>‖F ≤

Γ2

γ2
√

2 log(1/α)
, then Pε∼D (‖y − yε‖ ≤ Γ) ≥ 1− α.

(the proof of Proposition 2.1 is provided in Appendix A).
We now address the case where the network is composed of
several layers l = 1, . . . , L with linear or piece-wise linear
activation functions. Let W =

∏L
l=1W

l. Property (1)

should now relate to the output of the last layer as follows:

Pε∼D
(
‖xL − xLε ‖ ≤ Γ

)
≥ 1− α (2)

where xLε is the output of the layer L when a noisy input
x0
ε = x0 + ε is propagated through the network and ε is the

additive input noise such that ε ∼ D and ∀i = 1, . . . , n,
we have εi ∈ [−γ, γ] (γ < +∞). With this setting, we can
now state and prove the following:

Proposition 2.2 If the network inputs are subject to an ad-
ditive uncertainty ε where ∀i = 1, . . . , n, εi ∼ D and
supp(D) ∈ [−γ, γ] (γ < +∞), then for a given α ∈ [0, 1]
and a given output uncertainty level Γ, the following con-
dition holds:
If the layer weights vector w satisfies

∥∥WW>∥∥
F
≤

Γ2

γ2
√

2 log(1/α)
then Pε∼D

(
‖xL − xLε ‖ ≤ Γ

)
≥ 1− α.

(the proof of Proposition 2.2 is provided in Appendix A).
The bound derived above relies on the following inequality
(see (8) in Appendix A for multilayer architectures):

Pε∼D
(
‖xL − xLε ‖ ≤ Γ

)
≥ Pε∼D

[
tr
(
εε>WW>

)
≤ Γ2

]
(3)

The Chernoff bound proposed above may be tight with re-
spect to the right hand side of the above inequality, how-
ever, with respect to the left hand side, (3) is not tight in
general as the deep complex layer structure of the neural
network generates a highly non linear behavior. The lin-
ear upper bound is often of poor quality. To address this
issue, we propose an alternative to estimate the variation
of the neural network response. Without loss of generality,
in the following, we will consider that the network output
is 1-dimensional. Since ‖ε‖ may be considered small with
respect to the magnitude of the network inputs, we are in-
terested in the local behavior of the network output that we
will approximate as follows:

xLε − xL = F (x+ ε)− F (x) ' ∇xF (x)>ε (4)

where F (x) = fL((WL)>fL−1(. . . f0((W 0)>x+ b0)) +
bL−2) + bL−1) and ∇xF is the gradient of F with respect
to the network input x.
The linear approximation (4) is only local but its advan-
tage is that it can easily be evaluated at many x val-
ues. Indeed, while visiting all input vectors x during
training, this information is usually available at a very
low extra computational cost through automatic differen-
tiation in most training computer algorithms and pack-
ages for neural networks (such as TensorFlow (Abadi
et al., 2015) and Pytorch (Paszke et al., 2017)). There-
fore, from local estimates at various training points x0

i for
i = 1, . . . , n, we calculate two n0-dimensional vectors of
network variation estimates ∇̂xF such that

(
∇̂xF

)
k

=
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sign
((
∇xF (x0

ik
)
)
k

)
× vk and ∇xF =

1

n

n∑
i=1

∇xF (x0
i )

where vk = maxi∈{1...,n}
∣∣(∇xF (x0

i )
)
k

∣∣ and ik =

argmaxi∈{1...,n}
∣∣(∇xF (x0

i )
)
k

∣∣.
The quantity ∇̂xF accounts for the maximum variation of
the network response in every component direction of the
network input encountered during the training and gives
therefore a tighter linear upper bound than W when in-
put data are part of the training set. The quantity ∇xF
does not provide a linear upper bound but estimates an av-
erage linear behavior of the network response that can be
used in practice to estimate the required Γ value to reduce
Pε∼D

(
‖xL − xLε ‖ ≥ Γ

)
below α. The larger is the train-

ing dataset, the higher is the quality of these estimates. Re-
placing W by these quantities in (12), we derive the fol-
lowing robustness bound for the network:∥∥∥∥∇̂xF ∇̂xF>∥∥∥∥

F

.
Γ2

γ2
√

2 log(1/α)
. (5)

and the following estimate of Γ to achieve a robustness con-
fidence level of 1− α:

Γ & γ
(

2 log(1/α)‖∇xF ∇xF
>‖2F

) 1
4

. (6)

3. Controlling the bound during training
In this section, we are interesting in exploiting the bounds
derived above during the process of training the neural net-
work. The main idea would be to ensure that optimal
weights after training are satisfying the bound constraint
(5). Naturally, this could be formulated as a constrained
optimization training problem. Stochastic projected gradi-
ent techniques (Nedic & Lee, 2014; Lacoste-Julien et al.,
2012) could be used to solve such a problem. However, in
the general case, the projection operator for such constraint
is not simple and would require important computational
effort. Therefore, instead of ensuring the constraint, we
propose to regularize the loss function during training by
adding a penalization term as follows:

min
θ=(W,b)

1

λ
L(x, y, θ) + ‖QW ‖2F

where λ is a positive parameter, L is a loss function (mean
squared error for example) and ‖QW ‖F is the Frobenius

norm of a matrixQW that could be chosen as ∇̂xF ∇̂xF
>

,
∇xF ∇xF

>
or WW>, depending on which bound from

above we want to exploit. Regularization is a common
practice in machine learning (Bishop, 2006; Goodfellow
et al., 2016) and is usually proposed to avoid overfitting and
increase model generalization. The connection between
generalization and robustness to input uncertainty in ma-
chine learning models has been established in several stud-
ies (Xu et al., 2009; Staib & Jegelka, 2019). Intuitively,

the ‖QW ‖2F regularization term acts as a special weight
contraction and it is natural to consider alternative possi-
bilities to reduce the magnitude of the network weights.
One alternative is the squared spectral norm ofW (largest
eigenvalue of QW ) that would also account for the maxi-
mum absolute contraction of a vector when multiplied by
QW . Finally, in (Couellan, 2019), the product

∏L
l=1 ‖W l‖

which is an upper bound of the Lipschitz constant of the
network has also been proposed as regularization that pro-
motes robustness. It accounts for the overall Lipschitz reg-
ularity of the network and acts also as an overall control
on the contraction power of the network by coupling lay-
ers and allowing some weights to grow for some layers as
long as in other layers others weights are getting smaller
to compensate. When QW = WW>, its Frobenius norm
and the Lipschitz constant gradient can be explicitely de-
rived and integrated into the backpropagation scheme and
chain rule of gradients in order to optimize the augmented
loss during the training phase. However, for the spectral
norm, approximation methods are necessary and gradient
will have to be computed using numerical differentiation
techniques. In Appendix B, we discuss several available
approximation methods and in the next section, we propose
to carry out experiments with these various regularization
strategies and evaluate their respective impact on the ro-
bustness properties of the network.

4. Experiments
In order to assess the quality of the calculated bound, ex-
periments are conducted on public datasets. We focus on
deep neural network regression tasks (linear output acti-
vation) and the BOSTON (Harrison & Rubinfeld, 1978),
DIABETES (Tibshirani et al., 2004) and CALIFORNIA
(Pace & Barry, 1997) datasets. The neural network and
its training and testing are implemented in the python
(Team, 2015) environment using the keras (Chollet et al.,
2015) library and Tensorflow (Abadi et al., 2015) back-
end. The neural network architecture is composed of 4
dense hidden layers with 50 ReLu activations neuronal
units and one dense linear output layer. All results that are
presented below are average results from 10 independent
runs that are carried out after random shuffling and ran-
dom splitting of datasets. All dataset samples are scaled so
that they lie in [−1, 1]. All neural network training proce-
dures are executed with the ADAM stochastic optimization
algorithm with default parameters as given in (Kingma &
Ba, 2015). Additionnal details about the datasets dimen-
sions and training parameters are given in Table 1 of Ap-
pendix C. All comparison results provided below are refer-
ring to training with mean squared loss and the following
regularization schemes as described in section 3:

- no reg: without regularization
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- Lipschitz reg:
∏L
l=1 ‖W l‖ regularizer as de-

scribed in (Couellan, 2019).

- Gradient reg: ‖QW ‖2 regularizer as described

above and where QW = ∇̂xF ∇̂xF
>

.

- MaxEig reg: λmax(QW )2 regularizer.

In order to estimate the probability Pε∼D (‖y − yε‖ ≤ Γ),
the following procedure is applied. For each test sample
from the validation set, we generate random vectors εj with
j ∈ {1, . . . , 10} and calculate the following probability es-
timate:

1

10× T

T∑
i=1

10∑
j=1

1{‖y(i)−y(i)
εj
‖≤Γ}(εj) (7)

where T is the number of samples in the testing set, y(i)

is the desired output for the i-th testing sample and y
(i)
εj

is the output of the network calculated via a forward pass
through the network for the input vector x(i) + εj . In
all experiments, we have supp(D) = [−γ, γ] with var-
ious levels of γ. Results are reported in the figures of
Appendix D where γ is referred as gamma and Γ as
Gamma. Figure 1(right) reports these observed probabili-
ties together with the estimated tail probabilities given by
exp{−Γ4/(2γ4‖∇xF ∇xF

>‖2F )} for various values of Γ,
while Figure 1(left) reports the corresponding mean val-
idation error achieved during the training process. The
probability level 1 − α (with α = 0.05) is also marked
with a blue dashed line on each plot on the right. Fig-
ure 2 provides further details about the magnitude of the
norm of the network gradient ‖∇̂xF‖ and λmax(QW )2

(re-scaled by a factor 10 to ease the reading of the plot)
for each dataset and the four regularization strategies. Fi-
nally, Figure 3 provides, for each dataset and each regular-
ization strategies a comparison of the Γ values achieved to
reach a 1 − α probability level. Three values are reported

each time, Γ(max) = (2 log(1/α))1/4

√
‖∇̂xF ∇̂xF

>
‖F ,

Γ(mean) = (2 log(1/α))1/4

√
‖∇xF ∇xF

>‖F and the Γ
value observed so that the probability given in (7) reaches
a level 1− α.
We see in Figure 1 that, for the three datasets and for a prob-
ability of 0.95, the calculated Γ value (x axis) obtained by
the expression of the exponential tail probability, provides
a very good estimate of the Γ value given by the observed
probability (probability that the output deviates from its
nominal value by more than Γ). This validates experimen-
tally, at least for these datasets, the relevance of the esti-
mate given in (6). For the BOSTON dataset, all regularizing
strategies give similar Γ values whereas for the DIABETES
and CALIFORNIA, the Γ values are more sensitive to the
type of regularization employed. However, surprisingly, no

general rule can be given from these results. It is difficult
to say which regularizer performs best. It is dataset de-
pendent. The left hand side plots of Figure 1, represent-
ing the validation mean absolute error, show that similar
training performance were achieved by the four regulariz-
ing methods and do not provide further explanation of this
phenomenon. We believe, without providing any evidence
of it, that the high nonlinearity of the neural network error
surface may explain it. Indeed, after training, the optimiza-
tion algorithm has reached a local minimum where the loss
value may not have decreased sufficiently to really express
the regularization power of the regularizer. This depends
on the geometry of the error surface that is greatly depen-
dent on the input data.
On Figure 2, the norm of the network gradient tends to be
slightly smaller for the Gradient reg strategy. This
would confirm that regularizing by the network gradient
would help in achieving better robustness. Additionally,
the figure also shows that the maximum eigenvalue regular-
ization is not correlated to the network gradient norm and
may not be a suitable alternative for robustness purposes.
The Γ value comparison in Figure 3 confirms that the Γ es-
timates calculated by the proposed method are very closed
to the observed values. This is true for all datasets and reg-
ularizing strategies. Furthermore, the Γ upper bound values
Γ(max), are loose as expected in Section 2 but provide cer-
tificates for robustness. These certificates follow the same
pattern as the norm of the network gradient in Figure 2,
which was also expected since their expression in (5) are
directly dependent. Therefore, as for the network gradi-
ent, we observed that these certificates are better (tighter
but still quite loose) for the network gradient regularizing
strategy.

5. Conclusions
In this study, we have proposed analytical probabilistic es-
timates (and certificates) for deep dense neural networks.
The idea combines tail probability bound calculation using
the Cramer-Chernoff scheme and the estimation of the net-
work local variation. The network gradient computation
is using the automatic differentiation procedure available
in many neural network training packages and carried out
only at the training samples which does not require much
extra computational cost. Experiments with this method
has been conducted on public datasets and has shown that
the robustness estimates are very good compared to the
observed network robustness. Further analysis on these
datasets show that the quality of the estimates is not re-
ally impacted by the regularization strategy, however, the
network gradient regularization tends to generate slightly
more robust network architectures.
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A. Proofs
Proposition A.1 If the network inputs are subject to an
additive uncertainty ε where ∀i = 1, . . . , n, εi ∼ D and
supp(D) ∈ [−γ, γ] (γ < +∞), then for a given α ∈ [0, 1]
and a given output uncertainty level Γ, the following con-
dition holds:
If the layer weights vector w satisfies ‖ww>‖F ≤

Γ2

γ2
√

2 log(1/α)
, then Pε∼D (‖y − yε‖ ≤ Γ) ≥ 1− α.

Proof: We start by observing that in general we have

Pε∼D (‖y − yε‖ ≤ Γ) ≥ Pε∼D
(
tr

(
w>ε(w>ε)>

)
≤ Γ2

)
,

(8)
where tr(A) defines the trace of a matrix A. Note that in
the particular case where all activation functions are linear,
equality is achieved.
Therefore inequality (1) may be satisfied by ensuring that

Pε∼D
(
tr(w>ε(w>ε)>) ≥ Γ2

)
≤ α,

or
Pε∼D

(
tr(εε>ww>) ≥ Γ2

)
≤ α.

We now state and prove the following Lemma which pro-
vides a simple concentration inequality for the above prob-
ability.

Lemma A.2 For any random matrix M ∈ Rn×n of the
formM = vv> where v is a random vector such that for all
i in {1, . . . , n}, vi are all independent, have finite support
included in [−δ, δ] and E(vi) = 0, we have

∀Q ∈ Rn×n,∀t > 0, P (tr(MQ) ≥ t) ≤ e
− t2

2β2δ4‖Q‖2
F .
(9)

where β = min{ρ > 0 s.t. (ρz)2

2 − log(cosh(z)) ≥ 0}.

Proof: The proof is based on the Cramer-Chernoff method
(Boucheron et al., 2013) to bound the tail probability of the
random variable tr(MQ). Applying Markov inequality to
the left hand side of (9), we have:

P (tr(MQ) ≥ t) ≤ E(tr(MQ))

t

and for any p ∈ R+, since mij = vivj = mji,

P (tr(MQ) ≥ t) ≤ e−ptE
(
ep tr(MQ)

)
≤ e−ptE

(
ep

∑n
i,j=1 mijqji

)

leading to

P (tr(MQ) ≥ t)

≤ e−ptE

( n∏
i=1

epmiiqii

) n∏
i,j=1:i<j

e2pmijqji

 .

(10)
Observe now that since for all i 6= j, we have that
cov(mii,mjj)=0 and since E(vi) = E(vj) = 0 that

cov(mii,mij) = cov(vivi, vivj) = 0.

Therefore, from (10), we have

P (tr(MQ) ≥ t) ≤ e−pt
n∏

i,j=1

E (epmijqji) .

Let now ψtr(MQ) be the moment generating function
of tr(MQ), its Cramer transform obtained by Fenchel-
Legendre duality is

ψ∗tr(MQ)(t) = sup
p≥0

(pt− ψtr(MQ)(z)).

Note that mij ∈ [−δ2, δ2] and that by convexity of the
exponential function, we can bound the moment generating
function of mij as follows:

∀z ∈ R, E(ezmij ) ≤ 1

2
e−zδ

2

+
1

2
ezδ

2

= cosh(zδ2).

Therefore, around zero, we can write

log(E(zmij)) ≤ log(cosh(zδ2)) ≤ (βzδ2)2

2

where β is a coefficient in (0, 1] that tightens the bound
as much as possible and can be defined as β = min{ρ >
0 s.t. (ρz)2

2 − log(cosh(z)) ≥ 0}. Replacing z by pqji with
p > 0, we can derive the following upper bound for the
Cramer transform of ψ∗tr(MQ):

∀t ∈ R, ψ∗tr(MQ)(t) ≤ min
p>0

−pt+

n∑
i,j=1

(pqjiβδ
2)2

2

 .

The minimum in the right hand side of the expression
above is reached at p∗ = t

β2δ4‖Q‖2F
and therefore, applying

Cramer inequality, we finally get

log(P (tr(MQ) ≥ t)) ≤ − t2

2β2δ4‖Q‖2F
,

which completes the proof of the lemma. �
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Note that ∀(i, j) ∈ Rn×n, we have (εε>)ij ∈
[−γ2, γ2]. Hence, applying Lemma A.2 to bound
Pε∼D

(
tr(εε>ww>) ≥ Γ2

)
will lead to

Pε∼D
(
tr(εε>ww>) ≥ Γ2

)
≤ e

− Γ4

2β2γ4‖ww>‖2
F

≤ e
− Γ4

2γ4‖ww>‖2
F ,

since β ∈ (0, 1]. In order to remain below the level α, we
then need that

− Γ4

2γ4‖ww>‖2F
≤ log(α). (11)

This can also be written as ‖ww>‖ ≤ Γ2

γ2
√

2 log(1/α)
, prov-

ing Proposition 2.1.

Note that in (11), one can keep the tightening coeffi-
cient β to get a sharper bound whenever needed and write
‖ww>‖ ≤ Γ2

βγ2
√

2 log(1/α)
. The value of the coefficient of

the matrix β can be estimated numerically. �

Proposition A.3 If the network inputs are subject to an
additive uncertainty ε where ∀i = 1, . . . , n, εi ∼ D and
supp(D) ∈ [−γ, γ] (γ < +∞), then for a given α ∈ [0, 1]
and a given output uncertainty level Γ, the following
condition holds:
If the layer weights vector w satisfies∥∥∥∥(∏L

l=1W
l
)(∏L

l=1W
l
)>∥∥∥∥

F

≤ Γ2

γ2
√

2 log(1/α)
then

Pε∼D
(
‖xL − xLε ‖ ≤ Γ

)
≥ 1− α.

Proof: Propagating forward the input uncertainties through
the network, we can write:

xL − xLε = (WL)>εL−1

= (WL)>(WL−1)>εL−2 . . . (W 1)>ε

=

(
L∏
l=1

W l

)>
ε

where εl is the propagated noise from layer 1 to layer l.
Furthermore, we have∥∥∥∥∥∥
(

L∏
l=1

W l

)>
ε

∥∥∥∥∥∥
2

= tr

( L∏
l=1

W lε

)(
L∏
l=1

W lε

)>
= tr

( L∏
l=1

W l

)
εε>

(
L∏
l=1

W l

)>
= tr

εε>( L∏
l=1

W l

)(
L∏
l=1

W l

)> .

Therefore, applying again Lemma A.2 to upper bound the
probability in (2), the following condition on the layer
weights matrices to ensure property (2) is directly obtained:∥∥∥∥∥∥

(
L∏
l=1

W l

)(
L∏
l=1

W l

)>∥∥∥∥∥∥
F

≤ Γ2

γ2
√

2 log(1/α)
. (12)

�

B. Spectral norm approximation
Among available approximation methods, the power iter-
ation algorithm (Allaire, 2007), or preferably the Lanczos
algorithm (Lanczos, 1950) since QW is symmetric, is well
suited for the purpose. Note that there is no real need to ap-
proximate λmax(QW ) (the largest eigenvalue of QW ) with
great accuracy as it is only used to as a regularization func-
tion to guide the optimization process towards optimal re-
gions where the spectral norm is reduced. Therefore, an al-
ternative approximation technique is to use an upper bound
of λmax(QW ). As QW is positive definite, we propose to
use the Dembo’s upper bound (Dembo, 1988) defined as
follows:
Let An ∈ Rn×n be an Hermitian positive definite matrix
and let λ(n)1 ≤ . . . λ(n)n be the eigenvalues of An. The
matrix An can be written as

An =

(
An−1 b
bH c

)
where bH denotes the Hermitian transpose and the largest
eigenvalue of An satisfies

λ(n)
n ≤ c+ λ

(n−1)
n

2
+

√
(c− λ(n−1)

n )2

4
+ bHb.

C. Tables

Table 1. Dataset information and experimental setup
# # test/train batch # learning

Dataset inputs samples ratio size epochs rate
BOSTON 13 606 0.2 50 100 0.001

DIABETES 10 442 0.2 200 30 0.001
CALIFORNIA 8 20640 0.4 600 30 0.001

D. Figures
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Figure 1. Mean absolute validation error profiles during training (left) & Comparison of Pε∼D (‖y − yε‖ ≤ Γ) and exponential tail
bound for various levels of Γ (right)

Figure 2. Norm of network gradient ‖∇̂xF‖ and Estimate of λmax(QW ) after training
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Figure 3. Comparison of calculated Γ(max) and Γ(mean) values for 0.95 confidence level using ∇̂xF and∇xF respectively with the
Γ(observed) value observed so that the probability given in (7) reaches a level 0.95


