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Abstract

Robustness of deep neural networks is a critical issue in practical applications. In the
case of deep dense neural networks, under random noise attacks, we propose to study
the probability that the output of the network deviates from its nominal value by a given
threshold. We derive a simple concentration inequality for the propagation of the input
uncertainty through the network using the Cramer-Chernoff method and estimates of
the local variation of the neural network mapping computed at the training points.
We further discuss and exploit the resulting condition on the network to regularize the
loss function during training. Finally, we assess the proposed tail probability estimate
empirically on three public regression datasets and show that the observed robustness
is very well estimated by the proposed method.

1 Introduction

Deep neural networks have proven to be very effective in practice to perform highly
complex learning tasks [11]. Due to this success, they have gained a great deal of atten-
tion these past few years and they have been applied widely. However, they also have
been found to be very sensitive to data uncertainties [9, 23] to the point that a whole
research community is now addressing the so-called network attacks in order to study
and design input noise that can fool the network decision. Attacks can be random, when
data is corrupted by some random noise or adversarial, when the noise is specifically
designed to alter the network output [23]. Even though both types of attacks are related
since they are both addressing the robustness of the network, we will only focus in this
article on the random case. Most data are usually uncertain, either because the data are
related to naturally noisy phenomenon and we only have access to some of its statistics
or because assessing devices to do not have sufficient accuracy to record precisely the
data. In this study, we will therefore assume that the network input data is corrupted
by some additive bounded random noise.
Robustness to bounded input perturbations has been analyzed in the past few years.
Most people have addressed the problem through the use of regularization techniques
[12, 19, 26, 10]. The main idea is to consider the neural network as a Lipschitz map
between the input and output data. The Lipschitz constant of the network is then
estimated or upper bounded by the norm of the layer-by-layer weights product. This
estimates the expansion or contraction capability of the network and is then used to
regularize the loss during training. Often, there is a price to pay: the expressivity of the
network may be reduced, especially if the weights are too constrained or constrained
layer by layer instead of constrained accross layer [7]. Such strategies are enforcing
robustness but do not provide guarantees or estimates on the level of robustness that
has been achieved. In the case of adversarial perturbation, some authors have proposed
methods for certifying robustness [15, 4]. Recently, a probabilistic approach has also
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been proposed in the case of random noise for convolutional neural networks [27]. Point-
ing out that the threat of random noise may have been overlooked by the research com-
munity in favor of adversarial attacks, the authors have proposed probabilistic bounds
based on the idea that the output of the network can be lower and upper bounded by
two linear functions. The work proposed here is along the same line but distinct in
several aspects. It combines upper bounds on tail probabilities calculated by deriving
a specific Cramer-Chernoff concentration inequality for the propagation of uncertainty
through the network with a network sensitivity estimate based on a network gradient
calculation with respect to the inputs. The network gradient is computed by automatic
differentiation and estimates the local variation of the output with respect to the input
of the network. The estimation is carried out and averaged over the complete training
set. A maximum component-wise gradient variation is also calculated in order to give
probabilistic certificates rather than estimates. The certificates can be used in place of
estimates whenever guaranteed upper bounds are needed, however they are often not
as accurate since they are based on variation bounds rather than averages. We then
discuss the use of the derived bounds and estimate in the design of deep robust neural
networks and design experiments in order to assess the robustness probabilitic estimates
for various regularization strategies.
The article is organized as follows: Section 2 provides the specific neural network concen-
tration inequality using the Cramer-Chernoff method and the calculation of the network
gradient estimate. Section 3 deals with training of the neural network and its regular-
ization issues to increase its robustness. Section 4 provides the results of an empirical
evaluation of the neural network robustness for three public datasets. Finally, Section
5 concludes the article.

2 Probabilistic certificates of robustness

Consider feed-forward fully connected neural networks that we represent as a successive
composition of linear weighted combination of functions such that xl = f l((W l)>xl−1 +
bl) for l = 1, . . . , L, where xl−1 ∈ Rnl−1 is the input of the l-th layer, the function f l

is the Lf -Lipschitz continuous activation function at layer l, and W l ∈ Rnl−1×nl and
bl ∈ Rnl are the weight matrix and bias vector between layer l− 1 and l that define our
model parameter θ = {W l, bl}Ll=1 that we want to estimate during training. The network
can be seen as the mapping gθ : x0 → gθ(x

0) = xL. The training phase of the network
can be written as the minimization of the empirical loss L(x, y, θ) = 1

n

∑n
i=1 lθ(gθ(xi), yi)

where lθ is a measure of discrepancy between the network output and the desired output.
Assume now that we only have access to noisy obersvations xi of the input sample.

However, we know that these observations are drawn from a distribution D with finite
support. We first consider the special case where the functions fl are linear or piece-wise
linear (this includes the case of ReLu activation functions) and then extend the analysis
to more general functions. We start by considering the one layer NN setting to further
extend the idea to several layers.

2.1 The single layer architecture

In this section, we consider the simple case where the outputs of the network y = xL

(with L = 1 in this case) depends linearly of the inputs x = x0 ∈ Rn as follows: w>x+b
where w = W 1 is the single layer weights vector and b = b1 is the layer bias.
We assume that our input observations are corrupted by some additive noise ε such that
ε ∼ D and ∀i = 1, . . . , n, we have εi ∈ [−γ, γ] with γ < +∞. Our objective is to ensure
the following property:

Pε∼D (‖y − yε‖ ≤ Γ) ≥ 1− α (1)

where yε = w>(x + ε) + b, Γ is the allowed output uncertainty and 1 − α is some
predefined level of confidence.

In the following proposition, we give a condition on w that will ensure, with proba-
bility greater than 1− α, that the output uncertainty remains below Γ.

Proposition 2.1 If the network inputs are subject to an additive uncertainty ε where
∀i = 1, . . . , n, εi ∼ D and supp(D) ∈ [−γ, γ] (γ < +∞), then for a given α ∈ [0, 1] and
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a given output uncertainty level Γ, the following condition holds:

If the layer weights vector w satisfies ‖ww>‖F ≤ Γ2

γ2
√

2 log(1/α)
, then

Pε∼D (‖y − yε‖ ≤ Γ) ≥ 1− α.

Proof: We start by observing that in general we have

Pε∼D (‖y − yε‖ ≤ Γ) ≥ Pε∼D
(
tr
(
w>ε(w>ε)>

)
≤ Γ2

)
, (2)

where tr(A) defines the trace of a matrix A. Note that in the particular case where all
activation functions are linear, equality is achieved.
Therefore inequality (1) may be satisfied by ensuring that

Pε∼D
(
tr(w>ε(w>ε)>) ≥ Γ2

)
= Pε∼D

(
tr(εε>ww>) ≥ Γ2

)
≤ α.

We now state and prove the following Lemma which provides a simple concentration
inequality for the above probability.

Lemma 2.2 For any random matrix M ∈ Rn×n of the form M = vv> where v is a
random vector such that for all i in {1, . . . , n}, vi are all independent, have finite support
included in [−δ, δ] and E(vi) = 0, we have

∀Q ∈ Rn×n,∀t > 0, P (tr(MQ) ≥ t) ≤ e
− t2

2β2δ4‖Q‖2
F . (3)

where β = min{ρ > 0 s.t. (ρz)2

2
− log(cosh(z)) ≥ 0}.

Proof: The proof is based on the Cramer-Chernoff method [5] to bound the tail prob-
ability of the random variable tr(MQ). Applying Markov inequality to the left hand
side of (3), we have:

P (tr(MQ) ≥ t) ≤ E(tr(MQ))

t

and for any p ∈ R+, since mij = vivj = mji,

P (tr(MQ) ≥ t) ≤ e−ptE
(
ep tr(MQ)

)
≤ e−ptE

(
ep

∑n
i,j=1 mijqji

)
≤ e−ptE

((
n∏
i=1

epmiiqii

)(
n∏

i,j=1:i<j

e2pmijqji

))
. (4)

Observe now that since for all i 6= j, we have that cov(mii,mjj)=0 and since E(vi) =
E(vj) = 0 that

cov(mii,mij) = cov(vivi, vivj) = 0.

Therefore, from (4), we have

P (tr(MQ) ≥ t) ≤ e−pt
n∏

i,j=1

E (epmijqji) .

Let now ψtr(MQ) be the moment generating function of tr(MQ), its Cramer transform
obtained by Fenchel-Legendre duality is

ψ∗tr(MQ)(t) = sup
p≥0

(pt− ψtr(MQ)(z)).

Note that mij ∈ [−δ2, δ2] and that by convexity of the exponential function, we can
bound the moment generating function of mij as follows:

∀z ∈ R, E(ezmij ) ≤ 1

2
e−zδ

2

+
1

2
ezδ

2

= cosh(zδ2).

Therefore, around zero, we can write

log(E(zmij)) ≤ log(cosh(zδ2)) ≤ (βzδ2)2

2
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where β is a coefficient in (0, 1] that tightens the bound as much as possible and can be

defined as β = min{ρ > 0 s.t. (ρz)2

2
− log(cosh(z)) ≥ 0}. Replacing z by pqji with p > 0,

we can derive the following upper bound for the Cramer transform of ψ∗tr(MQ):

∀t ∈ R, ψ∗tr(MQ)(t) ≤ min
p>0

{
−pt+

n∑
i,j=1

(pqjiβδ
2)2

2

}
.

The minimum in the right hand side of the expression above is reached at p∗ = t
β2δ4‖Q‖2

F

and therefore, applying Cramer inequality, we finally get

log(P (tr(MQ) ≥ t)) ≤ − t2

2β2δ4‖Q‖2F
,

which completes the proof of the lemma. �

Note that ∀(i, j) ∈ Rn×n, we have (εε>)ij ∈ [−γ2, γ2]. Hence, applying Lemma 2.2
to bound Pε∼D

(
tr(εε>ww>) ≥ Γ2

)
will lead to

Pε∼D
(

tr(εε>ww>) ≥ Γ2
)
≤ e
− Γ4

2β2γ4‖ww>‖2
F ≤ e

− Γ4

2γ4‖ww>‖2
F ,

since β ∈ (0, 1]. In order to remain below the level α, we then need that

− Γ4

2γ4‖ww>‖2F
≤ log(α). (5)

This can also be written as ‖ww>‖ ≤ Γ2

γ2
√

2 log(1/α)
, proving Proposition 2.1. �

Note that in (5), one can keep the tightening coefficient β to get a sharper bound

whenever needed and write ‖ww>‖ ≤ Γ2

βγ2
√

2 log(1/α)
. The value of the coefficient of the

matrix β can be estimated numerically.

2.2 Extension to deeper architectures

In this section, we address the case where the network is composed of several layers
l = 1, . . . , L with linear or piece-wise linear activation functions. Property (1) should
now relate to the output of the last layer as follows:

Pε∼D
(
‖xL − xLε ‖ ≤ Γ

)
≥ 1− α (6)

where xLε is the output of the layer L when a noisy input x0
ε = x0 + ε is propagated

through the network and ε is the additive input noise such that ε ∼ D and ∀i = 1, . . . , n,
we have εi ∈ [−γ, γ] (γ < +∞). With this setting, we can now state and prove the
following:

Proposition 2.3 If the network inputs are subject to an additive uncertainty ε where
∀i = 1, . . . , n, εi ∼ D and supp(D) ∈ [−γ, γ] (γ < +∞), then for a given α ∈ [0, 1] and
a given output uncertainty level Γ, the following condition holds:

If the layer weights vector w satisfies

∥∥∥∥(∏L
l=1 W

l
)(∏L

l=1 W
l
)>∥∥∥∥

F

≤ Γ2

γ2
√

2 log(1/α)

then Pε∼D
(
‖xL − xLε ‖ ≤ Γ

)
≥ 1− α.

Proof: Propagating forward the input uncertainties through the network, we can write:

xL − xLε = (WL)>εL−1 = (WL)>(WL−1)>εL−2 . . . (W 1)>ε =

(
L∏
l=1

W l

)>
ε
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where εl is the propagated noise from layer 1 to layer l. Furthermore, we have∥∥∥∥∥∥
(

L∏
l=1

W l

)>
ε

∥∥∥∥∥∥
2

= tr

( L∏
l=1

W lε

)(
L∏
l=1

W lε

)>
= tr

( L∏
l=1

W l

)
εε>

(
L∏
l=1

W l

)>
= tr

εε>( L∏
l=1

W l

)(
L∏
l=1

W l

)> .

Therefore, applying again Lemma 2.2 to upper bound the probability in (6), the follow-
ing condition on the layer weights matrices to ensure property (6) is directly obtained:∥∥∥∥∥∥

(
L∏
l=1

W l

)(
L∏
l=1

W l

)>∥∥∥∥∥∥
F

≤ Γ2

γ2
√

2 log(1/α)
. (7)

�

2.3 Improving the bound by taking the network nonlinear-
ity into account

Remember that the bound derived above relies on the fact that we have considered the
linear upper bound of the neural network response and therefore from inequality (2)
applied to the multilayers case, we have

Pε∼D
(
‖xL − xLε ‖ ≤ Γ

)
≥ Pε∼D

tr
εε>( L∏

l=1

W l

)(
L∏
l=1

W l

)> ≤ Γ2

 (8)

The Chernoff bound proposed above may be tight with respect to the right hand side
of the above inequality, however, with respect to the left hand side, (8) is not tight in
general as the deep complex layer structure of the neural network generates a highly
non linear behavior. The linear upper bound is often of poor quality. To address
this issue, we propose an alternative to estimate the variation of the neural network
response. In the following, we will consider that the network output is 1-dimensional.
The following developments also generalize to the multi-dimensional output case by
using differential calculus for multi-dimensional valued mappings but at the unnecessary
expense of clarity. Since ‖ε‖ may be considered small with respect to the magnitude of
the network inputs, we are interested in the local behavior of the network output that
we will approximate as follows:

xLε − xL = F (x+ ε)− F (x) ' ∇xF (x)>ε (9)

where F (x) = fL((WL)>fL−1((WL−1)>fL−2(. . . f0((W 0)>x+b0))+bL−2)+bL−1) and
∇xF is the gradient of F with respect to the network input x.
The linear approximation (9) is only local but its advantage is that it can easily be
evaluated at many x values. Indeed, while visiting all input vector x during training,
this information is usually available at a very low extra computational cost through
automatic differentiation in most training computer algorithms and packages for neural
networks (such as TensorFlow [1] and Pytorch [21]). Therefore, from local estimates at
various training points x0

i for i = 1, . . . , n, we calculate two n0-dimensional vectors of

network variation estimates ∇̂xF and ∇xF defined as follows:(
∇̂xF

)
k

= sign
((
∇xF (x0

ik )
)
k

)
× vk ∇xF =

1

n

n∑
i=1

∇xF (x0
i ) (10)

where

(vk, ik) =

(
max

i∈{1...,n}

∣∣(∇xF (x0
i )
)
k

∣∣ , argmax
i∈{1...,n}

∣∣(∇xF (x0
i )
)
k

∣∣) .
5



The quantity ∇̂xF accounts for the maximum variation of the network response in
every component direction of the network input encountered during the training and

gives therefore a tighter linear upper bound than
(∏L

l=1 W
l
)

when input data are part

of the training set. The quantity ∇xF does not provide a linear upper bound but
estimates an average linear behavior of the network response that be used in practice to
estimate the required Γ value to reduce Pε∼D

(
‖xL − xLε ‖ ≥ Γ

)
below α. The larger is

the training dataset, the higher is the quality of these estimates. Replacing
(∏L

l=1 W
l
)

by these quantities in (7), we derive the following robustness bound for the network:∥∥∥∇̂xF ∇̂xF>∥∥∥
F
.

Γ2

γ2
√

2 log(1/α)
. (11)

and the following estimate of Γ to achieve a robustness confidence level of 1− α:

Γ & γ
(

2 log(1/α)‖∇xF ∇xF
>‖2F

) 1
4
. (12)

2.4 Discussion on the bound

The bound given in (11) and (12) are interesting in practice in several ways. First, they
can be used as a network probabilistic robustness estimates. Indeed, assume that the
magnitude of the input uncertainty γ is known and a level of uncertainty Γ is required
for a practical application. Then set a level of confidence 1 − α. After training, if the
network weights satisfy the bound (11), then it implies that the output uncertainty will
be below the required level Γ with a propability around 1 − α. Of course, obtaining
strict guarantees of robustness would be even more interesting. However, getting a strict
bound inequality in (11) and (12) would require a strict upper bound on the network
local variation. An available upper bound is the global linear upper bound that we have
calculated in Section 2.2 but at the expense of bound tightness. For this reason, instead
of computing upper bounds that are loose, we propose estimates of bounds that do not
provide strict certificate of robustness but are tighter to what is observed in practive as
we will see in Section 4.

Alternatively, assume now that you know γ and after training you observe the quan-
tity ‖∇xF ∇xF>‖F . For a level of confidence 1 − α, (12) gives an estimate of the
maximum variation Γ of the output that you might expect. Therefore, for a specific ap-
plication, the calculated Γ provides an additional performance criterion for the trained
network. In addition to validation accuracy and generalization performance, the Γ value
gives an estimate of the sensitivity of the network to input uncertainty. The larger is
Γ, the more sensitive to uncertainty is the network since, for the same level of α and γ,
one has to expect that the output should deviate (in norm) from a nominal value by Γ.
Finally, (11) and (7) emphasize also the relationship between the robustness of the net-
work and the weights values achieved after training. One idea is to use this knowledge
to drive the training process to regions where the quantity on the left hand side of these
bounds are small in order to design networks that are intrinsically robust. This is the
objective of the next section.

3 Controlling the bound during training

In this section, we are interesting in exploiting the bounds derived above during the
process of training the neural network. The main idea would be to ensure that optimal
weights after training are satisfying the bound constraint (11). Naturally, this could be
formulated as a constrained optimization training problem. Stochastic projected gradi-
ent techniques [18, 16] could be used to solve such a problem. However, in the general
case, the projection operator for such constraint is not simple and would require impor-
tant computational effort. Therefore, instead of ensuring the constraint, we propose to
regularize the loss function during training by adding a penalization term as follows:

min
θ=(W,b)

1

λ
L(x, y, θ) + ‖QW ‖2F

6



where λ is a positive parameter, L is a loss function (mean squared error for ex-
ample) and ‖QW ‖F is the Frobenius norm of a matrix QW that could be chosen as

QW = ∇̂xF ∇̂xF
>

, QW = ∇xF ∇xF
>

or QW =
(∏L

l=1 W
l
)(∏L

l=1 W
l
)>

, depending

on which bound from above we want to exploit. Regularization is a common practice
in machine learning [3, 11] and is usually proposed to avoid overfitting and increase
model generalization. The connection between generalization and robustness to input
uncertainty in machine learning models has been established in several studies [28, 22].
Intuitively, the ‖QW ‖2F regularization term acts as a special weight contraction and it
is natural to consider alternative possibilities to reduce the magnitude of the network
weights. One alternative is the squared spectral norm (largest eigenvalue) of QW that
would also account for the maximum absolute contraction of a vector when multiplied
by QW . Finally, in [7], the product

∏L
l=1 ‖W

l‖ which is an upper bound of the Lips-
chitz constant of the network has also been proposed as regularization that promotes
robustness. It accounts for the overall Lipschitz regularity of the network and acts also
as an overall control on the contraction power of the network by coupling layers and
allowing some weights to grow for some layers as long as in other layers others weights
are getting smaller to compensate.

When QW =
(∏L

l=1 W
l
)(∏L

l=1 W
l
)>

, its Frobenius norm and the Lipschitz constant

gradient can be explicitely derived and integrated into the backpropagation scheme
and chain rule of gradients in order to optimize the augmented loss during the train-
ing phase. However, for the spectral norm, approximation methods are necessary and
gradient will have to be computed using numerical differentiation techniques. Among
available approximation methods, the power iteration algorithm [2], or preferably the
Lanczos algorithm [17] since QW is symmetric, is well suited for the purpose. Note that
there is no real need to approximate λmax(QW ) (the largest eigenvalue of QW ) with
great accuracy as it is only used to as a regularization function to guide the optimiza-
tion process towards optimal regions where the spectral norm is reduced. Therefore, an
alternative approximation technique is to use an upper bound of λmax(QW ). As QW is
positive definite, we propose to use the Dembo’s upper bound [8] defined as follows:
Let An ∈ Rn×n be an Hermitian positive definite matrix and let λ(n)1 ≤ . . . λ(n)n be
the eigenvalues of An. The matrix An can be written as

An =

(
An−1 b
bH c

)
where bH denotes the Hermitian transpose and the largest eigenvalue of An satisfies

λ(n)
n ≤ c+ λ

(n−1)
n

2
+

√
(c− λ(n−1)

n )2

4
+ bHb

In the next section, we propose to carry out experiments with these various regular-
ization strategies and evaluate their respective impact on the robustness properties of
the network.

4 Experiments

In order to assess the quality of the calculated bound, experiments are conducted on
public datasets. We focus on deep neural network regression tasks (linear output acti-
vation) and the BOSTON [13], DIABETES [25] and CALIFORNIA [20] datasets. The neural
network and its training and testing are implemented in the python [24] environment us-
ing the keras [6] library and Tensorflow [1] backend. The neural network architecture
is composed of 4 dense hidden layers with 50 ReLu activations neuronal units and one
dense linear output layer. All results that are presented below are average results from
10 independent runs that are carried out after random shuffling and random splitting of
datasets. All dataset samples are scaled so that they lie in [−1, 1]. All neural network
training procedures are executed with the ADAM stochastic optimization algorithm with
default parameters as given in [14]. Additionnal details about the datasets dimensions
and training parameters are given in Table 1.

7



Table 1: Dataset information and experimental setup
# # test/train batch # learning

Dataset inputs samples ratio size epochs rate
BOSTON 13 606 0.2 50 100 0.001

DIABETES 10 442 0.2 200 30 0.001
CALIFORNIA 8 20640 0.4 600 30 0.001

All comparison results provided below are referring to the following three methods
as described in section 3:

- no reg: training procedure with mean squared error loss without regularization

- Lipschitz reg: training procedure with mean squared error loss with the
∏L
l=1 ‖W

l‖ reg-
ularizer as described in [7].

- Gradient reg: training procedure with mean squared error loss with the ‖QW ‖2 reg-

ularizer as described above and where QW = ∇̂xF ∇̂xF
>

.

- MaxEig reg: training procedure with mean squared error loss with the λmax(QW )2 reg-
ularizer.

In order to estimate the probability Pε∼D (‖y − yε‖ ≤ Γ), the following procedure is
applied. For each test sample from the validation set, we generate random vectors εj
with j ∈ {1, . . . , 10} and calculate the following probability estimate:

1

10× T

T∑
i=1

10∑
j=1

1{‖y(i)−y(i)
εj
‖≤Γ}(εj) (13)

where T is the number of samples in the testing set, y(i) is the desired output for
the i-th testing sample and y

(i)
εj is the output of the network calculated via a forward

pass through the network for the input vector x(i) + εj . In all experiments, we have
supp(D) = [−γ, γ] with various levels of γ. In the figures described below, γ is referred
as gamma and Γ as Gamma.

Figure 1(right) reports these observed probabilities together with the estimated tail
probabilities given by

e
− Γ4

2γ4‖∇xF ∇xF>‖2F

for various values of Γ, while Figure 1(left) reports the corresponding mean validation
error achieved during the training process. The probability level 1− α (with α = 0.05)
is also marked with a blue dashed line on each plot on the right. Figure 2 provides

further details about the magnitude of the norm of the network gradient ‖∇̂xF‖ and
λmax(QW )2 (re-scaled by a factor 10 to ease the reading of the plot) for each dataset and
the four regularization strategies. Finally, Figure 3 provides, for each dataset and each
regularization strategies a comparison of the Γ values achieved to reach a 1−α probabil-

ity level. Three values are reported each time, Γ(max) =
(

2 log(1/α)‖∇̂xF ∇̂xF
>
‖2F
) 1

4
,

Γ(mean) =
(

2 log(1/α)‖∇xF ∇xF
>‖2F

) 1
4

and the Γ value observed so that the proba-

bility given in (13) reaches a level 1− α.

We see in Figure 1 that, for the three datasets and for a probability of 0.95, the calculated
Γ value (x axis) obtained by the expression of the exponential tail probability, provides a
very good estimate of the Γ value given by the observed probability (probability that the
output deviates from its nominal value by more than Γ). This validates experimentally,
at least for these datasets, the relevance of the estimate given in (12). For the BOSTON

dataset, all regularizing strategies give similar Γ values whereas for the DIABETES and
CALIFORNIA, the Γ values are more sensitive to the type of regularization employed.
However, surprisingly, no general rule can be given from these results. It is difficult to
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Figure 1: Mean absolute validation error profiles during training (left) & Comparison of
Pε∼D (‖y − yε‖ ≤ Γ) and exponential tail bound for various levels of Γ (right)
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Figure 2: Norm of network gradient ‖∇̂xF‖ and Estimate of λmax(QW ) after training

say which regularizer performs best. It is dataset dependent. The left hand side plots
of Figure 1, representing the validation mean absolute error, show that similar training
performance were achieved by the four regularizing methods and do not provide further
explanation of this phenomenon. We believe, without providing any evidence of it,
that the high nonlinearity of the neural network error surface may explain it. Indeed,
after training, the optimization algorithm has reached a local minimum where the loss
value may not have decreased sufficiently to really express the regularization power
of the regularizer. This depends on the geometry of the error surface that is greatly
dependent on the input data.

On Figure 2, the norm of the network gradient tends to be slightly smaller for the
Gradient reg strategy. This would confirm that regularizing by the network gradient
would help in achieving better robustness. Additionally, the figure also shows that the
maximum eigenvalue regularization is not correlated to the network gradient norm and
may not be a suitable alternative for robustness purposes. The Γ value comparison
in Figure 3 confirms that the Γ estimates calculated by the proposed method are very
closed to the observed values. This is true for all datasets and regularizing strategies.
Furthermore, the Γ upper bound values (Γ(max)), are loose as expected in Section 2.3
but provide certificates for robustness. These certificates follow the same pattern as
the norm of the network gradient in Figure 2, which was also expected since their
expression in (11) are directly dependent. Therefore, as for the network gradient, we
observed that these certificates are better (tighter but still quite loose) for the network
gradient regularizing strategy.

5 Conclusions

In this study, we have proposed analytical probabilistic estimates (and certificates)
for deep dense neural networks. The idea combines tail probability bound calculation
using the Cramer-Chernoff scheme and the estimation of the network local variation.
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Figure 3: Comparison of calculated Γ(max) and Γ(mean) values for 0.95 confidence level

using ∇̂xF and∇xF respectively with the Γ(observed) value observed so that the probability
given in (13) reaches a level 0.95

The network gradient computation is using the automatic differentiation procedure
available in many neural network training packages and carried out only at the training
samples which does not require much extra computational cost. Experiments with
this method has been conducted on public datasets and has shown that the robustness
estimates are very good compared to the observed network robustness. Further analysis
on these datasets show that the quality of the estimates is not really impacted by the
regularization strategy, however, the network gradient regularization tends to generate
slightly more robust network architectures.
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