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Ant Colony Systems for Optimizing Sequences of
Airspace Partitions

David Gianazza, Nicolas Durand
ENAC, Université de Toulouse, France
Email: {lastname}@recherche.enac.fr

Abstract—In this paper, we introduce an Ant Colony System
algorithm which finds optimal or near-optimal sequences of
airspace partitions, taking into account some constraints on
the transitions between two successive airspace configurations.
The transitions should be simple enough to allow air traffic
controllers to maintain their situation awareness during the
airspace configuration changes. For the same reason, once a
sector is opened it should remain so for a minimum duration.

The Ant Colony System (ACS) finds a sequence of airspace
configurations minimizing a cost related to the workload and
the usage of manpower resources, while satisfying the transition
constraints. This approach shows good results in a limited time
when compared with a previously proposed A∗ algorithm on
some instances from the french air traffic control center of Aix
(East qualification zone) where the A∗ algorithm exhibited high
computation times.

Keywords—Air traffic management; Workload; Airspace con-
figuration; Airspace partition; Ant Colony Optimization; Ant
Colony System; Tree search; Branch & bound; A∗ algorithm;
A star algorithm

INTRODUCTION

As expressed in many operational concepts such as [1]–[3],
a dynamic and flexible use of the airspace resources is a key
element for improving the efficiency of Air Traffic Control
(ATC) and Air Traffic Management (ATM) in general.

Currently the airspace is divided in managerial units –
Air Traffic Control Centers (ATCCs). The airspace of each
ATCC is divided into elementary airspace sectors. These
basic airspace modules can be combined together so as to
form control sectors operated each by a small team of 2-3
controllers. Depending on the ATCC, the Air Traffic Con-
trollers (ATCos) are qualified to operate any ATC sector of
their center, or only those belonging to a specific qualification
zone.

The partitionning of an ATCC’s airspace – or a qualification
zone – into ATC sectors is called an airspace configuration
(or airspace partition in the following). It changes across the
day, depending on the workload experienced by the ATCos.
Sectors can be split1 when the workload increases, or merged
(or collapsed) when the workload decreases. More complex
recombinations may sometimes be decided by the control
room manager, when necessary.

When splitting or merging sectors is not sufficient to cope
with the traffic, flights are delayed or rerouted in order to

1Splitting a control sector requires that it is made of at least two elementary
sectors.

avoid congestions. In Europe, the Network Manager Oper-
ations Center (NMOC) is in charge of delivering these Air
Traffic Flow and Capacity Management (ATFCM) measures,
in coordination with the Flow Management Positions (FMPs)
located in each control center. In pre-tactical operations (one
or several days ahead), the FMPs and Network Manager
(NM) prepare ATFM measures based on the predicted traffic
(flight plans). These measures are then amended in tactical
operations, depending on the actual situation. To prepare these
measures, the NM and FMPs use sector opening schemes
based on typical airspace configurations, manually entered
in a database. The traffic load metrics currently used in
operations are the incoming traffic flows and the occupancy
counts. These metrics do not completely capture the actual
workload experienced by the controllers, as the workload also
depends on the ATC complexity. Predicting the workload in
advance requires a realistic workload model of the air traffic
controller, which has been the subject of many past researches
( [6]–[9]), but is not the subject of the current paper.

The current system is already very flexible and adaptive
in real time, in the sense that ATCos can adapt the airspace
configuration to the workload, but it does lack predictability.
Predicting the air traffic controllers’ workload is one issue.
Another issue, given a reliable workload model, is to predict
how the airspace will be partitionned in the future, in order
to anticipate which ATC sectors (i.e. groups of elementary
airspace modules) might become overloaded. This issue –
predicting which control sectors might be open at a given
time in the future, given a workload model and a traffic
prediction – is the problem being addressed here. Considering
that ATCos split or merge sectors so as to avoid overloads and
balance the workload, we will try to mimic this behaviour by
computing successive airspace configurations, optimized in
terms of workload and number of working positions.

Our objective is to compute an optimal sequence of
airspace configurations in a given time interval in the fu-
ture, taking various constraints into account. The successive
airspace configurations should minimize the overloads and
also the number of working positions that are necessary to
cope with the traffic. In addition, the workload should be
as close as possible to a nominal value in each sector. The
constraints include that the transitions between successive
configurations should be simple enough to allow controllers to
maintain their situation awareness. For the same reason, once
an ATC sector is opened, it should remain so for a minimum
duration.978-1-7281-5380-3/20/$31.00 © 2020 IEEE



In a previous publication [10], we proposed a sequential
A∗ algorithm to solve this airspace configuration prediction
problem. This approach was successful, however the compu-
tation times were high for a few instances of the problem,
thus motivating the search for bounded-time algorithms for
this problem. In the current paper, we introduce an Ant
Colony System (ACS) algorithm which computes optimal or
near-optimal sequences of airspace configurations in a finite
number of generations, and compare this approach with the
A∗ algorithm.

Assuming we have a realistic workload model that would
take into account traffic prediction uncertainties, the proposed
algorithm could help FMP operators to anticipate which ATC
sectors might be open in the next hours, and to prepare ade-
quate ATFCM measures when some overloads are expected.

The paper is organized as follows. Section I provides a very
brief overview of previous research on airspace sectorization
and configuration. The problem being addressed in this paper
is described in section II. The original Ant Colony System
(ACS) algorithm is briefly presented in section III. Section IV
introduces the objective cost function being minimized when
searching optimal sequences. Section V shows how we apply
the ACS algorithm to our problem. The dataset and exper-
iment setup are described in section VI, and the results are
presented in section VII. The potential operational application
of the proposed algorithms is discussed in section VIII.
Section IX concludes the paper and gives some perspectives
of further research.

I. BACKGROUND

Many research has been done on airspace sectorisation
and airspace configuration (see surveys in [11], [12]). Some
studies propose to use even more airspace modules of smaller
size than today and to combine them in different ways [4].
Others try to optimize flexible sector boundaries so as to
minimize the controller taskload [5].

Few works explicitely consider the transitions between
configurations and try to optimize sequences of configura-
tions, exploring all reachable configurations. In [13], dynamic
programming methods are compared with greedy heuristics,
considering a transition cost and exploring a limited subset of
pre-defined configurations from a small ATCC with few sec-
tors. Other works [14] use a distance between configurations
to smooth sector configuration plans built using a combination
of deterministic search and simulated annealing, considering
a relatively small problem instance (Reims ATCC, France).
In [15], a softmax regression provides a rough estimate
of the number of controller working positions necessary to
handle a given input traffic in Bordeaux ATCC (a bigger
problem instance). A finer prediction is then obtained using
a tree search method exploring a catalogue of operational
configurations, considering higher-level clusters of control
sectors that are used in operations (East, North, or South
clusters).

This hierarchical partitionning – where one first decides to
split the airspace into clusters, and then balances the workload
by combining sectors within each cluster – highly reduces the
number of combinations to consider.

Another aspect on which Flow Management Position
(FMP) operators largely rely on is that typical traffic patterns
are handled with typical airspace configurations. In european
ATCCs, the FMP operators only consider a small number of
these typical configurations, manually stored into databases,
to build sector opening schemes.

Over the past decades, ATCCs have been multiplying the
number of elementary airspace sectors and reducing their
size, thus increasing dramatically the number of possible
airspace configurations. In addition, there is a natural trend
in ATM towards more flexibility in 4D-trajectory handling
and airspace sectorisation and configuration, which might
lead to the emergence of less predictable traffic patterns.
Consequently, it seems interesting to explore all the possible
partitions of airspace that can be built from controllable
sectors, without limiting ourselves to a short list of typical
configurations.

In our previous works [16] we introduced a branch &
bound algorithm that explores all the possible partitions of
the airspace into valid sector configurations. However, this
approach did not take into account the transition constraints
between successive airspace configurations. In a more recent
paper [10], we proposed a sequential A∗ algorithm to op-
timize sequences of airspace configurations while satisfying
some transition constraints. The branch & bound algorithm
was used in the heuristic of the A∗ to estimate a lower bound
(without transition constraints) of the sequence cost. This
approach gave good results, but the computation times were
high for a few instances of the problem.

In the current paper, we propose an Ant Colony System
(ACS) algorithm to solve our problem in a limited time,
using fixed computational resources. The next section states
the problem being addressed with more details.

II. PROBLEM DESCRIPTION

Ultimately, our aim is to find optimal sequences of airspace
configurations satisfying a number of operational constraints,
and where the cost of a sequence is related to the air traffic
controller workload and the number of opened ATC sectors.

Let us first describe airspace configurations (or airspace
partitions) more formally, as well as the constraints on the
sequences of airspace partitions, and have some insight on
the difficulty of the problem being addressed.

A. Airspace Configurations

The airspace is divided into a number of elementary
airspace sectors (modules). These airspace sectors are as-
signed to controllers’ working positions (CWPs). The radar
and planning controllers working on a CWP operate an Air
Traffic Control sector (ATC sector) made of one or several
elementary airspace sectors.

At any moment, all airspace sectors should be controlled
(i.e. assigned to a CWP) and no airspace sector should
be assigned to more than one CWP2. Consequently the
assignement of airspace sectors to controllers’ working po-
sitions forms a partition of the airspace into ATC sectors, as

2Except maybe very briefly when transferring a sector from one CWP to
another



illustrated on Figure 1 on a toy example involving 5 airspace
sectors in a fictitious airspace.

1
5

2

4

3

Airspace sectors
Controllers' working positions

in the control room

Figure 1: Airspace partitionning into ATC sectors

Not all airspace partitions are valid airspace configurations,
though. Considering Figure 1, merging the airspace sectors 1
and 3 for example would not form a valid ATC sector, as these
airspace sectors are not geographically connex. In practice, a
list of valid ATC sectors is available from the ATC center
databases.

Using this data, one can enumerate all the possible airspace
configurations that can be obtained using controllable sectors
– i.e. valid groups of sectors or elementary sectors that
appear in the center’s database. This enumeration is illustrated
on Figure 2. In this toy example, the airspace sectors are
identified by numbers (1 to 5) and the ATC sectors by letters
(a, b, c, d, e, or s). The list of valid (controllable) ATC sectors
is at the top left of the figure. A valid ATC sector can be
either a group of several airspace sectors (e.g. a = {2, 3})
or a singleton (e.g. s1 = {1}) containing only one airspace
sector.

In order to build all the valid airspace configurations,
airspace sectors are considered sequentially, starting with
sector 1 at the root of the tree. The ATC sectors compatible
with each node are traced. When assigning airspace sector 1
to a CWP at the root of the tree, the compatible ATC
sectors are s1 = {1}, d = {1, 5} and e = {1, 2, 3, 4, 5}.
Considering airspace sector 2, one can either assign it to the
same CWP as 1 (left branch) , or assign it to a separate
CWP (right branch). In the right branch, we see that group
e = {1, 2, 3, 4, 5} is no longer compatible with airspace
sector 1 because 2 is assigned to a separate CWP. In the left
branch, the only ATC sector compatible with 1 and 2 assigned
to the same CWP is e = {1, 2, 3, 4, 5}. The process goes on
with the other airspace sectors. The nodes having an empty
list of compatible ATC sectors are no longer developped. The
leaves of the tree give us all the valid airspace configurations.

Table I shows on the rightmost column the number of valid
airspace configurations for each French ATC center (or qual-
ification zone), in 2018. Just counting these configurations
takes a computation time ranging from a few milliseconds
for the smallest centers to more than 2 hours and 20 minutes
for Brest ATCC (using an Intel(R) Xeon(R) CPU E31270
3.40GHz octo-core desktop).

({1,2},{e})

and so on...

({1},{s,d}) ({2},{s,a})

({1},{s,d,e})

({1,3},{}) ({2},{s}) ({1},{s,d} ({2,3},{a})({1,2,3},{e})

({1,2,3,4},{e}) ({1,2,3},{}) ({4},{s,c})

({1,2},{}) ({3},{s,b})

({1},{s,d}) ({2,3,4},{}) ({1},{s,d}) ({2,3},{a}) ({4},{s,c})

({1,5},{d}) ({2,3},{a}) ({4},{s})

({1,4},{}) ({2,3},{a})

({1,2,3,4},{}) ({5},{s})({1,2,3,4,5},{e})

c: {4,5} d: {1,5}
e: {1,2,3,4,5}
s: generic term for a singleton

    {1},{2},{3},{4} or {5}

Valid groups of sectors :
a: {2,3} b: {3,4}

Figure 2: Building valid airspace configurations

Airspace sectors Valid groups Airspace config.
Aix (West) 20 45 47,377
Aix (East) 26 79 12,161,652
Bordeaux 36 69 99,522,406
Brest 32 92 233,281,435
Paris (West) 12 20 583
Paris (East) 15 23 833
Reims 22 51 224,691

TABLE I. Number of valid airspace configurations (rightmost
column) in the French ATC centers, in January 2018

B. Sequences of airspace configurations

Let us denote Ct0 an initial configuration at time t0, and
let us consider a time interval [t0, t0 + Kδt], where δt is
a chosen time step (typically one minute). Our objective is
to predict an optimal sequence of airspace configurations
Ct0 , Ct0+δt, . . . , Ct0+Kδt, minimizing the cost of the succes-
sive configurations. This cost should depend on the workload
of each ATC sector, as well as the number of working
positions. Various constraints can be taken into account, such
as the maximum number of working positions that can be
opened (depending on how many controllers are available),
the minimum length of the time interval during which a
sector should remain open, and the transition rules from one
configuration to the next.

Several modeling choices can be envisionned when opti-
mizing the sequences of successive airspace configurations.
One can consider the successive configurations as indepen-
dent one from the other, in the sense that any configuration
can be the successor of a given configuration and the tran-
sition from the current configuration to the next is costless.
In that case, the optimal sequence can be obtained by finding
the optimal configuration at each time step, separately.

A more realistic model is to consider that a configuration in
the sequence depends on its predecessor, i.e. not all transitions
are allowed, or the transitions have a cost. In operations, tran-
sitions from one airspace configuration to another must allow
controllers to maintain their situation awareness. Transitions
such as the ones shown on Figure 3 are too complex and
should be avoided, or at least considered only when there are
very few flights in the sectors involved.

In this article, we propose to introduce simple transition
rules restricting the set of configurations that can be reached
from the current configuration. When doing so, one cannot
find the optimal sequence of configurations by optimizing



Figure 3: Complex airspace reconfigurations

each configuration independently anymore. We must con-
sider all the possible sequences of configurations that can
be reached, starting from the initial one, as illustrated on
Figure 4.

etc

etc

etc

etc

Figure 4: Possible sequences of successives airspace config-
urations

Denoting b the average branching factor of the tree of all
possible sequences, the approximate number of sequences to
explore in order to find the optimal sequence is bK , when
considering sequences of K steps. Taking for example a time
horizon of 2 hours (i.e. 120 minutes) and a branching factor
of 20, there are 20120 possible sequences of configurations,
which is a huge number. Considering the number of possible
configurations in table I, the actual branching factor might
be much higher than 20, depending on whether the chosen
transition rules are restrictive of not.

C. Constraints

1) Transition rules: Any two successive airspace configu-
rations C and C+ in a sequence S should satisfy the following
constraint :

C+ ∈ AT (C) (1)

where AT (C) is the set of configurations that can be reached
from C complying with a chosen set of transition rules T

In this paper we have retained a set of simple transition
rules, comprising only three kinds of actions: split, merge, or
transfer sectors.

T1 :
Split ab→ a, b
Merge a, b→ ab
Transfer ab, c→ a, bc

(2)

One action per transition (3)

2) Duration of sector openings: The time intervals during
which any ATC sector is opened during a sequence S =
{C1, . . . , Cn} should have a minimum width of M minutes.

This constraint avoids multiple split, merge, or transfer
operations involving a same sector in a short period of
time, and allows controllers to maintain a better situation
awareness.

3) Other constraints: Some other constraints can be de-
fined, such as a maximum number of working positions
that may vary across the day depending on the number of
controllers on the duty roster. This constraint is easy to
implement and has been taken into account in our previous
works [16]. However, we will not consider it in the current
paper, and focus on the methods for computing optimal
sequences of airspace configurations.

Another constraint, already mentioned in section II-A, is
the fact that one can use only some predefined groups of
airspace sectors to form an ATC sector. This constraint is
taken into account in the rest of the paper, where we use the
list of valid ATC sectors provided by each ATC center to
build valid airspace configurations.

Note that we do not restrict ourselves to a list of typical
configurations, as currently done in operations. We consider
all the possible configurations that can be obtained by parti-
tionning the set of airspace sectors into valid ATC sectors.

D. Problem statement

To summarize our description of the problem, let us for-
malize it as a minimization problem. Denoting S a sequence
of airspace configurations, S the set of all possible sequences,
and given a cost function cost and a set of chosen transition
rules T , the problem can be formalized as follows :

min
S∈S

cost(S) subject to (4)

C+ ∈ AT (C) for any successive configurations C,C+ (5)
min open(atc sect) ≥M , ∀atc sect ∈ O(S) (6)

(7)

where AT (C) is the set of configurations that can be
reached from C complying with the chosen transition rules
T , and O(S) is the set of ATC sectors opened during the
sequence S.

The last constraint expresses the fact that an ATC sector
– i.e a group of one or several airspace sectors assigned to a
same working position – once opened, should remain open for
at least M minutes. Note that this constraint does not apply
to the duration of the configurations, which can be changed
at any time, but to the ATC sector openings.



III. THE ANT COLONY SYSTEM (ACS) ALGORITHM

Ant Colony Optimization algorithms [17]–[20] are meta-
heuristic methods inspired from the behaviour of some ant
species, laying or following pheromone trails while searching
for the best paths between the colony and food sources.

The Ant Colony System [19] was proposed by Dorigo et
al. to solve the Travelling Salesman Problem (TSP), where
the objective is to find the shortest route going through a
list of cities and returning to the departure city. In this
algorithm, a population of ants is initialized with the ants
located at various starting points (cities). Each ant is then
moved to another city, with a transition rule that depends
on the amount of pheromones τ(u, v) deposited by other
ants on the route segment between the current city u and
the candidate next v. After each move, the ant performs a
local update of the pheromone trail on its past route. The
ants moves are repeated until all ants have visited all the
cities and returned to their starting point. The ant having the
shortest path then updates the pheromones along this best
path (global pheromone update). This process is repeated for
a chosen number of iterations, and the shortest path found by
the algorithm is then returned. The ACS algorithm, the ants
move procedure and the transition rule to select the next city
are detailed in Algorithms 1, 2, and 3 respectively.

Algorithm 1 The Ant Colony System (ACS) algorithm.
Require: Initial ant population pop, pheromone memory τ , greedy

evaluation η
1: while not(STOP) do
2: MOVEANTS(pop,τ ,η)
3: UPDATEPHEROMONES(best path,τ )
4: end while
5: return best result

Algorithm 2 Moving ants in the ACS algorithm.
1: function MOVEANTS(pop,τ ,η)
2: while not all path are completed do
3: for each ant m do
4: state[m] < − SELECTNEXTMOVE(m,τ ,η)
5: path[m] < − state[m] :: path[m]
6: LOCALUPDATEPHEROMONES(τ ,path[m])
7: end for
8: end while
9: end function

Algorithm 3 Selecting next move in the ACS algorithm.
1: function SELECTNEXTMOVE(m,τ ,η)
2: u < − state[m]
3: q < − RANDOMFLOAT(1.0)
4: if q < q0 then . Exploitation
5: Select v = argmaxv∈S(u)(τ(u, v)

αη(u, v)β)
6: else . Biased exploration
7: Select state v among S(u), the possible successors of u,

randomly with probability

p(u, v) =
τ(u, v)αη(u, v)β∑

w∈S(u) τ(u,w)
αη(u,w)β

8: end if
9: return v

10: end function

The pheromone updates can be local (while moving the
ants) or global (after all paths have been completed) and take
the form of equation (8), where ρ is an evaporation parameter.

τ(u, v)← (1− ρ)τ(u, v) + ρ∆τ(u, v) (8)

When solving the Traveling Salesman Problem, Dorigo et
al. use ∆τglobal = 1

Lgb
for the global pheromone update,

where Lgb is the length of the best path found by the ant
population at the current iteration. The local pheromone up-
date is constant ∆τlocal = τ0 and equal to the initial amount
of pheromones τ0 laid on the edges before the first iteration.
In [19], this initial amount is set to τ0 = (ncities×Lgreedy)−1

where ncities is the number of cities and Lgreedy is the path
length obtained by a greedy heuristic – here, moving to the
nearest city at each step.

The selection procedure, described in Algorithm 3, relies
on τ the amount of pheromones on the candidate path
segments, and η the greedy evaluation of segments, to select
the next state according to one of two possible strategies –
deterministic or random. There is a probability q0 to choose
the deterministic strategy, where the edge (u, v) having the
best value for τ(u, v)αη(u, v)β is selected. The alternative
strategy is a biased random selection where edge (u, v) is
selected with probability p(u, v) = τ(u,v)αη(u,v)β∑

w∈S(u) τ(u,v)
αη(u,v)β

.
For the TSP, the greedy evaluation of a path segment is

ηij = 1
d(i,j) where d(i, j) is the distance between cities i

and j.

IV. COST FUNCTIONS

In our problem, the aim is to find an optimal sequence of
airspace configurations. This means searching for an optimal
path in the tree represented on Figure 4, where the initial state
is the current partition and the final state is any configuration
at the end of the prediction interval.

The pheromones are updated using the cost of the best
sequence of airspace configurations followed by an ant.
Before giving the details on how the Ant Colony System
algorithm is applied to our problem, let us describe the cost
functions used in this paper.

A. Air traffic controller workload

The cost we will try to minimize when computing optimal
sequences of airspace configurations is related to the workload
experienced by the air traffic controllers operating the ATC
sectors of the successive configurations. There are many ways
to model the air traffic controller workload. The notion of
incoming flow – i.e. the number of incoming flights entering
a sector in given time interval – has been widely used in
Europe, together with the notion of capacity, defined as
a threshold value for the incoming flow, above which the
sector is considered as overloaded. These notions of flow
and capacity are well suited to flow management and traffic
regulation, but they are a poor estimate of the actual workload
experienced by controllers.

A more realistic workload estimation is to count the number
of aircraft within the sector boundaries at a given time, or
within a given time period. These occupancy measures are
usually employed together with peak and sustain monitoring



alert parameters to determine potential overloads. Although
better than the simple incoming flows and capacities, the
number of aircraft and occupancy counts do not take into
account the air traffic control complexity.

A lot of research has been done on understanding and
expliciting the relationship between ATC complexity and
controller workload [6], [21]–[25]. In previous works [8],
[16], we proposed to predict the workload from a set of 6
indicators (sector volume, aircraft count, incoming flows with
15 or 60 mn time horizon, average absolute vertical speed,
and trajectory crossing count), using a neural network, or
other machine learning techniques [9]. In these works, the
model was trained on historical data made of measures of
ATC complexity and records of past sector operations.

The focus of the current paper is not on the workload
model, but on finding optimal sequences using tree search
methods or metaheuristics such as the ACS. In order to make
the results easier to reproduce, a very simple workload model,
based on the aircraft count, is chosen in this study.

For each control sector, we define a lower bound lb and
an upper bound ub for the aircraft count. Sectors with an
aircraft count below lb will be considered as underloaded,
and those with an aircraft count above ub will be considered
as overloaded.

In addition to the upper bound ub and lower bound lb, we
also define for each ATC sector s a nominal workload value
nw, with lb < nw < ub.

With these three parameters, we quantify the workload
in a given ATC sector s using the aircraft count na(s) by
measuring the excessive overload ols, the normal workload
above or below nominal (nl+s and nl−s respectively), and the
excessive underload uls. These quantities are expressed as
follows, where 1[x;y](z) is equal to 1 when x ≤ z ≤ y, and
0 otherwise:

ols = max(na(s)− ubs, 0) (9)

nl+s = 1[nws;ubs](na(s))× |na(s)− nws| (10)

nl−s = 1[lbs;nws](na(s))× |na(s)− nws| (11)
uls = max(lbs − na(s), 0) (12)

Given a set of values for na(s), ubs, nws and lbs, at most
one of the above cost measures ols, nl+s , nl−s and uls will
have a non-zero value.

B. Cost of an airspace configuration

An airspace configuration C is made of several ATC sec-
tors. The cost of a configuration C depends on the workload
in each of its sectors and also of the number of working
positions required to operate the sectors.

In the following, we have chosen to quantify the cost of an
airspace configuration as a multidimensional vector whose
components are the following costs, enumerated below in
their order of importance:

ol(C) =
∑
s∈C

ols (13)

ncwp(C) = cardinal(C) (14)

ul(C) =
∑
s∈C

uls (15)

nl(C) =
∑
s∈C

(nl+s + nl−s ) (16)

When comparing two configurations, these cost quantities
can be compared in the order of priority of their enumeration.

C. Cost of a sequence of configurations

The cost of a sequence S is an aggregation of the costs of
the successive configurations and the costs of the transitions.
For the current study, we have chosen a transition cost of
zero, and the cost of the sequence is simply the aggregation
of the costs of the successive configurations:

ol(S) =
∑
C∈S

ol(C) (17)

ncwp(S) =
∑
C∈S

ncwp(C) (18)

ul(S) =
∑
C∈S

ul(C) (19)

nl(S) =
∑
C∈S

nl(C) (20)

When comparing two sequences, one can simply compare
the tuples (ol, ncwp,ul,nl) associated to the two sequences,
in the order of priority of the costs’ enumeration.

D. A floating-point cost value

The Ant Colony System algorithm requires a single floating
point value aggregating all the cost criteria (ol, ncwp,ul,nl)
to update the pheromone trail. This floating-point cost is
expressed in equation (21) where N(k, c) is a function
bounding the cost c between 0 and (10k − 1):

N(k, c) = bmin((10k − 1), c)c

and the exponents k2, k3, and k4 are chosen so that the
number of digits representing each cost criterion are sufficient.

FpCost(ol, ncwp,ul,nl) = 10k2 × bolc
+N(k2, ncwp)
+10−k3 ×N(k3,ul)
+10−k3−k4 ×N(k4,nl)

(21)
In this paper, the digits of highest rank (hundredths and

above) encode the overloads. The k2 = 2 next digits (tenths
and units) encode the number of controller working positions,
the k3 = 3 digits after the decimal are for the underloads,
and the next k4 = 3 digits for the normal loads. With
this encoding, we have for example FpCost(1, 2, 34, 567) =
102.034567



V. ACS FOR OPTIMAL SEQUENCES OF AIRSPACE
CONFIGURATIONS

Let us now describe how the ACS algorithm is applied to
our problem of optimal sequences, starting from the current
partition and considering a given prediction horizon.

A. Initial population and initial amount of pheromones τ0
The initial population of ants is made of duplications of the

current partition. The initial amount of pheromones on any
edge is set to τ0 = nsteps/FpCost(cgreedy), where nsteps
is the number of steps (i.e. the search depth or the length
of the sequence) and cgreedy is the cost of a sequence (see
section IV-C) obtained by applying a greedy heuristic at each
step – i.e. by choosing the best configuration at each time
step.

As the size of the tree of possible successive configurations
can be huge, this initial amount of pheromone is not actually
memorized for each path segment: We use a hash table
to store the explored path segments and their amount of
pheromones, and τ0 is a constant default value.

B. Ant moves

Each ant is then moved by selecting the next airspace
configuration among the ones satisfying the transition con-
straints (2) and the minimum sector opening time constraint
(see section II-C2).

The procedure to select the ant move is the one described
in Algorithm 3 of section III. In our problem, the greedy
evaluation η(i, j) for a candidate move from configuration i
to configuration j is based on the costs described in previous
section IV. One can split the cost of a path segment (i, j) into
the costs for the configurations i and j, and the cost of the
transition from i to j : cost(i, j) = ci + cj + ctransition(i, j)

Including the cost ci of configuration i in the cost of a
move (i, j) is useless, as we simply want to choose a path
segment among several branches all starting at node i. In
this paper, we have chosen to model the transitions as hard
constraints (see section II-C) and to set the transition cost
ctransition(i, j) to 0. Note that there are many other ways to
model the constraints and costs, such as assigning a penalty
to violated constraints and including these penalties in the
cost function, or including an additional cost related to the
type of transition (split, merge, or transfer), etc.

To summarize, we consider in the following that the cost
of the initial partition p0 is 0, and the cost for a path segment
(i, j) is simply the cost cj = (ol(j), ncwp(j),ul(j),nl(j)) of
the airspace partition j, as described in section IV-B. As we
want a floating point value to update the pheromones, we
use FpCost(cj) (see section IV-D) in the expression of the
greedy evaluation η(i, j), given in equation (22).

η(i, j) =
1

FpCost(cj)
(22)

C. Pheromone updates

The local pheromone update, made while the ants are
moving, is given by equation (8), with ∆τ = τ0.

For the global pheromone update, which is performed once
all moves have been completed and the end of the prediction

window has been reached, the same equation (8) is used but
with ∆τ = 1

FpCost(cbest)
, where cbest is the cost of the best

sequence found by the ant population at the current iteration.

VI. DATA AND EXPERIMENT SETUP

A. Context

We use real data from the Aix ATC Center, using the East
qualification zone.

The workload thresholds ubs, nws and lbs used in the cost
definitions (see equation (9) in section IV-A) were assessed
in a previous paper [10], using 279 days of recorded radar
tracks from 2017 (January to December).

In this previous paper, a sequential A∗ algorithm was
proposed to find optimal sequences of airspace configura-
tions, and compared on 254 days from 2018 (January to
September) with two baseline methods: a greedy method
and a branch&bound without transition constraints. The A∗

algorithm found optimal solutions, although in a very long
time for a few instances.

In the current paper, we compare the Ant Colony System
algorithm with the A∗ algorithm and the other baseline
methods. The sequences of airspace configurations should
satisfy the transition constraints defined in equation (2) (see
section II-C) as well as a minimum sector opening time of
5 minutes. The problem instances are taken from A∗ runs
with a depth of 7 minutes, applied sequentially (rolling time
window, see section VI-B) at time steps of 1 minute. We
selected the instances where the A∗ algorithm exhibited the
highest computation times. We chose the 11 days where
the A∗ performed worse, and selected the time steps where
the computation time was above 1 minute. We obtained 21
instances on which we compare the different methods in
section VII.

B. Baseline 1: the A∗ algorithm

The A∗ algorithm is a well-known graph or tree search
algorithm using a best first strategy.

It extracts the node u of highest priority from the frontier
F , that is the set of nodes that have been generated but not
expanded yet, and expands this node by producing a list
of successor nodes. If a successor node v has never been
encountered before, or if the cost of going from the initial
state u0 to v is lower when passing through u than through
any previous parent node of v, the successor v is inserted (or
reinserted) in the frontier F with a priority f(v). This process
is repeated until a terminal state is reached.

The cost of node v is simply the cost of the parent node u
plus the cost k(u, v) of going from u to v: costv = costu +
k(u, v). The priority f(v) is the estimated cost for going from
the initial state to the final state while passing through v.
The priority f(v) is the sum of costv and a heuristic h(v)
estimating the cost between v and the destination: f(v) =
costv + h(v).

In our application, if u is the current configuration and v
one of its successors, the cost k(u, v) for going from u to
v is simply k(u, v) = FpCost(cv), that is the floating point
cost of configuration v. The heuristic function h(v) is chosen
as the sum of the costs of the best configurations with no



transition constraints for the remaining time steps between
the current time and the end of the prediction window. These
costs with no transition constraints are lower bounds of the
costs obtained when enforcing the transition rules. They are
computed using the baseline 2 method (NoTrans) presented
later in section VI-C.

The reader may refer to [10] for a full description of the
algorithm. As a the full search of the tree of all possible
sequences would be two computationally expensive for the
A∗ algorithm, it was proposed in [10] to search the tree up
to a limited depth, pick up the best next configuration and
add it to the sequence, and reiterate the process from this
configuration. This process is illustrated on Figure 5.

Figure 5: Sequential A∗ with a rolling horizon.

C. Baseline 2: optimizing without transitions (NoTrans)

When removing the constraints on the transitions, we can
compute an optimal airspace partition for each time step of
the sequence, searching over all the possible partitions with
a branch & bound algorithm. A similar approach was used
in our previous works [16], with the difference that in the
current paper the workload model is a simple aircraft count.

Figure 6 shows how the branch & bound algorithm is used
to compute an optimal airspace partition at a given time step.
Taking the same example as in section II-A, the algorithm
explores the same tree as in Figure 1, where the nodes are
incomplete partitions, and the leaves are full partitions of the
airspace (i.e. airspace configurations).
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Valid groups of sectors :

a: {2,3}
b: {3,4}
c: {4,5}
d: {1,5}
e: {1,2,3,4,5}
s: singleton

Best_conf= ({e})

Best_val= Eval_conf({e})

Best_val= Eval_conf({d},{a},{4})

Best_conf= ({d},{a},{4})

if Eval_conf({d},{a},{4})>Best_val then

then cut this branch
if Eval(node) < Best_val

otherwise continue the search

and so on...

Figure 6: Computing an optimal partition with a branch &
bound algorithm.

The cost function that evaluates the leaves (e.g. at step 6 on
Figure 6) is the cost described in section IV-B. It is a vector

of components ol(C), ncwp(C), ul(C), nl(C) (assuming C is
the airspace configuration at the evaluated leaf).

The cost estimates applied at the nodes uses a similar cost
structure when evaluating nodes. In order to obtain a lower
bound of the costs of all leaves that can be reached from the
evaluated node, we simply take – for each group of airspace
sectors of the node – the minimum values of the workload
costs over the compatible ATC sectors. A lower bound of
the number of working position is given by the number of
groups in the node. The order of priority of the different costs
is taken into account when computing the minimum values
over several possible ATC sectors.

Looking at the node visited at step 6 on Figure 6, we have
two groups of sectors ({1}, {s1, d}), and ({2}, {s2, a}) so the
lower bound for ncwp is 2. For the first group, we will obtain a
lower bound of the overload by taking the minimum over the
overload values of the compatible ATC sectors s1 = {1} and
d = {1, 5}. The same goes for the other workload quantities
(normal workload above or below nominal, and underload).
Doing the same with the other group ({2}, {s2, a}), and
aggregating these quantities we can compute a lower bound
for the cost of the configurations that can be reached from
the node.

This branch & bound method returning an optimal partition
for eath time step without considering transition constraints
is used in the heuristic function of the A∗ algorithm (see
previous section).

It is also used as a baseline method, called NoTrans
therafter, for comparing the costs of the different approaches.
This method provides a lower bound for the cost of any
sequence satisfying the transition constraints.

D. Baseline 3: the greedy strategy

Taking into account the transition constraints, the greedy
strategy consists in computing the sequence of successive
configurations by taking the best configuration that can be
reached from the current configuration, at each time step.

The greedy strategy simply explores the tree of all possible
sequences of successive configurations (see Figure 4) without
backtracking, following the best branch at each node until the
sequence is complete.

This greedy method is a realistic baseline method with
which we can compare our proposed Ant Colony System
method presented in sections III and V.

E. ACS Parameter tuning

To tune the parameters of the Ant Colony System, we
compared the average results over 10 runs for each set of pa-
rameters, considering all possible combinations of parameter
values expressed in Table II, where popsize is the population
size and maxiter is the maximum number of iterations.

Method Hyperparameter grid

ACS

(popsize, maxiter) = {(10, 400), (20, 250), (30, 150)}
ρ = {0.05, 0.1, 0.2}
q0 = {0.7, 0.8, 0.9}
α = [1, 15] with step 1
β = [1, 15] with step 1

TABLE II. Parameter grid for the ACS method.



When comparing the average best cost and the average
computation time for the most difficult problem instance
in our set, we found the following best set of parameters:
popsize= 10, maxiter= 400, ρ = 0.2, q0 = 0.8, α = 1,
β = 12.

VII. RESULTS

In the following, we compare the Ant Colony System
(ACS) method with the three baseline methods described
in section VI: the A∗ algorithm introduced in [10], the
branch & bound method applied independently at each time
step, without transition constraints (NoTrans), and the greedy
strategy (Greedy) with transition constraints but no backtrack
in the search tree. The results are given for 21 time steps for
which the A∗ algorithm with a search depth of 7 minutes and
a minimum opening time of 5 minutes exhibited computation
times above 60 seconds.
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Figure 7: Boxplots of the ACS results (red) and costs found
by the A∗, Greedy and NoTrans methods.

Figure 7 shows boxplots (in red) of the costs found by the
ACS algorithm when executing 10 runs of the algorithm, and
the costs of the determinisic baseline methods. The x-axis
shows the dates of the selected problem instances, in seconds
since the 1970, Jan 1st. The y-axis shows the floating-point
cost, as expressed in section IV-D.

We can see that the cost of the solutions found by the ACS
is close to the optimal cost found by the A∗ algorithm. For
all instances except one (1531569540), it is better than the
cost of the greedy solutions.

Figure 8 gives the computation times of the different
algorithms. We can see that the computation time of the
ACS is small and nearly constant, due to the fixed maximum
number of iterations and fixed population size, whereas the
A∗ computation time is much higher and dependant on the

●● ●●● ●● ● ● ●

15
29

66
29

20

15
30

35
49

00

15
30

54
85

20

15
30

96
29

40

15
31

56
63

00

15
31

56
63

60

15
31

56
94

80

15
31

56
95

40

15
32

08
28

40

15
32

08
33

80

15
32

08
34

40

15
32

16
06

00

15
32

16
06

60

15
32

16
60

60

15
32

16
61

20

15
35

79
02

40

15
35

79
03

00

15
35

80
35

60

15
35

80
36

20

15
35

80
36

80

15
36

42
40

20

0

500

1000

1500
Computation times

C
om

pu
ta

tio
n 

tim
e 

(s
)

Date

A*
ACS
Greedy
NoTrans

Figure 8: Computation times for the ACS and the A∗

baseline.

problem instances. This is a well-known caveat of the A∗

method, as the worst-case complexity can be exponential for
some problem instances when the heuristic is not perfect.

VIII. DISCUSSION ON THE POTENTIAL APPLICATION OF
THE ALGORITHM

The practical applicability of an algorithm predicting se-
quences of airspace configurations depends on its ability to
provide responses in a short time, especially if we want to use
it in tactical operations to help FMP operators to anticipate
overloads. Our results show that we could envision a method
where the ACS and A∗ algorithms (and possibly the greedy
method) would run in parallel. This approach would get the
best of both worlds: In most easy instances, the A∗ algorithm
would provide an optimal answer in nearly no time, and for
difficult instances, the ACS would provide a good-quality
solution in a limited time.

In order to make the problem challenging, we have volun-
tarily chosen a very flexible context in this study, in which
the airspace configuration is reconsidered every minute. In
current operations, the airspace is usually reconfigured only
when an overload or a severe underload or imbalance is
detected. Introducing this “lazy reconfiguration” rule – and
other operational constraints and rules such as reconfiguring
separately some sub-regions of the ATCC airspace – would
certainly alleviate the difficulty of the problem and highly
reduce the computational cost.

Other issues would have to be addressed to provide
an operational tool. The simple workload model (aircraft
count/monitoring values) used in this study could be replaced
by more sophisticated metrics ( [6], [8], [25]. The uncertain-
ties in traffic predictions could lead to volatile predictions of



the airspace configurations. This issue could possibly be tack-
led by modeling these uncertainties and running Monte Carlo
simulations of the predicted airspace partition sequences,
in order to get some workable scenarios with associated
probabilities of occurence.

However, even without the above enhancements, simply
using the proposed algorithm with aircraft count estimates
and the monitoring values currently used in operations would
probably represent an improvement when compared with the
current operational method where no automated tool is avail-
able to predict airspace configurations. The FMP operators
could use the predicted sequence of airspace partitions to
detect overloaded ATC sectors in the next hours. This would
help them decide which ATFCM measures to enforce. In
a tactical tool, the proposed algorithm would have to be
modified so as to consider the ATC sectors subject to an
ATFCM measure as constraints in the sequence of partitions.

IX. CONCLUSION

To summarize, we have proposed to apply the Ant Colony
System algorithm to find optimized sequences of airspace par-
titions, considering a cost related to the air traffic controllers’
workload and number of opened ATC sectors, and satisfying
some transition constraints and a minimum sector opening
time. The results show that good results are obtained in a
limited time.

In comparison, the greedy approach where a sequence
of successive airspace configurations is obtained by picking
up the best reachable configuration at each time step is
clearly not optimal. The A∗ algorithm finds optimal solutions
because it backtracks on the wrong choices. However, the
computational cost of the A∗ tree search is much higher on
some problem instances, and not bounded.

With the ACS, we propose a metaheuristic method that
provides good solutions – although without guarantee of
optimality – in a user-chosen limited time. Other approximate
or stochastic methods designed to address difficult problem
instances with a limited budget of computation time could
also be tried.

The focus of this paper and the previous one [10] was
to study the performance of deterministic and metaheuristic
algorithms on our problem of finding optimized sequences of
airspace configurations. Our future works might focus more
on the application in a realistic operational context, with
“lazy” configuration changes when overloads or underloads
are detected, and on the analyzis of the results in comparison
with the actual airspace configurations observed in the Air
Traffic Control Centers.
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