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Abstract—This paper presents a new challenge on the strategic
4D trajectory optimization problem with the evaluation of
air traffic complexity by using the geometric-based intrinsic
complexity measure called König metric. The demonstration
of König metric shows the potential that the algorithm can
capture the disorganized traffic which represents the difficulty
of maintaining situational awareness as expected by the air
traffic controller. We reformulate the optimization problem with
two trajectory separation approaches including delaying flight
departure time and allocating the new flight level subject to
limited delay time of departure, limited changes of flight levels
and fuel consumption constraints. We propose our solution to
solve daily traffic demands in the regional French airspace. The
resolution process uses the distributed metaheuristic algorithm
to optimize aircraft trajectories in 4D environment with the
objective of finding the optimal air traffic complexity. The
experimental results shows the reduction of maximum complexity
more than 95% with average delay of 2.69 minutes. The
optimized trajectories can save fuel more than 80 000 kg. The
proposed algorithm not only reduces the air traffic complexity
but also maintain its distribution in traffic. The research
results represent further steps towards taking other trajectory
separations methods and aircraft trajectory uncertainties into
account, developing our approach at the continental scale as well
as adapting it in the pre-tactical and tactical planning phase.

Index Terms—air traffic complexity, intrinsic metrics, könig
metric, strategic 4d trajectory optimization, fuel consumption,
distributed metaheuristic

I. INTRODUCTION

Air traffic demands increasing on air transportation system
can downgrade quality of air traffic service in the near future.
Following the annual report in 2018 [1], the average European
traffic was 30 168 flights per day with maximum traffic
demands over 37 000 daily flights. Meanwhile, ATC capacity,
en-route weather and ATC staffing were the major causes of

en-route delays. Dealing with this traffic demands, air traffic
controllers encounter the difficulties to separate all aircraft
in the control sector and to maintain an efficient air traffic
flow. However, flight planning operations is required before
a day of operation to minimize airspace congestion that can
reduce control workload within a sector. Network Management
Operations Centre (NMOC), previously known as the Central
Flow Management Unit (CFMU) is the operational unit of
Eurocontrol and responsible for optimizing aircraft trajectories
from tactical to strategic planning phase in European airspace.

One key element of two major ATM initiatives, Single
European Sky ATM Research (SESAR) and Next Generation
(NextGen), to support future traffic demands is 4D Trajectory
Based Operations (TBO). TBO makes air traffic becomes
much more predictable in allowing conflict detection and
resolution by proposing the alternative flightplans in strategic
phase and traffic advisory in tactical phase. Over the past
decade, most research in strategic 4D trajectory planning
has emphasized the use of conflict detection as the principle
objective evaluation in the optimization problem. The question
then arises whether as to the resolution algorithm based on
conflict evaluation is compatible with general strategies of the
air traffic controller. So far, very little attention has been paid
to the role of air traffic controller.

In recent years, SESAR addresses the performance-driven
balancing of en-route traffic demand and ATM capacity under
the Advanced Demand and Capacity Balancing (DCB) project.
Relevant to capacity management processes, the aim of this
project is to offer the controller a solution that presents a traffic
situation compatible with his capabilities. The promising
key in the literature to overcome this problem is air traffic
complexity metrics.



Air traffic complexity is a concept introduced to measure
the difficulty of controlling the air traffic situation. This was
originally introduced with the purpose of assessing whether
an air traffic configuration may cause unsustainable ATC
workload and providing guidelines on how to obtain more
manageable sectors by reconfiguring the airspace and by
modifying traffic patterns. According to many attempts on
development of complexity metrics [2], [3], the complexity
evaluation on a long term prediction horizon have a potential
to identify congested areas and support strategic flight
plan optimization, whereas the complexity evaluation on
a mid/short term horizon can help to identify encounter
situations that are critical for distributed conflict resolution
operations.

This paper assesses the significance of strategic 4D
trajectory optimization with air traffic complexity evaluation.
We propose delaying departure time and allocating the new
flight level approaches to aircraft for minimizing traffic
complexity in airspace. Moreover, the distributed metaheuristic
algorithm is adapted to this problem. Empirical studies using
real initiate flightplans in French airspace show that the
proposed methods are benefit to solve the strategic 4D
trajectory planning in terms of efficiency (computation time
and speed of convergence) and efficacy (complexity reduction
and distribution and less fuel consumption). The paper is
organized as follows: Section II presents the previous related
works. Section III gives the problem formulation of the
strategic 4D trajectory optimization. Section IV describes our
purposed methods. Section V represent our implementation.
Section VI reports the experimental results and discussion.
Finally, Section VII concludes the paper as well as indicates
the next research steps.

II. PREVIOUS RELATED WORKS

A. Strategic 4D trajectory optimization

In the framework of aircraft trajectory optimization, several
different actions can be used to optimize 4D trajectories with
various objectives such as solving potential conflicts, improve
flight efficiencies, minimize overall delays etc. The commonly
used actions are as follows:

• modifying departure time;
• speed regulation;
• traffic rerouting and;
• assigning the alternative flight level
Deterministic and meta-heuristics algorithms have been

widely adopted in the conflict resolution approach to generate
near-optimal aircraft trajectories. Durand et al. [4] propose
two trajectory maneuvers: modifying the heading and the
flight level. En-route conflicts between trajectories are solved
by the genetic algorithm (GA). Erzberger et al. [5] propose
the resolution algorithm that generates several candidate
trajectories and then select the best of them. The construction
of resolution trajectories is based on three types of maneuvers:
modifying altitude, horizontal route and speed profile. Dougui
et al. [6] propose a Light Propagation Algorithm (LPA)

which is based on the different refractions of light. The
potential conflicts are solved using a Branch-and-Bound
(B&B) algorithm. Other research has also investigated the
use of hybrid metaheuristic for the planning of 4D aircraft
trajectories [7], [8].

Chaimatanan et al. [8] propose a strategic trajectory
planning methodology to minimize the interaction between
aircraft. The aircraft is separated from others by modifying the
shapes of trajectory and delaying flight departure times. For the
interaction detection scheme, the hashing subdivision is used
to map each 4D cell to the one-dimensional hash table index.
For each trajectory, any other trajectory from other aircraft
fallen into the same cell and neighboring cell, is considered
as a single count of interaction. However, the aircraft speed
vector is not used in this approach. A hybrid metaheuristic
algorithm using the hill-climbing and the simulated annealing
was proposed to generate interaction-free trajectories in French
and European airspace.

B. Complexity metrics

The Dynamic Density [9]–[11] was firstly developed by
NASA. It consists in measuring a set of traffic characteristics
(number of changes in direction, changes in speed, changes in
altitude, etc.) and the workload experienced by a controller,
then carrying out linear regression in order to adjust the
model to the experienced workload as precisely as possible.
The mentioned characteristics are not sufficient to describe
the complexity associated with airspace. The difficulty in
determining reliable workload measures has been a motivation
for developing new evaluation approaches of complexity that
are independent from traffic characteristics, such as the fractal
dimension [12], the input-output approach [13], and the
intrinsic complexity [14], [15].

Intrinsic complexity metrics were introduced with the
purpose of capturing the level of disorder as well the
organization structure of the air traffic distribution. Breil et al.
[16] applied the convergence indicator to build the complexity
map of aircraft 4D trajectories in the congested area. The
objective in this work is to rebuild the temporary route
networks for reducing the traffic complexity in the tactical
planning phase.

In this paper, we contribute to the application of the
strategic 4D trajectory planning. We propose an alternative,
the mathematical formulation of this application. We focus
on a new objective function: to minimize the maximum
complexity of aircraft trajectories and to maintain the
complexity distribution of all trajectories. As inspired by
König’s theorem [17], we develop the new complexity metric
in the 4D environment for the objective function. We also
propose the distributed metaheuristic algorithm by introducing
the distributed optimization approach.

III. STRATEGIC 4D TRAJECTORY OPTIMIZATION PROBLEM

The problem in this work is to determine optimized 4D
trajectories where aircraft can fly in the airspace with the
optimal air traffic complexity. In this section, we start from



modeling complexity measurement in 4D environment and
then reformulate the optimization problem. This problem
enables two following opportunities to separate aircraft
trajectories: delaying time of departure and allocating the new
flight level subject to the limited delay time, limited changes
of flight level and the fuel consumption constraints.

A. Complexity measurement in 4D environment

Given 4D trajectory Xi of aircraft i representing a set
of sampled 4D coordinates (x, y, z, t) and the speed vectors
(vx, vy, vz) derived from each coordinate. As we can see
in Fig. 1, we construct the 4D window from the sampled
coordinate. Each 4D window represents its own coordinate
and neighbors’ coordinates. We then calculate the complexity
(as proposed in Section IV) from these coordinates.

Aircraft i

Aircraft j

Fig. 1: Example measurement of air traffic complexity for the
trajectory of aircraft i within the 4D window

The aggregated complexity Ψi of the aircraft i calculated
from its full trajectory can be expressed as follows:

Ψi =

Ni∑
k=1

Ψik (1)

Therefore, the maximum complexity Ψmax determined from
all aircraft in airspace is computed as follows:

Ψmax = max{Ψ1,Ψ2, ...,ΨN} (2)

where N is a number of aircraft and Ni is a number of 4D
coordinates

B. Decision variables

Departure time delay: The first separation option is
delaying time of departure with δi for each flight i from the
initial departure time ti given in its initial flightplan. Once the
flight i is selected for this option, the new departure time is
expressed as follows:

t̂i = ti + δi (3)

Changes of the flight level: The next separation option
represents allocating the new flight level with a number of

steps li for the flight i from the initial flight level hi so that
the new allocated flight level can be expressed following:

ĥi = hi + li (4)

Regarding to the instrument flight rules (IFR), the aircraft
cruises eastbound with the odd flight level, whereas the
westbound aircraft cruises at the even numbered flight level.
Therefore, the aircraft can change its flight level in the same
direction with the step of 2000 ft.

FL420

FL400

FL380

z

t

Fig. 2: Flight level modification: the solid line represents the
initial flight level; two dashed lines represent the alternative
flight levels

C. Problem constraints

Throughout this problem, the constraints should be defined
as follows:

Limited departure time delay: We can manage the overall
flight delay by giving the maximum delay time of departure
to each flight. The delay time δi has the unit of slot. The
minimum duration of each slot is the minimum sampling
time of traffic data. The range of departure time slots can
be expressed as follows:

δi ∈ {0, ...., δmax − 1, δmax} (5)

Limited changes of flight level: We define the restricted
changes of flight level in the symmetrical range as follows:

li ∈ {−lmax,−lmax + 1, ..., 0, ...., lmax − 1, lmax} (6)

Fuel consumption regulation: We consider the effects of
altitude on aircraft fuel consumption. Refer to the Base of
Aircraft Data (BADA) database version 3.6, we analyze the
typical aircraft’s fuel consumption at each flight level for
three different phases of flight as shown in Fig. 3. There
are different trends for climb, cruise and descent phases. The
climbing aircraft starts off consuming more fuels than others
and then decreases steadily on higher altitude. After FL450,
the fuel consumption rates fall adequately. The cruising aircraft
tends to increase its fuel consumption on higher altitude
until FL380 and then follows the same trend as the climbing
aircraft. Finally, the fuel consumption in the descent phase
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Fig. 3: Average fuel consumption of typical commercial
aircraft categorized by 3 different phases of flight with the
evolution of the flight level

remains steady during terminal maneuvering area (TMA) and
en-route operations. Overall, the climbing operation consumes
the highest fuels whereas the descending operation requires
less fuels for all flight levels.

In order to give the fuel consumption constraint to the
aircraft, we regulate the changes of flight level by restricting
that the aircraft can consume fuel less than or equal to its
fuel consumption from its initial flightplan. Given ci the fuel
consumption of aircraft i during its flight time. The new
restricted fuel consumption can be written as follows:

ĉi(ĥi) = ci(hi + li) ≤ ci(hi) (7)

D. Mathematical formulation

Finally, the strategic 4D trajectory optimization problem can
be formulated as follows:

given L =
[
l1 l2 . . . lN

]
∆ =

[
δ1 δ2 . . . δN

]
minimize

L,∆
Ψ(L,∆)

s.t. − lmax ≤ li ≤ lmax , li ∈ Z
0 ≤ δi ≤ δmax , δi ∈ R
ci(hi + li) ≤ ci(hi)

li + δi ∈ {li, δi}

IV. PROPOSED METHODS

In this paper, we propose the following methods to
achieve the strategic 4D trajectory optimization problem:
determination of complexity using the König metric, the
4D complexity evaluation scheme and the distributed
metaheuristic algorithm.

A. König metric

The method consists in calculating kinetic moment of
each aircraft around the barycenter calculated from aircraft
in an interested area. This metric allows us to quantify the
disordered structure in translation and in rotation of a set of
speed vectors [15].

X⃗i

G⃗m⃗i

Fig. 4: König space representing the aircraft vectors X⃗i, the
center of gravity G⃗ and the kinetic moment m⃗i

For each aircraft i represented in the considered area, the
center of gravity or barycenter is computed from all aircraft
positions:

G⃗ =
1

N

∑
i∈D

X⃗ (8)

The normalized kinetic moment of aircraft i is defined by:

m⃗i =
1∥∥∥d⃗iG∥∥∥

(
V⃗i ∧ d⃗iG

)
(9)

where d⃗iG is a relative distance from aircraft i to the center
of gravity G. Therefore, the average kinetic moment can be
given by:

M⃗G =
1

N

∑
i∈D

m⃗i (10)

The covariance matrix of the normalized kinetic moment is
expressed as follows:

COVM =
1

N

∑
i∈D

(
m⃗i − M⃗G

)
·
(
m⃗i − M⃗G

)T

(11)

The disorder associated to the normalized kinetic moment
D can be defined by:

D =
√
∥COVM∥T (12)

From the previous definition, when D has very small value
compared to average normalized kinetic moment,

∥∥∥M⃗G

∥∥∥, it
means that the aircraft are organized in rotation movement.

The normalized König metric which can varied from 0 to
1 is proposed as follows:

Ψ =
D

D +
∥∥∥M⃗G

∥∥∥ (13)



B. 4D Complexity Evaluation Scheme

The set of 4D coordinates from all trajectories are all stored
into 4D cell with size of 5 NM in horizontal, 1000 ft in vertical
and 15 seconds in time. Each cell is indexed by the hash key
used for locating data in the hash table. The computed hash
key is associated with the 4D cell. The 4D coordinate can
be retrieved from the hash table with the complexity O(n) =
1. To calculate the König metric Ψik for the coordinate k

Fig. 5: Neighborhood filtering for possible trajectory pairs

of aircraft i, we start from searching for neighborhood 4D
coordinates of other aircraft around the current 4D coordinate
as shown in Fig. 5. These points allow us to construct the small
König space and then determine their center of gravity and
normalized kinetic moments. As we can see from the example
of aircraft i in Fig. 6, the small König space is constructed
from the first sampled 4D coordinate for computing the metric
at k = 0 where k is the number of sampled coordinate in the
trajectory. After sliding from the first to the last coordinate
of the aircraft i, As depicted in Fig. 7, we can present the
evolution of the complexity for each coordinate. This evolution
shows that the coordinates of aircraft j, which is the neighbor
of aircraft i, exist in the König space from k = 2 to k = 9.
When the position and speed of both aircraft appears to be
diverged, the traffic disorder becomes disappeared in the König
space. Here we can adapt (13) to calculate the complexity in
each König space as follows:

Ψik =
Dik

Dik +
∥∥∥M⃗ ik

G

∥∥∥ (14)

Finally, we can apply this equation for all 4D trajectories and
then calculate the maximum air traffic complexity from all
aircraft by using (2).

C. Distributed Metaheuristic Optimization Algorithm

The optimization approach relies on a generic Simulated
Annealing (SA). SA algorithm proposed by Kirkpatrick et al.
in 1993, is a global optimization algorithm which is suitable
for NP-hard problems [8]. This algorithm is inspired by the
metallurgical annealing process. In this natural process, under
controlled conditions, a material is heated up and slowly
cooled down to increase the size of the crystals in the material

k = 0

Aircraft i

Aircraft j

Fig. 6: Complexity evaluation representing the König space at
the first 4D coordinate of aircraft i

Ψik

k

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 7: Evolution of König metric for the full trajectory
evaluation of aircraft i

and reduce their defects in order to improve the material’s
strength and durability.

Throughout mathematical optimization problems, each
configuration of a decision set in the search space represents
a different internal energy of the system. Heating the system
leads to a relaxation of the acceptance criteria in order to
take samples from the search space. When the system cools
down, the acceptance criteria of samples is reduced so that
movements are enhanced. Once the system has cooled, the
configuration will represent a sample at or near a global
optimum.

In this paper, we reformulate the SA algorithm in
the distributed way. We independently apply neighborhood
configuration and cooling process to every decision from
N decisions with the temperature Tk for each iteration k.
The temperature which is considered as a control parameter,
decreases in each transition by following the geometric cooling
process with Tk+1 := αTk where α is the cool down
factor. Instead of evaluating all decisions, we evaluate each
decision with its previous cost value γ under the Metropolis
criterion. This criterion helps the system to always accepts the
better decision and to avoid a local minima. The aggregated
objective value can be derived from the aggregation function
A (min, max, sum, etc.) depending on the problem context.
To avoid modifying the decisions which are not able to
disturb the aggregated objective value γ∗, we can regulate the
system with the aggregation factor β. The algorithm below
provides a pseudocode listing of the Distributed Metaheuristic
Optimization (DMO) algorithm for minimizing the aggregated
cost function.



Algorithm 1 Distributed Metaheuristic Optimization (DMO)

1: init T0

2: D = {di|1 < i < N}
3: Γ = {γi = eval(di)|1 < i < N}
4: T := T0, k := 0
5: repeat
6: γ∗ = A(Γk)
7: for i = 1→ N do
8: if γi > βγ∗ then
9: d̃i = change(di)

10: γ̃i = eval(d̃i)
11: if γ̃i < γi then
12: di ← d̃i
13: else
14: di ← d̃i with probability exp

(
γi − γ̃i

T

)
15: T := αT
16: k := k + 1
17: until k = M
18: return D∗

V. IMPLEMENTATION

This section presents implementation steps following the
proposed algorithm from the step importing the simulated data
simulated from initial flightplans until the final step to export
the optimized flightplans.

A. Pre-processing

At first, the program starts reading the file containing the
list of flights and their trajectory data. All existed aircraft
coordinates are manipulated and stored in the hash table.
Secondly, we construct the decision set D = {d1, d2, ..., dN}
where the decision di represents the decision variables (δi, li)
and its cost value γi of the flight i. The decision variables are
all assigned with the initial value of 0 and the cost value is
the air traffic complexity of each aircraft trajectory (γi ← Ψi)
whose value is calculated from (III-D).

B. Optimization Process

The heating up process is started and the output from
this process provides us with the initial temperature T0

required to start the cooling down process. We can
calculate this temperature by first randomly generating 100
deteriorating transformations and then by evaluating the
average variations E[∆γ], of the objective function values. The
initial temperature T0, is then computed from the expression:

T0 =
E[∆γ]

ln τ
, where τ is the initial acceptance rate of

degrading solutions (which it is empirically set).
The cooling down process can be launched using the initial

temperature T0 from the heating up process. An adequate
number of iterations required for reaching to an equilibrium
is constant and pre-defined by the user.

We follow the proposed algorithm described in the previous
section and then adapt it to our problem as depicted in
Fig. 8. According to the objective function in this problem,

Initial solution
T := T0, i := 0

D = {d1, d2, ..., dN}
Γ = {γ1, γ2, ..., γN}

Calculate γmax

γi > β · γmax

Modify the decision

di ←

d̃i, if γ̃i < γi

d̃i with probability exp

(
γi − γ̃i

T

)
, otherwise

Decrease T
T := αT

i = N

i = i+ 1i = 0

End transition

Final decision set

No

Yes

No

Yes

No

Yes

Fig. 8: Adaptation of the DMO algorithm to the optimization
process

we use the maximum cost value γmax as the aggregated
objective value of the DMO algorithm. If the cost value of
the current decision is greater than βγmax, the program will
modify this decision variable under the Metropolis criterion.
The modification of decision di aims to modify either the new
flight level or the departure time delay with the user-defined
probabilities PFL and Pdelay respectively where PFL + Pdelay =
1. These trajectory separation approaches also respect the
limited departure time delay and the limited changes of
the flight level. Concerning the flight level decision, the
algorithm consults the BADA performance data in order to
select the available changes of flight level subject to the
fuel consumption as previously detailed in Section III. The
algorithm below provides a pseudocode listing of the decision
strategy associated with this modification:

Algorithm 2 Decision strategy

1: input di(ti, li)
2: if PFL < random(0, 1) ≤ Pdelay then
3: ti ← t̃i
4: else
5: li ← l̃i where ĉi(hi + li)− ci(hi) ≤ 0

6: return d̃i



If the decision is not accepted by the Metropolis criterion,
the comeback operation will return the modified decision back
to the previous one as shown in Fig. 9. The modification
operation repeats with the same temperature Tk until the
last decision dN for the iteration k. For every iteration, the
temperature decreases with the geometric cooling schedule as
described in the DMO algorithm description. After the final
iteration, the program exports the optimized trajectories and
the final decision set.

d1 d2 d3 di dN

γ1 γ2 γ3 γi γN

Modification

d1 d2 d3 d̃i dN

γ1 γ2 γ3 γ̃i γN

Comeback

d1 d2 d3 di dN

γ1 γ2 γ3 γi γN

Fig. 9: The comeback operation triggered in the cooling
process when the Metropolis criterion does not accept the
modified decision

VI. RESULTS

A. Experimental Data and Configuration
By assessing the performance of our model and algorithm,

1000 regional trajectories provided by A Complete Air Traffic
Simulator (CATS) are used in our experiment. In our resolution
approach, we implemented the DMO algorithm adopted to our
problem with Java on Ubuntu system with 2.7 GHz processor
and 8 GB memory. The parameters are detailed in Table
I. Before starting, initial trajectories represent the maximum
complexity based on König metric with the value of 405.82.
The complexity map of initial trajectories can be visualized in
Fig. 10.

Parameters Value
Trajectory update rates, ∆t 15 seconds
Horizontal grid size, ∆x,∆y 5 NM
Altitude grid size, ∆z 1 000 ft
Limited delay time of departure, δmax 30 minutes
Limited changes of flight level, lmax 2
Probability for delaying time of departure, Pdelay 0.3
Probability for allocating the new flight level, PFL 0.7

TABLE I: Parameters

Regarding with this problem, the initial parameters of the
DMO algorithm are configured, with an initial acceptance rate

Fig. 10: Complexity map based on König metric for 1000
initial trajectories in horizontal plane

τ = 0.8, a geometric cooling schedule with α = 0.99 and
1000 transitions. In this problem, we also empirically set the
aggregation factor β = 0.95.

B. Numerical Results

As can be seen in Table II, our algorithm performs the
reduction of maximum complexity based on König metric at
15.04, the average complexity of 4.23, the average delay of
2.69 minutes. Meanwhile, our algorithm can also performs
with the computation time of 37.54 seconds. Concerning the
flight performance, we can save fuel 88 993.5 kg or 1.16 %
comparing with the initial trajectories.

Fig. 11: Complexity map based on König metric for 1000
optimized trajectories in horizontal plane

Comparing with Fig. 10, Fig. 11 shows the complexity map
of 1000 trajectories after the optimization process. Remaining
complexity from this strategic phase can manage and solve in



TABLE II: Numerical results of 1000 optimized trajectories after the optimization process compared with the initial trajectories

Data Max Complexity Average Complexity Complexity Distribution Average delay Fuel Consumption Computation Time
Initial Trajectories 405.82 23.64 42.03 0.0 7 648 919.2 kg -
Optimized Trajectories 15.04 4.23 4.21 2.69 mins 7 559 925.7 kg 37.54 seconds

the pre-tactical and tactical phase so that allows to significantly
mitigate the controller’s workload. The comparison of air
traffic complexity between the initial and optimized 1000
trajectories is visualized in Fig. 12. This visualization shows
that the DMO algorithm can reduce the overall complexity
and maintain the complexity distribution of the traffic. Fig.
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Fig. 12: Complexity map based on König metric for 1000
optimized trajectories in horizontal plane

13 represents the comparison of fuel consumption between
initial and optimized flightplans categorized by three different
phases of flight. Due to utilization of upper cruising flight
levels after optimizing trajectories, the fuel consumption rises
in climb phase. In contrast to the cruising phase, the aircraft
becomes less in fuel consumption when it stays on the
upper flight level. Finally, we assess the performance of the
DMO algorithm by comparing it with the distributed logistic
optimization (DLO) algorithm. This algorithm is constructed
from DMO algorithm by disabling the Metropolis criterion.
The evolution of the aggregated objective value γ∗ until the
final iteration is compared in Fig. 16. The DMO algorithm
yields a better solution and converges significantly faster than
the DLO algorithm does.

VII. CONCLUSION

In this paper, we introduced a methodology to address the
strategic planning of aircraft trajectory in the framework of
trajectory based operation. We proposed the intrinsic based
metric for complexity evaluation of aircraft 4D trajectories.
König metric implemented under 4D environment can identify
disorganized patterns of air traffic. We then formulated
the problem the strategic 4D trajectory planning with two
strategies: delaying time of departure and allocating the new
flight level subject to limited time delay, limited changes
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Fig. 13: Comparison of fuel consumption before and after the
optimization process categorized by three different phases of
flight
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Fig. 14: Comparison of convergence between the DMO
algorithm and the logistic optimization (without the Metropolis
criterion)

of the flight level and fuel consumption constraints. We
studied the altitude effects on the fuel consumption for
typical commercial aircraft by analyzing performance data on
the BADA database and then formulated the mathematical
constraint to the optimization problem. Experimental results
based on the real traffic situation represent the potential of
the proposed methods. The distributed metaheuristic algorithm
produces the optimized flightplans with shortened air traffic
complexity, flexible complexity distribution and improved
aircraft fuel efficiencies within the acceptable computation



time. Concisely, the numerical representation of complexity
metric opens the new challenges of 4D trajectory fine-tuning
approaches in pre-tactical and tactical phases for developing
the promising robust 4D trajectory planning methods.

VIII. FUTURE WORKS

The significant results in this work open new perspectives
with the future research on following that can be taken into
account:

• Trajectory modification: we proposed changing flight
level and departure time in this work. Other methods such
as speed regulation and horizontal trajectory deviation can
be considered for the future investigation.

• Improvement of resolution algorithm: The rise of
machine learning algorithms opens the further challenges
on combining them with our proposed metaheuristic
approach.

• Uncertainty: Predicting air traffic complexity under
uncertainty caused from departure airports, weather
information and other disruptive factors can be applied
in next investigation.

• Short term 4D trajectory optimization: the evidence in
this study concerning the way of capturing disorganized
traffic by our proposed complexity metric can allow us to
identify encounter situations that are critical for tactical
conflict resolution operations
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