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Abstract—Ground-based aircraft trajectory prediction is a
major concern in air traffic control and management. Focusing
on the climb phase, we predict some of the unknown point-mass
model parameters. These unknown parameters are the mass and
the speed intent. This speed intent is parameterized by three
values (cas1, cas2,M). These missing parameters might be useful
to predict the future trajectory of a climbing aircraft.

In this work, an ensemble of neural networks uses the observed
past trajectory of the considered aircraft as input and predicts a
Gaussian Mixture Model (GMM) modeling the joint distribution
of (mass, cas1, cas2,M).

Ideally, this predicted distribution will be close to a conditional
distribution: the distribution of possible (mass, cas1, cas2,M)
values given the observed past trajectory of the considered
aircraft.

This study relies on ADS-B data coming from The OpenSky
Network. It contains the climbing segments of the year 2017
detected by this sensor network. The obtained data set contains
millions of climbing segments from all over the world.

Using this data, we show that using the proposed predictive
model instead of a regression model brings almost as much
information as using a regression model instead of a simple mean.

The data set and the machine learning code are publicly
available.

Keywords: aircraft trajectory prediction, BADA, mass,
speed, machine learning, neural network

INTRODUCTION

Most applications in Air Traffic Control and Management
(ATC/ATM) rely on a ground-based trajectory prediction.
It will be even more true with new operational concepts
[1], [2] envisioning trajectory-based operations. An accurate
trajectory prediction is required for the new automated tools
and algorithms implementing these concepts.

This paper focuses on the climbing phase because the
unknown parameters have a great impact on the trajectory
during this phase. In this paper, we apply machine learning
methods to predict the joint distribution of the mass m
and the speed profile parameters (cas1, cas2,Mach). More
specifically, an ensemble of neural networks are trained to
predict a Gaussian Mixture Model (GMM) modeling this
joint distribution. These neural networks take the information
available about the considered climbing aircraft as input and
compute the predicted GMM.

The main contribution of this paper is to use machine
learning on a large historical data set to predict the joint
conditional distribution of the unknown parameters from the
past points of a climbing aircraft.

The rest of the paper is organized as follows: Section I
presents how the aircraft climbs, the object of this study.

This might be useful for readers not familiar with aviation.
Section II describes the considered trajectory prediction prob-
lem and Section III details how we model this problem as a
machine learning problem. Section IV describes the data used
in this study. Section V details the machine learning method
used, and the results are shown and discussed in Section VI,
before the conclusion.

I. HOW THE AIRCRAFT CLIMBS

The climbing vertical profile of a flight can be very different
from one to another. The aircraft climbs till it reaches its
initial cruise altitude. This initial climb might contain level-
off segments that stops the climb temporarily. These level-
off segments are said to be inefficient regarding the fuel
consumption and the noise annoyance compared with a contin-
uous uninterrupted climb ([3]). These level-off segments might
come from air traffic control operational restriction. These are
the result of a balance between the required separation between
the aircraft, the efficiency of the trajectories and the workload
of both pilots and air traffic controllers.

If we only consider continuous climb segments, there is
still a great variety of vertical profiles. The aircraft type has
a great impact on the vertical performances: the maximum
rate of climb of a small single-engine piston aircraft is way
smaller than the rate of climb of a business jet. For the same
aircraft, its weight may also vary from one flight to another
depending on the fuel and payload. This impacts its vertical
performance. The weather, especially the temperature ([4]) and
the wind gradient ([5]), have also a great impact on the vertical
performance.

A. How the Aircraft Climbs are Operated

A perfect knowledge of the flying object and weather are
not enough as we consider a piloted flying object. We need
to know how the aircraft is operated by the pilot. Roughly
speaking, the pilot can act on the thrust setting and the pitch
of the aircraft. The former controls the available power while
the latter controls how this power is shared between the kinetic
energy and the gravitational energy of the aircraft.

As the forces applied to the aircraft are functions of the
airspeed, the pilot typically controls the pitch to follow a target
airspeed profile.

Concerning the thrust setting, different strategies can be
used by the pilot.
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Figure 1: Three speed profiles parameterized with different
values for (cas1, cas2,M).

1) How the speed and Altitude are Quantified in Aviation:
In aviation, three physical quantities are used to quantify the
airspeed: the True AirSpeed (TAS) is the speed of the aircraft
relatively to the air; the Calibrated AirSpeed (CAS) actually
quantifies the dynamic pressure which is “converted” to the
TAS required at the mean sea level to create the measured
dynamic pressure ; and the Mach number is the ratio between
the TAS and the speed of sound.

Likewise, the altitude usually used in aviation is not a
distance between the aircraft and the ground. It is a pressure
altitude usually denoted Hp. Roughly speaking, it is the
measured atmospheric pressure “converted” to the altitude
required to create the measured pressure according to a fixed
atmosphere model: the ISA atmosphere model ([6]).

2) Typical Speed Profile Parameterized by (cas1, cas2,M):
The target speed profile is specified by two constant CAS
segments followed by one constant Mach number segment.
From the take-off, the aircraft accelerate till the CAS reaches
cas1. Then, the CAS is maintained equal to cas1 till Hp =
10000 ft. Then, the aircraft accelerates till the CAS reaches
cas2. This CAS is maintained during the climb. The Mach
number increases along a constant CAS climb. When this
Mach number reaches M the aircraft switches to a constant
Mach number climb. This happens at the crossover altitude.
This altitude is a function of the values of cas2 and M.

Figure 1 plots different speed profiles parameterized with
different values (cas1, cas2,M).

Although the vast majority of the flights follow such a speed
profile, one can observe that some flights have a speed profile
that does not comply with this parameterized speed profile.

3) Choice of the (cas1, cas2,M) Values: The choice of
the parameter (cas1, cas2,M) of the speed profile is done to
minimize the global cost. This cost includes the fuel costs and
the costs related to the flight time. These time costs include the
time related costs of the crew and maintenance of the aircraft
([7]). Of course, there is a trade-off between fuel cost and
time cost: typically, if the aircraft goes faster, the time cost is
reduced but the fuel cost increases. To specify the expected
balance between the fuel costs and time costs, the pilot can
enter the cost index CI inside the Flight Management System
(FMS). This cost index “converts” the time cost to a fuel

quantity of the same cost. Hence, the total cost to minimize
is proportional to

∫ tf
t0
FF (t) +CIdt where FF (t) is the fuel

flow ([8]). A CI = 0 will only minimize the fuel consumption.
The larger the cost index is, the greater the (cas1, cas2,M)
selected values will be, and the lower the flight path angle
will be ([7], [9]).

The cost index strategies can be different from one airline
to an other ([7]). Furthermore, as the cost of the whole trip is
optimized, the trip distance and the landing mass1 have also
an impact on the selected speed ([8]). As a consequence, one
can observe a variety of (cas1, cas2,M) values for the actual
flights.

4) Thrust Setting: Aircraft are designed to meet a minimum
climb performance in case of an engine failure at the maximum
take-off weight (MTOW). As a consequence, in normal oper-
ation where all engines are properly running, one can operate
takeoff and climb at a reduced thrust setting while still having a
rate of climb at an acceptable level. The lower the mass is, the
more the thrust can be reduced. Of course other factors might
impact the thrust choice which includes the runway length, the
runway contamination and the surrounding obstacles.

This thrust reduction can be implemented using a derate or
an assumed temperature. Depending on the engine manufac-
turer, one or both methods are available. The derate method
have a fixed number of possible thrust reduction. According
this Rolls-Royce document [10], there are two thrust reduc-
tions available for the B777 and many other airplanes: 10 %
and 20 %. In this document, from Hp = 10000 ft the thrust
reduction is progressively reduced till the aircraft recovers its
full max climb thrust. Depending on the selected taper strategy,
the aircraft can recover its full thrust at Hp = 12000 ft or at
Hp = 30000 ft. The second method, the assumed temperature
method (also called FLEX), consists in entering in the FMS an
Outside Air Temperature (OAT) higher than the actual OAT.
This results in a lower thrust. According to regulations ([11]),
this thrust reduction can not exceed 25%.

These reduced climb operations increase the climb distance
and duration. It also increases the total fuel used for the trip.
However, these reduced thrust climbs are expected to reduce
the wear of the engines, reducing the maintenance costs ([10]).

All these different thrust setting strategies might contribute
to a larger variety in the climb trajectories observed.

II. THE CONSIDERED TRAJECTORY PREDICTION
PROBLEM

This section describes the considered trajectory prediction
problem.

A. Trajectory Prediction Problem

Considering a climbing aircraft, we want to predict its future
climbing trajectory using only the information available in
ground-based systems. We further assume that there are no
level-segment in the future trajectory. In such systems, the
mass, the speed profile and the thrust setting are not known.

1When minimizing the cost, the take-off mass is unknown as the fuel used
for the trip is not known.
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Figure 2: The trajectory prediction problem considered: using
all the information we have about a climbing aircraft, we
want to predict the conditional distribution of its climbing
trajectory for the next minutes. This prediction is computed
using models.

However, we have access to the aircraft type and variant,
the past position and speed, and the flight plan data of the
considered aircraft.

To handle the prediction uncertainty, we want to predict the
probability distribution of the future trajectory, not just one
predicted trajectory. Ideally, this predicted distribution will be
the conditional distribution of the future trajectory given all
the information we have about the considered flight. Figure 2
depicts the trajectory prediction problem considered.

B. Literature Review on Trajectory Prediction

There are typically two ways to obtain a trajectory predic-
tion: 1) the kinetic approach which models the forces applied
to the aircraft, allowing the computation of the motion using
Newton’s laws and 2) the kinematic approach which directly
models the motion of the aircraft.

Among the works using the kinematic approach, few works
have tried to handle the uncertainty of the future trajectory.
Among these work, we can cite [12] that predicts intervals
that contain, with a specified confidence, at least a desired
proportion of the conditional distribution of the future altitude.
We can also cite [13] which uses two Gaussian Mixture Mod-
els (GMM) to obtain one generative model of the sequence
points for the departure and a second generative model for the
arrival trajectories. These generative models can also be used
to compute a probability distribution of the future trajectory
by conditioning the GMM on the observed past positions.
However, when we look at the conditional mean, this mean
is a linear function of the past positions. This might limit the
performance of this approach for trajectory prediction.

Among the works using the kinetic approach, some works
([14], [15], [16]) used past trajectory points to estimate the
aircraft mass using a model of forces like the Eurocontrol
Base of Aircraft DAta (BADA) model. In all these studies,
the methods provide only an estimate of the mass, they do not

provide any information about the uncertainty related to this
estimate.

Other kinetic approaches try to handle the uncertainty of the
estimates. [17], [18] propose a Bayesian approach to merge
several mass estimates into a refined posterior probability
distribution. It assumes that the estimates are independent and
the error made on each estimate follows a given Gaussian.
Then, assuming that the true mass follows a Gaussian prior,
the posterior is also a Gaussian and can be obtained through
simple calculation. In [19], the mass and the thrust setting
are estimated altogether. A Gaussian noise is assumed on the
position and velocity observed. An additive Gaussian noise is
also assumed concerning the states evolution equations. Then,
a numerical approximation of the posterior is computed using
particle filter techniques. All these techniques do not take
advantage of historical data as opposed to machine learning
techniques. Using Flight Data Recorder (FDR) historical data
and machine learning, [20] build a model that predicts the mass
knowing the starting and ending speeds of the takeoff ground
roll. Using Gaussian Process Regression (GPR), it predicts a
Gaussian posterior distribution. However, this technique does
not scale well with large historical data.

More recently, in [21] we have used a large historical ADS-
B database to train an ensemble of neural networks. Each
network predicts a Gaussian distribution. The networks in the
ensemble are then combined to obtain the prediction of one
Gaussian distribution. This method was applied to predict the
mass and each parameter of the speed profile (cas1, cas2,M).
The predicted Gaussian have a diagonal covariance of size 4.

The current paper uses a similar approach. However, it
predicts a GMM, not a diagonal covariance Gaussian.

III. MODELING THE CONSIDERED TRAJECTORY
PREDICTION PROBLEM AS A MACHINE LEARNING

PROBLEM

This section describes how we model our trajectory pre-
diction problem as a machine learning problem. The obtained
machine learning problem is the one we try to solve in this
paper.

Modelizations like the kinematic modelizations ([12], [13])
discussed in the previous section do not use a physical model
at all. Our modelization heavily relies on one physical model,
the Eurocontrol BADA model ([22]).

A. A Physical Model: BADA

BADA provides models of the forces applied to the aircraft.
Used along Newton’s laws, these forces’ models can be used
to compute the predicted motion of the considered aircraft.
Equation 1 below is central in this model. It is obtained by
considering the scalar product of the airspeed vector and the
equation obtained with the second Newton’s law.

Va
Thr−Drag

mass
= Va

dV a

dt
+ g0

T

TISA

dHp

dt
(1)

BADA models the thrust Thr and the drag Drag as func-
tions of the altitude Hp, the airspeed Va, the temperature T
and the mass. TISA is the temperature at Hp in the ISA
atmosphere.
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In order to be used to compute the future trajectory, this
physical model requires unknown parameters such as the mass,
the thrust setting and the speed profile.

B. Thrust Setting and Mass

As seen in Sub-Section I-A4, there are different possible
choices for the thrust setting.

In our work, we assume that the thrust setting is set to max
climb thrust. We do not try to infer the thrust setting strategy.

With this assumption on the thrust setting, if we know the
weather and the motion of the aircraft then the mass is the only
missing parameter in Equation 1. Using this fact, in [15] we
developed a method to extract the mass from the observed
trajectory. Please note, that this method only relies on the
second Newton’s law, the BADA model and the thrust setting
assumption. No assumption on the speed profile is required.

Because of the thrust setting assumption and the modeling
error of BADA, this extracted mass is not the true mass.
This extracted mass is the one minimizing the gap between
the left-hand side and the right-hand side of Equation 1.
Thus, this extracted mass mitigates the impact of the possible
wrong assumption made concerning the thrust setting and the
modeled forces.

C. Speed Profile

Concerning the speed profile, we assume that each aircraft
follows a (cas1, cas2,Mach) speed profile. This type of speed
profile is described in Subsection I-A2. We consider that
each aircraft will have its own (cas1, cas2,Mach) values
parameterizing its speed profile.

D. The Machine Learning Problem we Consider in this Paper

With the choices made in the two previous sub-sections,
the required parameters to use the BADA model to compute
a prediction are the mass and the (cas1, cas2,Mach) values.

Using all the information we have about the consid-
ered climbing flight (denoted flight), we want to pre-
dict the probability distribution for these missing values
(mass, cas1, cas2,Mach). For each situation, we want the
predicted distribution to approximate the unknown conditional
distribution (mass, cas1, cas2,Mach) |FLIGHT = flight.

A previous work ([21]) predicts such a distribution. How-
ever, the method used in this previous work can only predict
Gaussian distributions. Furthermore, it assumed that all the
missing values are conditionally independent given FLIGHT.

In this paper, we also want to capture the fact that the
missing values might not be independent: we want to predict
the joint distribution of the missing values given FLIGHT.

IV. THE DATA: HOW IT WAS PREPARED

The trajectory data used in this study are from The OpenSky
Network ([23]). The OpenSky Network is a participatory
sensor network of ADS-B sensors that covers mainly Europe
and North-America.

The weather comes from the Global Forecast System (GFS).
More precisely, we have used the forecast files, not the analysis

0 50 100 150 200 250 300 350 400
Hp [×102 ft]

Figure 3: Climbing segments plotted on a world map. The
mean altitude can be read from the color.

files, with a 1-degree grid. We have one weather grid every 3
hours.

The data used in this study covers the year 2017. The aug-
mented and sampled climbing segments used in this study are
available at https://opensky-network.org/datasets/publication-
data. The description of this data set is more comprehensive
in [24]. As described in [24], the preprocessing and sampling
algorithms do not use future points to process the current point.
This prevents any data leakage: no information from the future
points are included in the current point.

Figure 3 plots these sampled climbing segments on a world
map. The sample rate is one point every 15 s. In order
to produce this figure, 331 millions aircraft positions were
aggregated.

A. Splitting One Climbing Segment in Two Parts: Past and
Future

We want to predict the future trajectory of a climbing
aircraft from its past points. Thus, we must split each segment
in two parts, the future part we want to predict and the past
part that will be the input. This couple of past and future part
is called trajectory sample in the rest of this section.

Knowing the current position and p = 9 consecutive past
points, we want to predict the future q points. Considering one
climbing segment with n points, a trajectory sample is built
from p+q+1 consecutive points chosen among the n segment
points. Hence, from one segment we build n−p−q trajectory
samples. Figure 4 illustrates two different trajectory samples
(with q = 40) extracted from the same climbing segment.

B. Building One Example from One Trajectory Sample
Machine learning techniques use a set of (x, y) examples to

build a model predicting y from x. This subsection describes
how the mass and the speed profile (cas1, cas2,Mach) can be
extracted from one trajectory sample. These values will be the
“y” of one example.

1) Adding the Mass: For each trajectory sample, the mass
is estimated using the q = 40 future points. As discussed in
III-B, the method used to extract the mass from these future
points is the one described in [15]. This method assumes a
max climb thrust.

https://opensky-network.org
https://opensky-network.org
https://opensky-network.org/datasets/publication-data
https://opensky-network.org/datasets/publication-data
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Figure 4: With q = 40, two different trajectory samples
extracted from the same climbing segments.

2) Adding the Speed Profile: We want to extract cas1, cas2

and M from the points in the trajectory sample. We can see
that extracting a speed profile requires points from low altitude
to high altitude. As a consequence, to extract the speed profile,
we consider all the points in the climbing segment, not only
the points in the trajectory sample. Hence, all the trajectory
samples coming from the same climbing segment will have
the same common (cas1, cas2,M) minimizing the function e
given by the equation (2). A method to efficiently minimize
this error is given in [25].

e(cas1, cas2,M) =

n∑
i=1

(
Va(cas1, cas2,M;Hpi, Ti)− Vai

)2
(2)

V. SOLVING THE MACHINE LEARNING PROBLEM

We want to build a model predicting the conditional distri-
bution Y |X = x from a set S = (xi, yi)16i6n of n i.i.d.
observations coming from the joint distribution (X,Y ). In
our case, x will be all the information we have about the
considered flight whereas y will be the (mass, cas1, cas2,M)
values.

The conditional distribution describes how the y values are
spread out when X = x. This uncertainty is sometimes called
aleatoric uncertainty. This uncertainty cannot be reduced. For
instance, this uncertainty might come from a random variable
that is not included in X but have an impact on the drawn
y or more generally the inherent randomness of the process
generating y. This uncertainty may vary depending on the
considered x.

As the learned model will not be able to perfectly predict
the conditional distribution, we want to include this predic-
tion uncertainty inside the predicted distribution. This model
related uncertainty is sometimes called epistemic uncertainty.
This should result in having a predicted distribution wider than
the actual conditional distribution.

A. Literature Review on Modeling Conditional Probability
In order to handle these uncertainties, some works rely on

a Bayesian framework and others do not.

1) Works Explicitly Relying on a Bayesian Framework:
Bayesian Neural Networks (BNNs) ([26]) are neural net-
works with random variables as weights w. Considering
we have a prior probability p(w) on these weights. If the
posterior probability p(w|S) is known, one can compute
an approximation of the predictive distribution: p(y|S, x) =∫
p(y|S, x,w)p(w|S)dw. The hard part is to obtain p(w|S).
Samples from this posterior probability can be computed us-

ing Markov Chain Monte-Carlo methods ([26]). This approach
is accurate but computationally expensive when considering
a large set of observations. Other works ([27], [28]) use
variational inference techniques to approximate p(w|S) by
qθ(w) in a computationally efficient way. θ are parameterizing
this approximating distribution qθ(w). These techniques mini-
mize a “distance”, the reverse KL-divergence ([29]), between
p(w|S) and qθ(w).

[30] argues that dropout ([31]) can be used to perform
approximate Bayesian inference. They reported better results
than [28], [27] on a set of regression problems. In [30], a
deterministic neural network is trained using dropout layers.
In contrast with the classic regularization use of dropout layers,
these dropout layers are also active during the test phase. One
evaluation of the network supposedly draws one sample from
p(y, w|S, x).

Gaussian Process Regression ([32]) is a powerful non-
parametric framework that handles some sort of prior over
random functions. As we consider a Gaussian Process,
if we have a finite set of points (x, x1, . . . , xn) then
(f(x), f(x1), . . . , f(xn)) follows a joint Gaussian distribution.
Its covariance matrix is given by the kernel function k :
for each pair of inputs (z, z′) we have cov(f(z), f(z′)) =
k(z, z′). This kernel function k, chosen by the practitioner,
can easily incorporate knowledge on the regression prob-
lem, like periodicity for instance. Using the joint Gaussian
distribution, it is easy to condition the Gaussian to obtain
f(x)|f(x1), . . . , f(xn). The naive exact computation of such a
model requires O

(
n3
)

operations which might be intractable
for large data sets. Recent work ([33]) have reduced the
complexity of exact inference to O

(
n2
)
. Other works ([34])

perform approximate inference by using approximations of the
kernel matrix for instance.

2) Works that do not Explicitly Relies on a Bayesian
Framework: In [35], the neural network directly predicts the
mean and variance of Y |X = x. This network has two output
vectors, one vector that shall predict E[Y |X = x] and an
other vector that shall predict Var[Y |X = x]. This network
is trained by minimizing the negative log-likelihood NLL.
Actually, the final model is an ensemble of m networks, not a
single neural network. These networks are obtained by using a
different random initialization and different mini-batches with
the same architecture and training set. These m networks are
then combined to obtain the predicted mean and variance.

The idea of using a neural network to predict the parameters
of a distribution modeling the conditional distribution is not
a new idea. [36] proposed Mixture Density Network (MDN),
a method using neural network to predict the parameters of a
Gaussian Mixture Model (GMM).

If the considered input x is very unlikely in view of the
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training data, it would be sound that the predicted uncertainty
is high. However, for such an out-of-distribution x, all the
neural networks methods discussed in this whole Section V-A
might predict a low uncertainty ([37], [38]).

B. The Method we Used

In this work, using techniques similar to [35], [36], we train
an ensemble of MDNs to predict one GMM. The MDNs inside
the ensemble have the same architecture. They are trained with
the same algorithm. However different RNG seeds are used.
This will result in different initial weights and different mini-
batches, as suggested in [35].

1) Gaussian Mixture Model (GMM): A Gaussian Mixture
Model of K Gaussian models is described by a probability
density function (pdf) that is a linear combination of K pdf
of Gaussian models:

pα,µ,Σ(y) =

K∑
k=1

αkpµk,Σk
(y) (3)

In this above equation, the density function of each Gaussian
model N (µk,Σk) of dimension m is:

pµk,Σk
(y) =

exp
(
− 1

2 (y − µk)
t
Σk
−1 (y − µk)

)
√

(2π)
m

det (Σk)
(4)

The mixture coefficients αk must be positive and their sum
must be equal to 1.

2) Computing the negative log-likelihood loss: Our neural
network is trained by maximizing the log-likelihood of the
training data. As a consequence, the loss function used to train
our network will be the negative log-likelihood NLL.

We want to avoid the computation burden of inverting the
covariance matrices. To do this, our network will predict the
precision matrix Λk

def.
= Σ−1

k and we will use the identity
det (Σk) = (det (Λk))

−1 ([39]).
For each x, using one neural network, we can compute

α1(x), . . . , αK(x), µ1(x), . . . , µK(x) and Λ1(x), . . . ,ΛK(x).
The negative log-likelihood of an example (x, y) is

NLL(x, y) = − log pα(x),µ(x),Σ(x)(y) which can be rewritten:

NLL(x, y) = − log

(
K∑
k=1

αk(x)pµk(x),Σk(x)(y)

)
= −logsumexp

k=1...K

(
logαk(x) + log pµk(x),Σk(x) (y)

)
.

(5)

The PyTorch implementation of the logsumexp operation
use tricks to avoid overflow/underflow issues. Likewise, as
α(x) is computed using a softmax operator, the logαk(x)’s
are computed using the logsoftmax operator which use similar
tricks.

The log-likelihood of each Gaussian model is:

log pµk(x),Σk(x) (y) = −1

2
(y − µk(x))

t
Λk(x) (y − µk(x))

− m

2
log(2π) +

1

2
log detΛk(x)

(6)

Using the Equations (5) and (6), we can easily compute the
NLL of an example (x, y) that was supposedly generated by
the predicted GMM.

3) Computing the predicted GMM from the Output of a
Neural Network: The predicted precision matrices must be
symmetric positive definite. Such matrices can be rewritten as
TT t using the Cholesky decomposition where T is a lower
triangular matrix. This decomposition is unique. Conversely,
for every lower triangular matrix T with a positive diagonal,
the product TT t gives a symmetric positive definite matrix.

The GMM parameters are computed from the output of
the neural network depicted in Figure 5. This output is the
composed of tensors: logα (size K), µ (size K×m), L (size
K ×m×m) and d (size K ×m).

The L tensor is a collection of K lower triangular matrices
with zeros on their diagonal. The d tensor stores the diagonals
of these lower triangular matrices. These two tensors can be
used to compute the Λk’s precision matrices:

Tk(x) = Lk (x) + Diag (dk (x))

Λk(x) = Tk(x)Tk(x)
t (7)

The log detΛk(x) term in Equation 6 can be easily com-
puted using only the tensor dk:

log detΛk(x) = 2

m∑
j=1

log dk,j(x) (8)

Please note in Figure 5 that a softplus operation is used to
be sure that all the computed dk,j are positive.

4) Data Preprocessing Before Optimization: The input
variables are whitened using PCA. This process is a linear
transformation, the coefficients of this linear operation are
computed using only the training data. The output variables
are standardized using only the training data. All these trans-
formations will be applied on the validation data using the
coefficients computed on the training data.

5) Weights Initialization and Optimization: Several op-
timization methods, learning rate schedules and activation
functions were tested. Most of this tinkering to identify what
worked best was done using the training and validation set,
not the test set. During this phase, ranges of good values
for the remaining hyper-parameters were identified. These are
summarized in Table I.

At the end of this process we selected the AdamW ([40])
optimization method, the cyclical learning rate schedule ([41])
and the SELU activation function ([42]). The biases are left
out of the weight decay regularization. The weight decay is
handled inside the AdamW method. In this method, the weight
decay differs from the L2 regularization.

As SELU was used, the weights of the linear operators in
Figure 5 are initialized with a centered normal distribution
with a standard deviation 1/

√
fan_in. The biases are initial-

ized to 0.
The linear operators after “hidden layer n” on Figure 5 are

initialized differently. The weights are initialized to zero. As a
consequence, at first, the predicted GMM will be the same no
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matter the input values. The predicted GMM is determined by
the biases. These are initialized to have a “reasonable” guess
for this predicted GMM.

As the output data is standardized, we initialize the biases to
have: identity covariances for the Gaussians inside the GMM;
same mixture coefficients. In order to break symmetry, the
mean of the Gaussians are however initialized randomly from
a centered normal distribution of standard deviation 0.5.

6) Hyper-parameter Search: The hyper-parameter search
is done using random search. The hyper-parameters are drawn
from the distributions in the Table I. The network is trained
using all these hyper-parameters and the selected one is the
one with the lowest NLL on the validation set.

The learning rate is not considered as an hyper-parameter
here. An automatic procedure described in [41] is used to
determine the initial learning rate.

The architecture of the fully connected neural network is an
hyper-parameter. The number of hidden layers h is a random
integer between 1 and 10. For each hidden layer the number
of unit is drawn with replacement from a set of integers. The
obtained unit numbers are then sorted in order to have many
units at the first layer and less units at the last layer.

For each aircraft type, one hundred random sets of hyper-
parameters were tested. The hyper-parameters with the best
performance on the validation set were selected.

Table I: A summary of the distribution used to perform the
random search of the hyper-parameters.

hyper-parameter description distribution

number the hidden layers h U (J1, 10K)
units of one layer U ({10, 20, ..., 100} ∪ {200, 300, . . . , 700})

dropout rate U ([0, 0.9])
embeddings dimension U (J1, 10K)

weight decay 10U([−3,0])

batch size U ({512, 1024})
number of components K 5 ∗ U (J1, 4K)

7) Using an Ensemble of Neural Networks: Once the hyper-
parameter is selected, an ensemble of E neural networks are
then trained independently using a different RNG seed as
suggested in [35]. Each neural network predicts a GMM. To
combine these predictions, we consider a mixture of these
predicted GMMs with uniform weights. As a consequence, the
predicted pdf is just the average of the pdf of the E predicted
GMMs:

pensemble(y) =

E∑
e=1

1

E

K∑
k=1

αek(x)pµe
k(x),Σe

k(x)(y) (9)

Please note that this mixture of GMMs is just a GMM with
K ∗ E components.

Roughly speaking, we hope that the K components of each
GMM will model the aleatoric uncertainty whereas the com-
bination of E GMMs will handle the epistemic uncertainty.

VI. EXPERIMENT SETUP AND RESULTS

All the statistics presented in this section have been com-
puted on the test set STest, data that has not been used in the
model building process.

callsign . . . Mode-S address

Embedding

Dropout

. . .

. . .

. . .

. . .

Embedding

Dropout

. . .

Sum

. . .

. . .

Hp . . . Va

Concatenate

. . .

Linear

SELU

. . .

...
. . .

Linear

LogSoftmax

(K, )

logα

(K, )

Linear

Reshape

(Km, )

µ
(K,m)

Linear

Reshape

(Km2, )

ZerosOnUpperTriangular

(K,m,m)

L

(K,m,m)

Linear

x 7→ 10−6 + SoftPlus(x)

(Km, )

x 7→ 1/x

Reshape

(Km, )

d

(K,m)

merged input

hidden layer 1

hidden layer n

numerical input

embedded categorical input

Figure 5: Architecture of the neural network we used.
The manipulated vectors are in green whereas the operations
applied to these vectors are in red. The input is at the top, the
output is at the bottom.

A. Which Data Sets are Used to Fit and Evaluate our Models

Figure 6 illustrates how the data of the year 2017 has been
used in this study.

The ten first months were used to build the predictive
models. The last two months were used to evaluate the models
performance.

During the model building process, the first ten months
are split in two: the training set STrain with the first eight
months and the validation set SValid with the September and
October months. These two sets are used to perform the hyper-
parameter search; the training set STrain is used to fit models
with various hyper-parameter and the validation set SValid is
used to compute the mean NLL of the fitted models. The
hyper-parameter with the lowest mean NLL is selected. Then
using this hyper-parameter, the final model is fitted on the first
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STrain SValid STest

January, ..., August September, OctoberNovember, December

Select best hyper-parameter

Train final model Evaluate final model

Figure 6: This figure illustrates how the data was split into
sets and how these data sets are used to train and evaluate our
models.

ten months.
This final model is then evaluated on the two remaining

months, the test set STest.
As a matter of fact, a simple hold-out validation is used to

select the hyper-parameter and to evaluate the final model.
The k-fold cross-validation usually provides a better as-

sessment of the generalization error than a simple hold-out
validation, nevertheless we chose the second approach here,
for very specific reasons. The distribution of the trajectories
might change through time if for instance new procedures
are applied at a specific airport. Using a cross-validation that
randomly places the examples in the folds will produce folds
with the same distribution. It will mask the non-stationarity of
the problem we are studying and the performance evaluation
obtained will be too optimistic. For this reason, we chose a
more practical approach, and decided that the model should
be trained on a given period of time, and then tested on a later
period of time, as would actually happen if the method was
used in operations. If this performance evaluation is biased, it
will be pessimistically biased.

All the statistics in this section have been computed on the
test set, the trajectories recorded in November and December.

B. Which Variables are Used

We want to predict the distribution of Y =
(mass, cas1, cas2,Mach) given X = x.

The x is a vector of all the information we have about the
considered flight. More specifically, x contains all the variables
described in Table II. All these variables are computed using
the ten points between t0 − 9 ∗ 15s and t0, weather data and
flight plan data.

The past positions and speeds are also used to compute
an estimated mass and energy variations. These quantities are
also included in x as they are related to the mass we want to
predict.

For each example, we also have categorical variables such
as the airline operator, the aircraft type variant, the departure
and arrival airports and the day of the week. This last variable
was included to make use of a possible seasonality. The month
can also provide some insight on the seasonality however our
data only covers one year so the month was not included.

When the departure and arrival airports were known we
computed the trip distance between these two airports. This
trip distance will provide information on the fuel load and
hence the mass of the aircraft which affects the climb. The
departure airport is used because the constraints that apply to
the climbing aircraft might depend on the airport.

Table II: A summary of the features used to predict the
unknown parameters.

feature description count

ca
te

go
ri

ca
l

departure and arrival airports 2
aircraft type variant 1
airline operator 1
day of the week 1
callsign 1
ICAO 24 bit Mode-S address 1

nu
m

er
ic

al

distance between airports 1
temperature at Hp = 0 at current latitude and longitude 1
mass estimated on past points and error on past points 2
track angle at the current point 1
ground velocity at the current point 1
north and east wind components 2
longitude and latitude at the current point 2
vertical speed at the current and past points 10
altitude Hp at the current and past points 10
airspeed Va at the current and past points 10
energy variation between the current and past points 9
temperature from current altitude Hp to Hp+11,000 m 12

C. Considered Models

Different models are compared. Except for GB(x)Diag and
GB(x)Full, all these models are built using only the first ten
months: the data sets STrain and SValid. These models are
listed in order of increasing complexity:

• Diag: This model predicts a multivariate Gaussian dis-
tribution with a diagonal covariance. This Gaussian
N (µ,Diag) has the same mean and covariance for all
the x. Hence, the predicted distribution is independent
from x;

• Full: Same as Diag but with a full covariance;
• GB(x)Diag: The model predicts a Gaussian
N (GB(x),Diag) where GB is a gradient boosted
trees model predicting the mean and previously tested in
[24]. The predicted covariance is constant, independent
from x. The covariance Diag is fitted using the error
made by the gradient boosted model. As the error on
the training set is much lower than the test set one, we
chose to fit the error on the test set STest. Thus, this
model is a “specific mean, constant covariance” model
that only serves as a basis of comparison;

• GB(x)Full: Same as GB(x)Diag but the covariance is a
full covariance.

• Diag(x): This model uses an ensemble of neural net-
works as described in Section V. Each neural network
predicts a multivariate Gaussian distribution with a diag-
onal covariance N (µ(x),Diag(x)). Each network has an
architecture similar to the one in Figure 5 with K = 1.
The L computed by the network is not used, we consider
L = 0. This model is similar to the one tested in [21];

• Full(x): Same as Diag(x) but the computed L is used.
As a consequence, the predicted distribution by each
network is a multivariate Gaussian distribution with a full
covariance.

• GMM(x): Same as Full(x) but with K > 1. As a
consequence, each network predicts a GMM.



9

D. Empirical Average Negative Log-Likelihood

Probability density functions (pdf’s) are sensitive to scal-
ing2. Our pdf aggregates variables that have a very different
range of values. The mass is orders of magnitude larger than
Mach. As a consequence, each y variable is centered and
scaled using the mean and variance computed on the first ten
months.

Table III presents the average NLL computed on the STest

for different models. We want the observed y to be very
likely according our predicted distribution. Thus, the lower
the average NLL is, the better our model is. From an infor-
mation theory perspective, this average NLL is the empirical
cross-entropy between the true distribution and the predicted
distribution.

Diag has an average NLL close to the entropy of a unit
variance Gaussian3. This was somewhat expected because the
y variables were standardized using the training set.

The Full model does not greatly reduces NLL except for the
DH8D. For the other aircraft types, the full covariance fitted
on the y’s are almost diagonal. The largest term for all these
covariances is between cas2 and Mach. However, except for
DH8D, this term is always inferior to 0.44.

For all the predictive models, the general observation is
that the “full” version only reduces slightly the NLL over
the “diag” version. This is somewhat surprising because the
associated covariances do not model the same thing. For the
Full model, it models Y ; for the GB(x)Full, it models the
errors y−GB(x) over the whole training set; and for Full(x),
it supposedly models Y |X = x. None of these different
problems seem to significantly benefit from a full covariance
model.

Going from Diag to GBDiag(x) gives a large 2.2 NLL
reduction on average. The former is a model for which the
predicted Gaussian distribution is independent from x. For
the latter model, only the standard deviation of the predicted
Gaussian is independent from x. The mean is predicted
using the gradient boosted tree regression method. Roughly
speaking, this NLL reduction quantifies the information gained
when we use the Gradient Boosted regression method instead
of a simple mean.

Going from GBFull(x) to Diag(x) gives a large 1.15 NLL
reduction. With the latter, the predicted diagonal covariances
are specific to the considered x.

The last big NLL reduction observed is between Full(x) and
GMM(x) with a 0.66 reduction. With the latter, the predicted
distributions are GMMs and might be very different from a
Gaussian.

In the end, using GMM(x) instead of GBDiag(x) provides
a 2.0 NLL reduction. This has to be compared with the 2.2
NLL reduction observed when using GBDiag(x) instead of
Diag. Roughly speaking, the information gained by using our
approach instead of a regression method is nearly as large
as the one gained by using a regression method instead of a
simple mean.

2For instance, ∀λ 6= 1, ∀y 6= 0, pN (µ,σ)(µ+ y) 6= pN (µ,λσ)(µ+ λy).
3EY∼N (0,I4)[− log pN (0,I4)(Y )] = 5.68.

Table III: For each x, the model predicts a probability density
function (pdf) y 7→ pModel(y|x). Using these pdf’s, we can
compute the average Negative Log-Likelihood of the observed
y’s: mean

(x,y)∈STest

[− log pModel(y|x)]. The lower this value is,

the better the performance is. Intuitively, we want the observed
y to be very likely according our predicted distribution.

model Diag Full GB(x)Diag GB(x)Full Diag(x) Full(x) GMM(x)

A319 5.82 5.70 3.74 3.65 2.37 2.26 1.46
A320 5.87 5.73 3.56 3.50 2.09 2.03 1.24
A321 5.88 5.75 3.56 3.51 2.29 2.22 1.49
A332 5.79 5.59 3.37 3.33 2.07 2.01 1.20
B737 5.77 5.66 3.58 3.52 2.26 2.23 1.61
B738 5.92 5.80 3.67 3.62 2.13 2.07 1.49

B77W 5.56 5.44 3.13 3.09 1.68 1.62 0.85
CRJ9 5.96 5.80 3.79 3.74 2.85 2.79 2.20

DH8D 5.89 5.19 3.06 2.74 2.13 1.73 1.36
E190 5.72 5.56 3.95 3.86 2.99 2.90 2.16
E195 5.65 5.49 3.91 3.81 2.93 2.85 2.19

CONCLUSION

In this study we have tested machine learning methods
using millions of climbing segments coming from The Open-
Sky Network. These climbing segments were completed with
weather forecasts, aircraft types and variants, departure and
arrival airports, estimated masses and speed profiles. The
filtered and augmented data set is available at https://opensky-
network.org/datasets/publication-data. The machine learning
code will be available at the author’s GitHub page. Inside the
ATM trajectory prediction community, we hope that sharing
the data set and the machine learning code will enable sci-
entifically sound comparisons based on the exact same data
set.

Using this data set, we have trained an ensem-
ble of neural networks to predict a Gaussian Mixture
Model (GMM). Considering a climbing aircraft, the pre-
dicted GMM supposedly models the conditional probabil-
ity p (mass, cas1, cas2,Mach|FLIGHT = flight) where flight
contains 10 past points of the flight, flight plan data and
weather data.

If this model is good, the likelihood of the observed values
according to our predicted distribution should be high. Using
this principle, the Negative Log-Likelihood (NLL) is used to
score the considered models.

In addition to the “GMM” model, other models were tested.
These models are increasingly complex. This gives us a series
of NLL scores that allows us to put into perspective the NLL
score obtained with the“GMM” model.

Among these models, the “Diag” model does not use any
flight information and always predicts the same distribution.
Another model, “GBDiag”, is based on a regression model
([24]). It is used to compute the mean of the predicted distri-
bution whereas the variance of this distribution is assumed to
be constant. The flight information is only used to predict the
mean, not the variance.

We observe almost the same NLL difference between
“Diag” and “GBDiag” than between “GBDiag” and “GMM”.
Roughly speaking, using “GMM” instead of a regression
model brings almost as much information as using a regression
model instead of a simple mean.

https://opensky-network.org/datasets/publication-data
https://opensky-network.org/datasets/publication-data
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Despite these results, neural networks might be fragile,
especially when out-of-distribution inputs are used. In that
respect, Gaussian Process Regression models with a good prior
might be more reliable.
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