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Abstract—In this paper, a post-operational detection method
based on functional principal component analysis and clustering
is presented and compared with regard to designed operational
criteria. The methodology computes an atypical scoring on a
sliding window. It enables not only to detect but also to localize
where trajectories deviate statistically from the others. The
algorithm is applied to the total energy management, estimated
from ground-based data, during approach and landing. The
detected atypical flights show non-nominal energy behaviors such
as glide interceptions from above or high speed approaches. This
promising methodology could help to enhance flight data analysis
and safety, highlighting non-monitored behaviors.

Index Terms—Approach Path Management, Atypical Flight
Event, Non-Compliant Approach, Functional Principal Compo-
nent Analysis, Unsupervised Learning, Anomaly Detection

GLOSSARY

ATC Air Traffic Control. 2

CDG Charles De Gaulle Airport. 2, 6, 7, 9

FDA Functional Data Analysis. 2–4
FPCA Functional Principal Component Analysis. 2–5, 7–9

GIFA Glide Interception From Above. 2, 5, 7, 9

NCA Non-Compliant Approach. 1, 2, 5
NSA Non-Stabilized Approach. 1

I. INTRODUCTION

A. Operational Motivations

Approach and landing accidents (i.e. accidents that occur
during the initial approach, the intermediate approach and dur-
ing landing) represent every year 47% of the total number of
accidents, and 40% of fatalities [1]. Moreover, a large majority
of accidents presents significant differences from nominal
approaches such as atypical speed or atypical altitude [2]. In
addition, Airport Terminal Maneuvering Areas and Control
Traffic Regions are characterized by a dense air traffic flow
of high complexity. This complexity will surely increase since

IATA forecast growth in air passengers worldwide from around
4 billion today, up to 7.8 billion in 2036 [3]. Consequently,
there is a crucial need for aircraft atypical approach detection.

To respond to International Civil Aviation Organization
safety requirements, the French Civil Aviation Authority has
launched since 2006 a national safety program, which for
the time being, is divided into three State Safety Programs
published for the period 2009-2013 [4], 2013-2018 [5] and
2018-2023 [6]. The risk portfolio [7] distinguishes undesir-
able events such as Non-Stabilized Approaches (NSA), from
ultimate events such as control flights into terrain, or mid-air
collisions. Undesirable events may lead to final events and
therefore jeopardize safety or reduce airfield capacity. Their
identification and detection is an important issue.

In nominal operations, flight path safety management con-
sists in procedures which guide the aircraft to intercept the
extended runway centre line, and the runway slope with an
expected configuration in order to land. A particular unde-
sirable event called Non-Compliant Approaches (NCA) was
defined in the second version of the 2008-2013 safety program
risk portfolio [7]. An approach is considered not compliant
when the intermediate and the final leg intercepting condi-
tions do not comply with the prescription of the operational
documentation. It may occur during either vectored or non-
vectored approaches, and for visual or instrument approaches.
An NCA is a potential precursor of NSA [8]. A stabilized
approach is one in which the pilot establishes and maintains
a constant angle glide-path, an approach speed and an aircraft
configuration towards a predetermined point on the landing
runway.

Geometrical criteria with horizontal and lateral margins
from the nominal path were defined to distinguish a compliant
from a non-compliant approach. In particular, interception
chevrons were created. They define a 45° maximum angle of
procedure radial interception. This angle may be reduced to
30° in specific situations such as dependent parallel runways.
Besides, a flight is expected to attend a 30-second levelled off
flight during the intermediate leg before descending on runway
slope in order to reduce speed and to configure properly for
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Figure 1. This figure describes Compliant Approach Criteria and illustrates
Stabilized Approaches.

landing. Figure 1 illustrates these criteria.
Non-Stabilized Approaches were found in several accidents

such as the Air Nostrum flight 8313 on July, 30th 2011,
where the aircraft suffered structural damage following a hard
landing at Barcelona Airport [9]. Peeks of descent rate above
3000ft/min were recorded and the aircraft flew over the runway
threshold at 315ft, where nominal Reference Datum Height
(RDH), i.e. the nominal height above threshold on-glide is
around 50ft. Another example is the crash of Asiana Airline
flight 214 of July, 6th 2014 at San Francisco Airport, which
counted 3 fatalities and 185 injuries [10]. The airplane was
recorded with a very low speed in the final approach and
finally stalled before crashing.

B. Previous Related Works in ATC

Compliance criteria were applied to flight operations to
give an overview of the current situation at Paris Charles-De-
Gaulle (CDG) Airport between February and August 2014.
The NCA module of the French Civil Aviation Authority tool
called ELVIRA was used. This module is a post-operational
analysis tool that studies radar trajectories and describes their
compliance. Over this period, 22% of flights were detected
as non-compliant with approximately 2% being significant. It
implies that the definition of compliance could be improved
since a large majority of detected non-compliant flights, do
not present significant safety issues. Too many false non-
compliant alarms may occur, which is troublesome for Air
Traffic Control (ATC) operations. Besides, a lack of energy
features was underlined. This study led to the identification of
different contributing factors and bias for NCAs such as extra
energy owing to high speed or tailwind in the final approach, or
the influence of QNH during the operations. Specific atypical
situations called Glide Interception From Above (GIFA) were
pointed out. These situations are particularly critical owing to
the potential difficulties to manage aircraft energy and because
aircraft are neither designed nor certified to intercept the glide
slope from above.

To improve safety and decrease the number of GIFA, an
online detection tool was set up at CDG Airport and used
by ATCs in real-time. It is composed of four 3D-volumes
using the Area Proximity Warning (APW) described in Figure
2. The first three volumes are warning volumes, the ATCs
advise pilots that they are too high on glide. The final volume

Figure 2. Illustration of Area Proximity Warning set up at CDG airport.

is a decision volume, where ATC and pilots must decide to
continue or to interrupt the approach.

The results of the experiments are positive since today
GIFAs are detected and an appropriate measure is taken.
Approximately 5 flights of the 700 per day raise an alarm
and in about half of the cases, ATCs suggest a recovery slope
as recommended.

This paper presents new criteria that extend those defined
in the NCA module of ELVIRA and defines off-line method-
ologies based on the specific total energy of the aircraft and
Functional Principal Component Analysis.

C. Functional Data Analysis Approach

Functional Principal Component Analysis (FPCA), is a
powerful mathematical tool from Functional Data Analysis
(FDA). FDA consists in studying a sample of random functions
generated from an underlying random variable [11]. They sig-
nificantly evolved during the 2000s with Ramsay et Silverman
[11]–[13]. Other theoretical and applied aspects aspects such
as regression or clustering were published by Ferraty and Vieu
[14], [15]. In practise, FPCA provides a simple, consistent,
and practical representation of high dimensional functional
objects such as trajectories, taking into consideration the
values and the variation of these functions. In all cases, a
prepossessing such as a re-sampling would be necessary before
going through unsupervised learning process. The FPCA also
provides a solution to dimensionality curse [16] by reducing
the dimension. Consequently, it is known to be efficient on
time series like trajectories, and motivates its use in this paper.

The applications of FDA are numerous. In [17] Ullah et
al. state many applications and underline its multidisciplinary
purpose. In particular, FDA is used in various research fields
such as medicine, biomedical, biology, finance and demogra-
phy. In aeronautics, FDA is also widespread. Gregorutti [18]
uses data from flight data recorders to develop a prediction
tool for long and hard landings. The tool mixes FDA and
wavelet decomposition with machine learning such as random
forests. During his Ph.D., a software was developed and is now
commercialized by a company called SafetyLine. Suyundikov
[19] presented a multivariate functional data clustering from
trajectories using FPCA in Sobolev spaces. Sobolev spaces are
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Figure 3. Illustration of the underlying process on each window slide

particular mathematical spaces that naturally ensure smooth-
ness and are therefore usually chosen to represent aircraft
trajectories. Hurter et al. [20] developed a bundling algorithm
for radar trajectory visualization based on a smoothing spline
decomposition and FPCA. Tastambekov [21] developed an
aircraft trajectory predictor based on local functional regres-
sion with wavelet decomposition and a k-means clustering
algorithm. Nicol [22] applied FPCA to study the underlying
variation mode of aircraft trajectories. Barreyre et al. presented
a novel outlier detection tool in functional data [23], and a
statistical outlier detection [24] for space telemetries, based
on wavelet decomposition and principal component analysis.
Finally, Yan et al. [25] proposed to apply FPCA to a sliding
window for dynamic prediction of longitudinal biomarker data,
in order to enhance performance robustness.

The contribution of this paper is a novel method using
FPCA to detect atypical behaviors applied to aircraft energy
management during approach. The innovative paradigm taken
in this methodology is to consider atypical, a trajectory that
does not follow in terms of values and variations the group
behavior. In addition, the use of a sliding window is a
major contribution that enables a localization of the atypical
behaviors.

The developed method consists in applying the following
process recursively, on a sliding window and to the whole
data-set. First, the dimension is reduced using the FPCA
process on the total energy trajectories. Next, an atypical
coefficient scoring is computed using hierarchical clustering
and outlier scoring. Finally, all the windows are aggregated
together. The underlying process on each window slide is
illustrated in Figure 3. Trajectories with an atypical atypical
coefficient above a threshold value during a reference duration
are considered as atypical.

The paper is divided into four parts. Firstly, mathemat-
ical backgrounds around functional data analysis and data
clustering are presented. Secondly, new features that extend
the geometric criteria to detect non-compliant approaches are
detailed. Thirdly, the atypical approach detection method is
explained. Finally, the method is illustrated on real data and
specific operational situations.

II. MATHEMATICAL BACKGROUNDS

A. Functional Data and Functional Principal Component
Analysis

Functional Data Analysis considers data as functions. In
aeronautics, trajectories are naturally smooth, hence the ex-
istence of the derivatives of the curves must be assumed to
ensure trajectory continuity and smoothness. Trajectories are

therefore usually modeled in a Hilbert space Hm of square
integrable functions where all the derivatives until the order
m are square integrable. Let f, g ∈ L2(J) be two functions,
the inner product associated with the Hilbert space is:

〈f, g〉 =

∫
J

f(t) g(t) dt,

And the usual norm called L2-norm is consequently defined
as:

||f ||2 = 〈f, f〉

The various FDA methods focus on the statistical analysis
of a set of curves. In practice, discretizations of these functions
at time tj , j = 1, ...m are observed. In aeronautics, approach
trajectories map a time interval to a state space Rd. In this
paper, such curve data are discretely recorded by radar every
4 seconds. Trajectories are observed on a time interval [0, Ti],
which can be different for each trajectory. For this reason,
the first step of FDA consists in recovering the functional
nature of curve data from discretized observations by using a
decomposition on a functional basis. A system of basis func-
tions is a set of known independent functions φk. A particular
property of basis functions is that every other function can be
approximated with a linear combination of a sufficient number
K of these basis functions. There are different basis function
systems in the literature such as polynomial basis, Fourier
basis, wavelet basis or smoothing spline basis [13]. In this
paper, a spline basis is used. Let B = {φ1, φ2, ...} be a basis
function system on a functional infinite dimension space, and
X a functional variable in this space. The approximation of
X of order K is:

X̂(t) =

K∑
k=1

ckφk(t) = cTφ (1)

Where c is the vector of length K with the ck coefficients,
and φ the vector of φk functions. To estimate the ck coeffi-
cients in φk basis, the ordinary mean square method is rec-
ommended. It consists in solving the following minimization
problem:

Min
ck

n∑
i=1

||yi −
K∑
k=1

ckφk(ti)||2 (2)

Where yi = x(ti) is the observation of a curve x at time ti.
Usually, a smoothness regularization penalty is added to

ensure the smoothness of the functions. In general, the smooth-
ness is ensured until the order m. The penalty is therefore:∫

J

||DmcTφ(s)||2ds (3)

Where Dm is the order m derivative. With this modelization,
the minimization problem becomes:

Min
ck

n∑
i=1

||yi −
K∑
k=1

ckφk(ti)||2 + λ

∫
J

||DmcTφ(s)||2ds

(4)
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Besides, FDA extends many multivariate statistical methods
to the functional setting. For example, Multivariate Principal
Component Analysis (MPCA) [26] was extended to functional
data. MPCA is a powerful statistic method that summarizes a
significant amount of data information by creating new vari-
ables as the linear combination of existent variables. It is an
orthogonal projection that concentrates the majority of the data
variance in the first components of the redescription space. It
enables simpler representation and analysis of complex or even
large dimension variables.

Let xi, i = 1, ..., p be a sampling of p statistic variables
observed over n samples. A weighting vector ξ such like the
redescription of xi is fi is defined as:

fi =
∑
j

ξjxij = ξTxi (5)

In practice, the redescription space is defined by using
a projection on the eigenbasis space of the observations
covariance matrix ordered by decreasing eigenvalues.

PCA was extended to the functional setting called Func-
tional Principal Component Analysis (FPCA) by Deville [27]
and Dauxois [28], [29]. When data are functions sampled from
an underlying stochastic process, FPCA enables dimension-
ality reduction by estimating the Karhunen-Loève decompo-
sition. With this decomposition, the trajectories can be rep-
resented by their decomposition coefficients on the principal
component basis and considered as a small dimension vector.
This process is described in Equation 6.

Γ(t) = γ(t) +

+∞∑
j=1

bjφj(t) (6)

It consists in considering each curve Γ as the weighted
sum of a mean curve γ plus the principal components φj by
defining the orthogonal basis that maximizes the explained
variance in the first dimensions. Usually, the decomposition is
truncated to keep an amount of variance, which also implies
dimensionality reduction. Figure 4 illustrates a very simple
example. Let’s consider a set of curves with a constant mean
µ̄. These curves present only two possible variations at time
ta and tb. The FPCA decomposition gives two principal
components functions φ1, φ2. Each original curve can be
written as a linear combination : µ̄ + b1 · φ1 + b2 · φ2, and
represented by their principal score vector (b1, b2).

In this paper, trajectories are not indexed with time but with
the remaining trajectory distance to the runway threshold. Con-
sistent comparisons can be obtained by using the remaining
distance to the runway threshold as aircraft do not operate
at the same speeds. Besides, in FPCA, the entire interval
is usually studied. However, in this methodology, the whole
process is applied on smaller intervals with a sliding window
in order to give a local atypicality score.

B. Introduction to Machine Learning and Data Clustering

A learning process consists in using data analysis methods
and artificial intelligence to predict systems behaviors. The aim
is to define a model that will fit the system as best as possible

Figure 4. Illustration of a simple FPCA decomposition. On the left side are
represented the original curves. On the right side, the mean and the principal
component functions.

[16]. Machine learning algorithms define learning models h,
that approximate the system function f :

f : X −→ Y (7)

The function f goes from the input space X to the output
space Y . The input space is usually composed by defined
dimension vectors of features but can also be an infinite dimen-
sion space. Y is a 1-dimension vector for binary classifications
or unidimensional regressions. For more complex models, it is
extended to a multi-dimension vector. hθ depends on adaptive
parameters θ, which are adjusted during the learning phase to
fit the problem.

The learning process is applied to a finite training set D.
Unsupervised learning is characterized by training samples
with only inputs of X . Supervised learning is characterized
by training samples composed of both an input of X and an
output of Y .

Usually, a learning algorithm tries to minimize the expected
risk over θ, the adaptive parameters of h [30], [31] :

R(hθ) =

∫
X×Y

l(hθ(X), Y ) dP (X,Y ) (8)

Where P is the data distribution and l is a loss function,
which can be defined in several ways. For regression the square
loss is usually used:

l(hθ(X), Y ) = (hθ(X)− Y )2 (9)

In practice, the data distribution is unknown so empirical
risk replaces expected risk in the minimization problem:

Remp(hθ) =
∑

〈X,Y 〉∈D

l(hθ(X), Y ) (10)

Data clustering consists in grouping similar data samples
together into subsets. The inputs are unlabeled data, and
the idea is to find underlying information to classify these
data [16]. This property is really important. It means that no
operational assumption is taken a priori, only the data structure
and its statistical distribution.

A way to perform a data clustering is to solve an opti-
mization problem that minimizes the intra-class variance and
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maximizes the inter-class variance over the possible clus-
ters. In this paper, a clustering algorithm called Hierarchical
Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) is used. This algorithm extends the DBSCAN
clustering method [32] by converting it into a hierarchical
clustering algorithm. It finally extracts a flat clustering based
on the stability of clusters [33]. The algorithm is divided into
five steps. It first transforms the space according to density.
Secondly, it builds the minimum spanning tree of the distance
weighted graph. Thirdly, a cluster hierarchy of the connected
components is constructed. Then, the cluster hierarchy based
on the minimum cluster size is condensed. Finally, it extracts
the stable clusters from the condensed tree.

An extension to data clustering is called anomaly or outlier
detection. After the clustering process, it is possible to consider
as outlier the elements that fall outside the clusters, i.e. the
elements that are far from any cluster. An algorithm called
Global-Local Outlier Score from Hierarchies (GLOSH) gives
a score between 0 and 1 for outliers [34]. It compares the
density of a point to the density of any points in the associated
current and child cluster. Samples with substantially lower
density than the cluster density are likely to be considered
as outliers.

In this paper, hierarchical clustering and outlier scoring are
applied to the principal coefficients of the FPCA decomposi-
tion to compute the local atypicality coefficient.

III. COMPLIANCE CRITERIA EXTENSION

In this section, the extension and the new compliance
features are presented. On all the figures, colored lines are
defined as follow: green is nominal, orange is a warning, red
is critical. The current situation and the conformity limits for
trajectories from the ELVIRA NCA module are the baselines
for all the features. As such, the chevrons, the 30 second level
off flight and the glide path define geometric limits.

In order to make the notion of compliance more restrictive
and thereby reducing the number of false alarms, two limits are
now considered: a warning limit and a critical limit. For both
altitude and lateral features, the limits defined in the ELVIRA
module correspond to the warning limit. Besides, a critical
limit is introduced. For the altitude feature, the critical limit
corresponds to the low altitude of the GIFA’s 3D volumes. For
the horizontal feature, the critical limit is defined as twice the
warning limit. Both limits are represented in Figure 5

During approach, an aircraft is supposed to fly a levelled off
flight path before intercepting the glide slope. Consequently, a
new feature referred as to Glide Angle (GA) is introduced. It
corresponds to the slope to join the touchdown point from the
current position. Considering the earth as a sphere implies an
altitude correction to compute the feature. This is illustrated
in figure 6. To give an example, with 11NM distance from the
runway threshold, there is an altitude difference of 107ft. The
Glide Angle feature is illustrated for a trajectory in figure 7.

The warning limit and the critical limit for this feature
correspond to the slope angle while intercepting Glide Slope
at 4350ft and 4700ft with a nominal 4000ft FAP. The warning
limit (resp. critical limit) for the Glide Angle feature is

Figure 5. Extended compliance criteria of NCA module: horizontal limits
(top) and vertical limits (bottom)

Figure 6. Illustration of altitude correction [35]

5



Figure 7. New criteria : glide angle. This corresponds to path angle to join
runway touchdown point from current position

consequently set to 0.4° (resp. 0.7°) up to the published glide
angle. This criteria starts at 25NM and ends at 3NM to avoid
considering the latent fluctuation of the tangent function used
to compute the feature near the touchdown point.

Finally, two other features are introduced to complete the
energy analysis of the trajectories: the Ground Speed (GS) and
the Vertical Speed (VS). The nominal, warning and critical
limits are based on operational on-glide deceleration issues.
The nominal operational on-glide deceleration in the literature
is between 10 kts/NM and 20 kts/NM [36]. Consequently, a
constant ground speed deceleration of 15 kts/NM from 250kts
(limit speed below FL100) to the stabilization height at 1000ft
with the aircraft computed approach speed vapp (average speed
over the last 3NM) is considered as nominal. The warning
limit corresponds to a 17.5 kts/NM on-glide deceleration from
Chevrons to vapp + 15kts at 1000 ft and the critical limit to
a 20 kts/NM deceleration from Chevrons to vapp + 30kts at
1000 ft. These limits are illustrated in Figure 8.

Regarding the vertical speed, while on glide, this is directly
linked to the ground speed. Besides, we consider that before
the FAP, the vertical speed is not supposed to change since the
aircraft has to follow a section of levelled off flight. Finally,
the warning limit (resp. critical) corresponds to a vertical speed
50% (resp. 100%) greater than the nominal vertical speed after
the stabilization height.

IV. ATYPICAL FLIGHTS DETECTION METHODS

In this paper, flight data contains 3024 A320 landing radar
records at CDG Airport during December 2011. The radar
records are composed of longitude, latitude, altitude, ground
speed, time, vertical speed, heading and aircraft type. Radar
data are recorded every 4 seconds.

Figure 8. New criteria : ground speed (top) and vertical speed (bottom)
function of the runway threshold remaining distance

6



A. Energy Motivations

The major issue for aircraft while landing is an excess of
energy. This may be found, for example, in situations where
an aircraft is too high on glide slope owing to GIFA resulting
in high potential energy, or has a high speed owing to tail
wind in final approach or late power reduction resulting in
high kinetic energy. By integrating the total energy, the tool
is able to detect both cases of non-compliance.

In this study, the total energy of the aircraft is used in
the runway coordinate system. Radar records do not contain
aircraft mass, but since the study only concerns the last phases
of flight before landing, the mass is assumed to be constant.
Therefore, an approximation of the total specific energy ET
(energy per unit mass) is computed as:

ET = Ec + Ep; Ec =
1

2
· (G2

s + V 2
z ); Ep = g · h (11)

Where Ep is the specific potential energy, Ec the specific
kinetic energy, Gs is the ground speed, Vz the vertical speed,
h the height and g the gravity constant.

The input of the algorithms is the total specific energy as a
function of the remaining distance to the runway threshold.

B. Algorithm

This method consists in applying the following process
on a sliding window (defined by its width ν and its shift
δ) recursively. First, a smoothing spline decomposition and
an FPCA over the pieces of trajectories are applied. Then,
the obtained features are projected over the k first principal
components of the FPCA decomposition. Finally, a clustering
to detect outliers far from every cluster is computed. The
HDBSCAN algorithm was used to perform the clustering.
The Global-Local Outlier Score from Hierarchies (GLOSH)
is finally used to give an outlier scoring. The value given is
between 0 for nominal samples and 1 for outliers. The method
is summed up in algorithm 1.

Data: T: the set of specific total energy as a function of
the last 25NM remaining distance to the runway
threshold

Knowing the width and the shift of the sliding window,
preprocess the data to obtain Ti, i = 1...n subset of the
energetic piece of trajectories.
for i=1...n do

Apply Spline Decomposition on Ti subset
Apply Functional Principal Component Analysis and

keep the k first principal component coefficients
Apply HDBSCAN clustering on the FPCA coefficient
Return an outlier scoring of the clustering with

GLOSH algorithm
end

Algorithm 1: Local Compliance Scoring by Principal Func-
tional Component Analysis of the Total Energy Algorithm

With this algorithm, each shift of the sliding window is
attributed a coefficient. To give a smoother representation of
the coefficient, an averaging process is used to compute the

discrete score. For example, the local compliance coefficient
at 10NM is computed by averaging all the sliding window
shift coefficients containing the 10NM point.

Finally, the detection phase is performed by computing the
length of the maximum interval for which atypical coefficients
are over a threshold τ . If the maximum interval length is
greater than a reference length λ, the trajectory is considered
as atypical.

C. Why is a sliding window used ?

The first question is why a sliding window is applied
and why the process does not use the whole trajectory, as
is usually the case in FPCA. To answer this question, the
process was applied on the whole trajectory. The advantages
and disadvantages of this approach are discussed below.

Radar records at CDG Airport during December 2011 were
used. The study focuses on the last 15 nautical miles (18NM to
3NM from the threshold) before stabilization of A320 aircraft
landing on runway 26L. First, using the whole trajectory
implies only using the threshold τ to separate nominal from
atypical trajectories. In this illustration, τ was fixed such that
the most distant percentile of trajectories is detected. The
results are illustrated in figure 9 where atypical flights are
represented in red.

The detected atypical flights are analyzed using the geomet-
ric limits defined in Section III. Of the 20 flights detected, 7
were too high too high and did not respect level flight, while
9 flights demonstrated a high speed. Besides, there is a severe
Glide Interception From Above shown in Figure 10. Other
interesting cases can be observed. Firstly, a flight with a very
large speed reduction at 9NM and with a significant lateral
deviation. Secondly, a flight that intercepts the glide slope at
3000ft instead of 4000ft. Then, a flight with low speed at 5NM
which sped up back to the approach speed. Finally, a landing
after a go around, which therefore started with low speed at
the beginning of the glide slope.

Using the whole interval presents several limitations. Firstly,
τ is a data set dependent parameter defined with the data distri-
bution. Secondly, outliers with a large score are considered as
atypical. The distribution of scores obtained with this process
is shown at the top of Figure 10 11. Scores near 1 are in red
and scores near 0 are in green. If this distribution is compared
with the labels obtained by the energetic features explained
in section III, it shows that the outlier coefficient is not
always appropriate since the warning and critical trajectories
seem to be located on the right side of the distribution. A
possible alternative could be to use a supervised learning
model, applying the resulting features as labels. Then, to
consider the outlier score as a function of the probability of
being in the class, given by the supervised learning method.
An illustration is shown at the bottom of Figure 11.

Finally, when the principal component analysis is performed
over the whole trajectory, local events could have been hidden
by the process. All these reasons motivate the sliding window
FPCA. Furthermore, an outlier score is given for each interval,
which can be interpreted as a local atypical score.
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Figure 9. Projection on the two first components (Top), and representation of
the total energy as a function of runway threshold remaining distance (bottom).
Outliers detected are represented in red

Figure 10. Glide interception from above detected as outlier by FPCA
detection method

Figure 11. Representation of outlier coefficient (top) and of supervised
classification with simple learning model (bottom)

D. Hyper parameters

The methodology aims at detecting atypical behaviors.
Too small window slides imply a few numbers of points.
Consequently, the FPCA process would not be able to capture
any inherent behavior. At the opposite too large window slides
would give similar results than those given in the previous
section, including potential hidden local events. Different inter-
mediate window sizes were tested (2NM, 3NM, 4NM, 5NM).
They all give similar results. Therefore, the sliding window
was fixed to 2NM by analogy to the operational compliance
levelled-off flight of 2NM. Besides, the atypical coefficient
computation uses an average of all the intervals containing
the particular location. This insures a smoothness of the
compliance coefficient. Finally, the detection rule parameters
λ and τ should be fixed depending on what the user wants to
detect. In this paper, a behavior is assumed to be atypical if it
persists more than 2NM. The threshold τ was fixed statistically
to categorise the highest 2% atypical trajectories.

V. CASE STUDY ANALYSES

In this subsection, the results obtained for a fix configuration
of the algorithm over specific situations are presented. The
length of sliding window is 2NM, which corresponds to a
flight of around 30s. The shift is 0.2NM (around the radar
refresh time). The compliance coefficient of a point is obtained
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by averaging all the coefficients over the sliding windows
that contain the point. The threshold τ is fixed at 0.6 and
the reference length λ to 2NM, which corresponds to the
sliding window width. For the FPCA, the 3 first principal
component coefficients are used. Finally, HDBSCAN uses a
minimum of 10 samples per cluster. The atypical detection
process was applied on the CDG approaches data set. Of the
3024 trajectories, 1.3% were considered as atypical by the
algorithm. This score seems to be better proportioned than
the original non-compliance criteria and implies a false alarm
number reduction.

A. Continuous Descent Approach (CDA)
CDAs are situations where an aircraft operates a continuous

descent and therefore does not follow a levelled off flight.
The geometric limits will always notify the situation with
an altitude deviation warning since the flight overpasses the
altitude limits designed for levelled off flights. Nevertheless,
it does not present a safety issue as it is a known procedure.
The only possible issue with CDA is high energy owing to
high speed. This paragraph underlines how the methodology
deals with this kind of situation.

30 flights that intercepted the glide slope at an altitude
above the published interception altitude and then proceeded
on a CDA were selected. For all the flights that presented a
nominal speed, none were considered as atypical. It suggests
that the method does not detect nominal energetic behavior.
Nevertheless, for those with a high ground speed such as the
flight illustrated in Figure 12, which has a ground speed of
around 250kts at the FAP, the sliding window detects high
energy. The energy was finally dissipated but it shows that it
was a potentially dangerous situation before the FAP.

Consequently, the method seems to be relevant for the
study of CDA. Indeed, only approaches with high speed are
considered as atypical.

a) Glide Interception From Above: In the dataset, there
are 6 cases of GIFAs. The result obtained for the GIFA
represented in Figure 10 are shown in Figure 13. The sliding
window method is very efficient since the atypical behavior is
accurately localized before 6NM. The results are similar for
the 6 cases.

The method seems to be effective in the detection of signifi-
cant GIFA. However, small GIFAs like bumpy profiles (flights
which performed levelled off flight on glide slope to decelerate
for example), resulting in an excess of potential energy, might
be counterbalanced by a low ground speed. Nevertheless,
this is consistent since the non-compliance induced by the
excess of altitude is averaged by the low speed in an energy
perspective.

B. Ground Speed Warning
In this paragraph, flights which had a ground speed warning

with the geometric features are analyzed. A typical example is
shown in Figure 14. The aircraft maintained a ground speed of
210 kts until 4NM and finally reduced speed, joining approach
speed apparently around stabilization. For all these situations,
the sliding window presents a large atypical area for the last
nautical miles and flights are detected as atypical.

Figure 12. Ground speed and atypical coefficient of a continuous descent
approach presenting high ground speed around FAP

Figure 13. Sliding window energy compliance score during a GIFA

C. Nominal Flight

Finally, the nominal flights without warning are studied to
be sure that they are considered as nominal by the algorithm.
Over 1270 nominal flights, only 10 are considered as atypical
by the algorithm. Of the 10 flights, 7 presented a low ground
speed on final approach possibly owing to the wind, and 3
presented a high speed and altitude before FAP and therefore
a very high total energy.

D. Methodology and result discussion

In this section, the relevance of the use of the proposed
methodology is discussed.
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Figure 14. Ground speed and atypical coefficient of a ground speed critical
flight

Firstly, as introduced in section I, national and international
safety authorities would like to detect and propose appropriate
corrections to undesirable events as soon as possible when they
occur. The FPCA decomposition provides a possible solution
since it not only takes into consideration the amplitude but
also the variation of the curves. A good example is illustrated
in Figure 13. Using operational criteria such as the Glide
Angle would lead to a detection (altitude over-passing the
3.7° critical limit) at around 16NM. However, the proposed
atypical scoring overpasses the 0.6 threshold at around 20NM
and therefore starts to be atypical at 18NM considering the
2NM reference length. This is explained by the fact that
other aircraft already started to reduce their energy while this
aircraft kept constant potential energy. Its energy variation did
not follow the group behavior and this his exactly what the
methodology detects. Consequently, the first advantage of this
method is that it anticipates non-nominal values considering
the curve variation.

Secondly, determining safety event precursors is a complex
problem. This methodology contribution is to provide potential
precursors flights, considering only one assumption: atypical
flights do not behave like the others. This assumption implies
a dedicated analysis of the extracted flights to decide if they
contain safety issues or not. Nevertheless, it has the advantage
of providing flights that might not have been monitored with
the current flight data analysis methods. Indeed, current safety
analyses mainly focus on the stabilization phase, i.e. the
last five nautical miles of the approach. To the best of the
author’s knowledge, only few studies have been conducted
in an approach path management perspective. Underlying
non-monitored behaviors enables better situation awareness.
Airline safety offices or air navigation service providers could,
for example, create safety advises when they consider that the
behaviors present a potential threat.

VI. CONCLUSIONS

In this paper, an atypical flight detection method based
on Functional Principal Component Analysis is presented. It
aims at enhancing safety in the approach and landing phases
of flight providing potential precursors to final events. The
proposed method consists in applying a Functional Principal
Component Analysis process and an outlier scoring on a
sliding window. The algorithm was applied to a specific total
energy profile to detect energy atypical behaviour at Charles
De Gaulle airport. The results of the method were compared to
geometric features built with operational limits and analyzed
on typical flight approach patterns. The FPCA method accu-
rately detects and locates different types of abnormal energy
situations, and shows an interesting anticipation property.

Future works will focus on validating the methodology with
on-board flight data monitoring events, and on developing a
complete post-operational analysis tool based on the method-
ology [37]. Currently, novel data generation methods using
Generative Adversarial Networks [38] is being developed. In
addition, Generative Adversarial Networks enable anomaly de-
tection and will be compared to the FPCA method. Finally, the
FPCA method can be extended to develop a real-time detection
tool, which could be very beneficial in the operational field.

ACKNOWLEDGMENT

The authors would like to give special thanks to Mr. André
Vernay, Mr. Yoni Malka and Mr. Paul-Emmanuel Thurat from
the French Civil Aviation Safety Authority for their significant
help in understanding the operational context. The authors
would also like to show their gratitude to Mr. Gaël Vincent and
Mr. Brice Panel from Paris Charles-De-Gaulle Airport ATC
operations for their time and their explanation of the complex
Paris northern airspace and Charles-De-Gaulle approach.

REFERENCES

[1] F. Jackman, “Nearly Half of Commercial Jet Accidents Occur During
Final Approach, Landing,” Nov. 2014.

[2] M. Tremaud, “Getting To Grips With ALAR,” tech. rep., Airbus Indus-
trie, Oct. 2000. Available at https://www.cockpitseeker.com/wp-content/
uploads/goodies/ac/a320/pdf/data/GettingToGripsWithALAR.pdf.

[3] IATA, “2036 Forecast Reveals Air Passengers Will Nearly Double to
7.8 Billion,” Oct. 2017. Available at https://www.iata.org/pressroom/pr/
pages/2017-10-24-01.aspx.

[4] DGAC, “Safety state program, 2009-2013,” 2009. Available at
https://www.ecologique-solidaire.gouv.fr/sites/default/files/DGAC_
Plan-Strategique_2009-2013_FR.pdf.

[5] DGAC, “Safety state program, horizon 2018,” 2013. Available
at https://www.ecologique-solidaire.gouv.fr/sites/default/files/
DGAC-PS-2018-FR-WEB.pdf.

[6] DGAC, “Safety state program, horizon 2023,” 2019. Available
at https://www.ecologique-solidaire.gouv.fr/sites/default/files/DSAC_
PlanHorizon_2023_FR.pdf.

[7] DGAC, “Risk portfolio, ssp 2009-2013,” 2010. Available
at https://www.ecologique-solidaire.gouv.fr/sites/default/files/
Cartographie_Risques_10_2010.pdf.

[8] A. Vernay, “Defining a Compliant Approach (CA): A joint response to
enhance the safety level of approach and landing,” HindSight17 - Safety
versus Cost, p. 44, July 2013. Available at https://www.eurocontrol.int/
sites/default/files/publication/files/130704-hs17.pdf.

10

https://www.cockpitseeker.com/wp-content/uploads/goodies/ac/a320/pdf/data/GettingToGripsWithALAR.pdf
https://www.cockpitseeker.com/wp-content/uploads/goodies/ac/a320/pdf/data/GettingToGripsWithALAR.pdf
https://www.iata.org/pressroom/pr/pages/2017-10-24-01.aspx
https://www.iata.org/pressroom/pr/pages/2017-10-24-01.aspx
https://www.ecologique-solidaire.gouv.fr/sites/default/files/DGAC_Plan-Strategique_2009-2013_FR.pdf
https://www.ecologique-solidaire.gouv.fr/sites/default/files/DGAC_Plan-Strategique_2009-2013_FR.pdf
https://www.ecologique-solidaire.gouv.fr/sites/default/files/DGAC-PS-2018-FR-WEB.pdf
https://www.ecologique-solidaire.gouv.fr/sites/default/files/DGAC-PS-2018-FR-WEB.pdf
https://www.ecologique-solidaire.gouv.fr/sites/default/files/DSAC_PlanHorizon_2023_FR.pdf
https://www.ecologique-solidaire.gouv.fr/sites/default/files/DSAC_PlanHorizon_2023_FR.pdf
https://www.ecologique-solidaire.gouv.fr/sites/default/files/Cartographie_Risques_10_2010.pdf
https://www.ecologique-solidaire.gouv.fr/sites/default/files/Cartographie_Risques_10_2010.pdf
https://www.eurocontrol.int/sites/default/files/publication/files/130704-hs17.pdf
https://www.eurocontrol.int/sites/default/files/publication/files/130704-hs17.pdf


[9] Centro de Publicaciones, Ministerio de Fomento, “Report A-029/2011,
Accident Involving a Bombardier CL-600-2b19 (CRJ200), Registration
EC-ITU, Operated by Air Nostrum, at the Barcelona Airport, on 30 July
2011,” tech. rep., Comisión de Investigación de Accidentes e Incidentes
de Aviación Civil, Madrid, 2013. Available at https://www.fomento.
gob.es/NR/rdonlyres/0E877F5B-5703-4AF3-95D9-3C6B1B8A2899/
118577/2011_029_A_ENG.pdf.

[10] C. A. Hart, R. L. Sumwalt, M. R. Rosekind, and E. F. Weener,
“Descent Below Visual Glidepath and Impact With Seawall Asiana
Airlines Flight 214 Boeing 777-200er, HL7742 San Francisco, Cali-
fornia July 6, 2013,” tech. rep., National Transportation Safety Board,
2014. Available at https://www.ntsb.gov/investigations/AccidentReports/
Reports/AAR1401.pdf.

[11] J. Ramsay and B. Silverman, Functional Data Analysis, Second Edition.
Springer Science & Business Media, 2005.

[12] J. O. Ramsay and B. W. Silverman, Applied Functional Data Analysis:
Methods and Case Studies. Springer, 2007.

[13] J. O. Ramsay, G. Hooker, and S. Graves, Functional Data Analysis with
R and MATLAB. Use R!, New York: Springer-Verlag, 2009.

[14] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory
and Practice. Springer Science & Business Media, Nov. 2006. Google-
Books-ID: lMy6WPFZYFcC.

[15] F. Ferraty, Recent Advances in Functional Data Analysis and Related
Topics. Springer Science & Business Media, June 2011. Google-Books-
ID: GarlvB5ZmqwC.

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics, Springer New York, 2013.

[17] S. Ullah and C. F. Finch, “Applications of functional data analysis: A
systematic review,” BMC Medical Research Methodology, vol. 13, Dec.
2013.

[18] B. Gregorutti, Forêts Aléatoires et Sélection de Variables: Analyse Des
Données Des Enregistreurs de Vol Pour La Sécurité Aérienne. PhD
Thesis, Paris 6, 2015.

[19] R. Suyundykov, S. Puechmorel, and L. Ferré, “Multivariate Functional
Data Clusterization by PCA in Sobolev Space Using Wavelets,” in
42èmes Journées de Statistique, 2010.

[20] C. Hurter, S. Puechmorel, F. Nicol, and A. Telea, “Functional Decom-
position for Bundled Simplification of Trail Sets,” IEEE transactions on
visualization and computer graphics, vol. 24, no. 1, pp. 500–510, 2018.

[21] K. Tastambekov, Aircraft Trajectory Prediction by Local Functional
Regression. PhD Thesis, Toulouse, INSA, 2012.

[22] F. Nicol, “Statistical Analysis of Aircraft Trajectories: a Functional Data
Analysis Approach,” Alldata 2017, The Third International Conference
on Big Data, Small Data, Linked Data and Open Data, pp. pp–51, 2017.

[23] C. Barreyre, B. Laurent, J.-M. Loubes, B. Cabon, and L. Bous-
souf, “Multiple testing for outlier detection in functional data,”
arXiv:1712.04775 [stat], Dec. 2017. arXiv: 1712.04775.

[24] C. Barreyre, B. Laurent, J.-M. Loubes, B. Cabon, and L. Boussouf,
“Statistical Methods for Outlier Detection in Space Telemetries,” in 2018
SpaceOps Conference, (Marseille), American Institute of Aeronautics
and Astronautics, May 2018.

[25] F. Yan, X. Lin, R. Li, and X. Huang, “Functional principal components
analysis on moving time windows of longitudinal data: dynamic predic-
tion of times to event,” Journal of the Royal Statistical Society: Series
C (Applied Statistics), vol. 67, pp. 961–978, Feb. 2018.

[26] I. Jolliffe, Principal component analysis. Springer, 2011.
[27] J.-C. Deville, “Méthodes Statistiques et Numériques de l’analyse Har-

monique,” in Annales de l’INSEE, pp. 3–101, JSTOR, 1974.
[28] J. Dauxois, Les Analyses Factorielles En Calcul Des Probabiblités et

En Statistique: Essai d’étude Synthétique. PhD thesis, Université Paul
Sabatier, 1976.

[29] J. Dauxois, A. Pousse, and Y. Romain, “Asymptotic Theory for the
Principal Component Analysis of a Vector Random Function: Some
Applications to Statistical Inference,” Journal of multivariate analysis,
vol. 12, no. 1, pp. 136–154, 1982.

[30] V. Vapnik, The Nature of Statistical Learning Theory. Springer New
York, 2013.

[31] V. Vapnik, Statistical Learning Theory. Adaptive and learning systems
for signal processing, communications, and control, Wiley, 1998.

[32] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” Kdd, vol. 96, no. 34, pp. 226–231, 1996.

[33] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-Based
Clustering Based on Hierarchical Density Estimates,” in Advances in
Knowledge Discovery and Data Mining, Lecture Notes in Computer
Science, pp. 160–172, Springer, Berlin, Heidelberg, Apr. 2013.

[34] R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander, “Hierarchi-
cal Density Estimates for Data Clustering, Visualization, and Outlier
Detection,” ACM Transactions on Knowledge Discovery from Data,
vol. 10, pp. 1–51, July 2015.

[35] J.-F. Perez and S. Fournie, “Conception de procédures aux instruments
- Cours IPD3f,” tech. rep., École Nationale de L’Aviation Civile, 2017.

[36] C. Lemozit, “Aircraft Energy Management during Approach,” tech. rep.,
Direction Générale de l’Aviation Civile, 2005.

[37] G. Jarry, D. Delahaye, and E. Féron, “Trajectory approach analysis: A
post-operational aircraft approach analysis tool,” 2019.

[38] G. Jarry, N. Couellan, and D. Delahaye, “On the use of generative
adversarial networks for aircraft trajectory generation and atypical
approach detection,” 2019.

11

https://www.fomento.gob.es/NR/rdonlyres/0E877F5B-5703-4AF3-95D9-3C6B1B8A2899/118577/2011_029_A_ENG.pdf
https://www.fomento.gob.es/NR/rdonlyres/0E877F5B-5703-4AF3-95D9-3C6B1B8A2899/118577/2011_029_A_ENG.pdf
https://www.fomento.gob.es/NR/rdonlyres/0E877F5B-5703-4AF3-95D9-3C6B1B8A2899/118577/2011_029_A_ENG.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR1401.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR1401.pdf

	Introduction
	Operational Motivations
	Previous Related Works in ATC
	Functional Data Analysis Approach

	Mathematical Backgrounds
	Functional Data and Functional Principal Component Analysis
	Introduction to Machine Learning and Data Clustering

	Compliance Criteria Extension
	Atypical Flights Detection Methods
	Energy Motivations
	Algorithm
	Why is a sliding window used ?
	Hyper parameters

	Case Study Analyses
	Continuous Descent Approach (CDA)
	Ground Speed Warning
	Nominal Flight
	Methodology and result discussion

	Conclusions
	References

