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Abstract

The atmospheric long-range propagation above the ground

is of major importance for many ground systems as radars.

The split-step wavelet method allows to compute efficiently

this propagation, using a matrix-vector product for the free-

space propagation. In this paper we propose a local method

for the free-space propagation based on library of propa-

gators. From numerical experiments, we show that this

new method is cheaper in terms of memory cost whereas

the matrix-vector product solution yields faster computa-

tion time.

1 Introduction

Modelling the electromagnetic wave propagation is a ma-

jor topic for numerous applications. The parabolic equa-

tion method (PE)[1, 2] is one of the most popular method

for those long-range simulations in inhomogeneous atmo-

spheres. To obtain the PE, a paraxial approximation is

made, and only the forward propagation is considered

The split-step Fourier method [2], or its discrete counter-

part DSSF [3], is efficient and widely used to compute the

propagation. DSSF is an iterative method that computes the

free-space propagation in the spectral domain and takes the

refractivity into account in the space domain with a phase

screen. For the ground condition the variable change of the

discrete mixed Fourier tranform (DMFT) is used [2, 5].

Recently an alternative method based on the wavelet trans-

form has been proposed [3, 4]. The main difference is that

instead of going in the spectral domain for the free-space

propagation, the field is decomposed in the wavelet do-

main with the fast wavelet transform (FWT)[6], and prop-

agated with a wavelet-to-wavelet propagation matrix. The

FWT has a lower complexity than the fast Fourier transform

(FFT) and the wavelet decomposition allows huge compres-

sion. Therefore, SSW outperforms DSSF in terms of com-

putation time.

In this paper SSW method is reminded and a new strategy

for the free-space propagation is introduced. It is based

on local propagators and has the advantage of reducing the

memory storage. Both methods are compared with DSSF

in terms of accuracy, speed, and memory usage.

The article is organised as follows. In Section 2 an overview

of SSW is presented and the methods for the free-space

propagation in the wavelet domain are exposed. Section

3 is devoted to numerical tests. The conclusion and discus-

sions are in Section 4.

2 Split-step wavelet method

2.1 Configuration and discretization

The hypothesis of a exp( jωt) time dependence for the field

is made, with ω the angular frequency. The aim is to model

the forward 2D (x,z) propagation assuming a y invariance

over the ground (z ≥ 0). The field u(x,z) is known at x =
0 with a source at x < 0. A decomposition in transverse

electric (TE) and magnetic (TM) components for the field

can be done. Only the TE case is studied here since the

same study goes for the TM case.

The domain of size x ∈ [0,xmax[ and z ∈ [0,zmax[ is dis-

cretized with a uniform grid

x = px∆x for px = 0, · · · ,Nx− 1, (1)

z = pz∆z for pz = 0, · · · ,Nz− 1, (2)

with ∆x and ∆z the step of discretization for x and z, respec-

tively.

2.2 Wavelet configuration

The FWT [6] is a multilevel decomposition on L+1 levels.

It is used in signal theory and data compression, see [6].

Here, the wavelet transform is applied on u along the z-

axis. The level l = 0 contains coefficients associated with

the scaling funtion. It corresponds to the lower part of the

spectrum, including the continuous components. The lev-

els l ∈ [1,L[ correspond to wavelets with various dilations.

Greater values of l correspond to faster variations of the sig-

nal. In this paper the wavelet family used is the "symlet6"

that can be used for the FWT and has a compact support.

The maximum level of decomposition is L = 3 for the FWT.

These choices are discussed in [4, 3].



2.3 Overview of the split-step wavelet

method

In this section the SSW method [3, 4] is summarized. SSW

is an iterative method to compute the propagation going

back and forth from a spatial to a wavelet representation

of the wave. The propagation of a field u from x to x+∆x,

with the previous grid is performed as follows:

1. The FWT (denoted W ) and a compression (denoted C)

are applied to the field u(x, pz∆z) such that

Ũ(x) =CWu(x, ·). (3)

with Ũ a sparse vector.

2. The free-space propagation is computed using a prop-

agator (denoted P)

Ũfs(x+∆x) = PŨ(x), (4)

where P represents the free-space propagator in the

wavelet domain. That models the wavelet-to-wavelet

propagations. This propagator is pre-computed and

stored in either a matrix as described in Section 2.4 or

in a library of local propagators as introduced in this

paper, see Section 2.5.

3. The IFWT (denoted W−1) is applied to the propa-

gated wavelet coefficients to obtain the field ufs(x +
∆x, pz∆z)

ufs(x+∆x, ·) =W−1Ũfs(x+∆x). (5)

4. Apodization, atmosphere and relief can be accounted

in the spatial domain, represented altogether by the op-

erator D [2]. Therefore, we have

u(x+∆x, ·) = Dufs(x+∆x, ·). (6)

A Hanning apodization window [1] is chosen for the

apodization. The ground condition is taken into account

using the local image theorem presented in [3]. This tech-

nique efficiently computes the reflection over the ground

along the propagation using a small number of extra-points.

A phase screen is applied to the field in the space domain to

consider a slowly varying atmosphere [1]. Irregular relief

is considered with a staircase model [1].

In the following sections 2.4 and 2.5, the strategies for the

free-space propagation (4) are detailed.

2.4 Propagation with a pre-computed matrix

In this section the free-space propagation step using a ma-

trix is described. The propagation is performed by a ma-

trix multiplication. This matrix P contains the wavelet-to-

wavelet propagations. The properties of translation and di-

lation of wavelets are taken into account for filling P effi-

ciently. The detailed method is given by Zhou et al. [3, 4]

and summarised below.

At each level l′, one wavelet χl′,0(0) is propagated on ∆x

with DSSF (other propagation methods can be used) to ob-

tain χl′,0(∆x).

The wavelet-to-wavelet coefficients are obtained by means

of a FWT and compression of χl′,0(∆x). This operation is

repeated at each level. Then translations are applied to ob-

tain the others coefficients of the matrix.

For a scenario the matrix is only computed once and can be

used again if the domain size and steps are the same. This

method has the advantage to be very efficient in terms of

computation time. The main disadvantage is that the prop-

agation matrix has a large memory size for a large domain.

The local propagator technique is described in the next sec-

tion to avoid this latter problem.

2.5 Propagation with pre-computed local

propagators

This section introduces a new method to compute the free-

space propagation step in SSW. The aim is to reduce the

memory size required for the propagation using only a li-

brary of local propagators.

Indeed since wavelets are obtained by translations and di-

lations, only a few local elementary propagators are neces-

sary.

Algorithm 1 explains how to construct the library. In this

algorithm the level 0 is considered as the level L. First, at

each level l, qmax(l) = 2L+1−l elementary propagators are

computed . For each propagator a wavelet of level l at the

position q, with q ∈ [0,qmax(l) is propagated using DSSF.

Then the propagator is obtained with FWT to come back

in the wavelet domain. A threshold Vm is applied to obtain

sparse elementary propagators.

Algorithm 1 Construction of the propagator library

1: Inputs: maximum level L, wavelet basis

2: Output: elementary propagator list PL,qmax(l)

3: \\ at each wavelet level

4: for l ∈ [1,L] do

5: qmax← qmax = 2L−l number of necessary operators.

6: χl,0(0)← wavelet at level l and position 0 .

7: for q ∈ [1,qmax] do

8: χl,q(∆x)← translate χl,0(0) along q points.

9: Pl,q← apply FWT and compression to χl,q(∆x).
10: end for

11: end for

This library is used to compute the propagation of each

non-zero coefficient of the wavelet decomposed field. This

propagation is detailed in algorithm 2. First the field is de-

composed in the wavelet domain (W ) and a threshold Vs

with a compression (C) is applied. Then each non-zero co-

efficient of Ũ is propagated using the appropriate elemen-

tary propagator. The propagator number depends on the



level l and the position of the coefficient, which is given by

the formula

q = p (mod qmax(l)), (7)

with p the position of the coefficient and qmax(l) the maxi-

mum number of operators needed at level l. Then a multi-

plication of the propagator by the coefficient gives the prop-

agated coefficients.

Algorithm 2 Free-space propagation with local operators

Inputs: field ux, elementary propagator list PL,qmax(l)

Output: propagated field ux+dx in free-space

Up← empty list of wavelet coefficient

ux← field at x.

Ux =CWux← wavelet decomposition of the field

Ũ ← sparse wavelet field

for each non-zero coefficient of Ũ do

l, p← level and position of the coefficient

α ← coefficient Ũ(l, p)
q← choose the operator number using (7)

Pl,q← corresponding elementary propagator

Ux+dx←Ux+dx +αPl,q

end for

ux+dx← IFWT(Ux+dx)

Furthermore, Ncoeff≪Nmat, with Ncoeff the number of coef-

ficients required for the library and Nmat the total number of

non-zero elements in P. Therefore, computing the library is

more efficient in time and memory size than computing the

matrix.

The local propagation on one step can then be summarized

as follows:

1. compute the list of elementary propagators with

threshold Vm;

2. decompose the field in the wavelet domain with

threshold Vs;

3. propagate all non-zero coefficients using the suitable

elementary propagators and summed;

4. go back in the spatial domain with IFWT and take into

account the relief and the atmosphere.

3 Numerical tests

The aim of this section is to compare SSW with a library

of propagators and with a matrix in terms of computation

time, memory usage and accuracy. To do that, we compare

the results of these 2 methods with DSSF.

The propagation of a complex source point (CSP) in a do-

main with a trilinear atmosphere and two triangular reliefs

is computed. The CSP parameters are: a frequency f =

300 MHz, with coordinates xs = xw0+ jk0W 2
0 /2, zs = 30 m,

with xw0 =−50 m and W0 = 5 m.

We consider a refractive duct modelled by a trilinear at-

mosphere. The parameters for the refractivity index are

M0 = 330 M-units, zb = 100 m, zt = 200 m, with gradi-

ents c0 = 0.118 M-units/m and c2 = −0.1 M-units/m, see

Fig. 1.

The relief is chosen as 2 small triangles of heights 100 m

and 200 m. The impedance ground is of parameters εr =
20.0 and σ = 0.02 S/m.

The domain is of size xmax = 100 km in horizontal and

zmax = 2048 m in vertical. An apodization window of the

vertical size is added. The grid size is 200 m in horizontal

and 0.5 m in vertical.

The signal and propagator thresholds are Vs = 10−3 and

Vm = 6× 10−5 respectively, so as to obtain an error of

−30 dB at the last iteration using the formula given by Zhou

et al. [4, 3]. The image layer for the ground condition is of

size 0.1zmax.

The electric field using the local version of SSW is repre-

sented in Fig 2. The effects of both the atmosphere and the

relief can be seen on that figure. The results is compared

to DSSF for validation. The electric fields at the last range

obtained with SSW and DSSF are shown in Fig. 3. The

error due to the thresholds can be seen when the field mag-

nitude is below −100 dBV/m. The maximum of the RMS

error is −34 dB, which is less than the −30 dB expected

value. The computation times and the memory usage of the

methods are compared in Table I.

Figure 1. Trilinear model for refractivity.

Table 1. Time and memory storage needed for this scenario

with each method.

- SSF matrix SSW local SSW

Initialization time (s) 0 2.9 1.0

Propagation time (s) 127 5.51 45

Total time (s) 127 8.41 46

memory for the propagator (Mb) - 63 2.1

The local method works well for computing the propaga-

tion over a relief with a trilinear atmosphere. The compu-

tation efficiency is better than SSF but is outperformed by



Figure 2. Electric field (dBV/m) in the vertical plane ob-

tained by SSW.

Figure 3. Electric field (dBV/m) at the maximum range

obtained by SSF and SSW.

the matrix version of SSW. This is normal since the local

propagation is performed only in Python, whereas the ma-

trix product uses a library coded in C language. Finally, the

memory usage is better with the library of operators than

with the pre-computed matrix.

4 Conclusion

A local strategy for the free-space propagation with SSW

has been introduced. This method is based on the wavelet

transformation property.

From a recently proposed method (SSW), that is using a

matrix-vector product for the free-space propagation, we

have proposed a method based on local propagators. The

former strategy using a matrix has the advantage of time ef-

ficiency. However, it is not efficient regarding the memory

storage.

The novel strategy, based on a propagator library, is less

efficient in terms of computation times as seen on the nu-

merical tests, see Section 3, but is better in terms of memory

resources used. Thus it is the best candidate for modelling

3D domains where the memory usage will be one of the

main challenges.
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