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VOR system

VOR gives an aircraft its bearing (azimuth) with respect to a ground beacon

VHF frequency band (108-118 MHz), horizontal polarization

Two components : a reference signal (REF) and a variable azimuth-dependent signal (VAR)

Two types of VOR station : Conventional VOR and Doppler VOR

Building restricted areas

Multipath yields bearing errors in the VOR
system

Surrounding objects can be a potential major
contributor to this error and particularly wind
turbines

ICAO recommendations exist but the applied
rules differs between countries
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Introduction

ENAC-EMA contribution

Static VOR error accuracy has been given in [Morlaas et al., ITAES 2008]

In [Morlaas et al., Eucap 2010], a hybridization of parabolic equation with physical optics has been
proposed, called VERSO for VOR Error SimulatOR

Improvements of this method have been discussed in [Claudepierre et al., Eucap 2015]

Confrontation with in-flight measurements at Boulogne-sur-Mer in [Claudepierre et al., Eucap 2016]

In [Ben-Hassine et al., EuCAP 2019], a digital IQ receiver model including filtering and demodulation
responses, has been developed ⇒ Take into account the variations in time of multipath in the bearing
error

Previous study : measurements of VOR signals

Measurements have been performed in [Bredemeyer, FCS 2015] to analyze the effect of multipath on
Doppler VOR signal

Objectives

Develop a tools to assess the impact of wind turbines on bearing in dynamic context

Analyze the response of digital IQ receiver model for a conventional VOR signal by means of
VHF measurement for one canonical multipath
Baseband IQ measurement in complex realistic scenarios
⇒ Compare the digital IQ receiver model with a calibration receiver
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VOR Receiver Model

Objective

Present the digital VOR receiver model

Proposed model

Developed model based on I/Q signals

Signal generator
Generate I/Q channels from time series of multipath parameters

Digital IQ receiver model

Envelope detector

VAR channel

REF channel

Azimuth estimation
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VOR Receiver Model
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Figure 2 – Block diagram of the VOR receiver

Used model parameters

IQ sampling frequency = 25 kHz

Decimation rate = 210

Filtering parameters

Type Fpass (Hz) Fstop (Hz) Rpass (dB) Rstop (dB)
Band pass filter
30 Hz

Butterworth [29,31] [24,36] 0.1 30

Low pass filter
DC

Butterworth 1 2 0.1 20

High pass filter
9960 Hz

Kaiser 8000 7000 ∅ 60

Table 1 – jjj
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Problematic with in-flight measurements (1)

Figure 3 – Wind farm located at 5 km from the VORC
station in Boulogne-sur-Mer

Figure 4 – Relief from the VOR station to the wind turbines

Parameters

Antenna of the Boulogne-sur-Mer VORC (113.8 MHz)

9 windturbines on 3 radials
Mast : ground diameter = 7.5 m, top diameter = 2 m, height = 98 m
Nacelle : 4 m × 11 m × 4 m
Blades : length = 35.5 m

Ground with relief
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Problematic with in-flight measurements (2)
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Figure 5 – Measured and simulated bearing error on radial ϕ = 78◦

Analysis

Good agreement for the error maximal value

Differences between simulations-measurements

Residual error without wind turbines (other
scatterers, noise)

Time variation of multipath

Atmospheric effects

Deficiencies in the configuration characteristics

⇒ Measurement parameters must be controlled to improve the analysis of our receiver behaviour
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Confrontation from VHF measurement : Description (1)

Objective

Compare the digital IQ receiver model with a calibration receiver by processing a VHF signal for one
canonical multipath in controlled environment

Measurement campaign

Generation of baseband VOR signals (direct + multipath)

VHF AM modulation

Combination/Splitting of VHF signals

Analog to IQ digital converter

Receiver processing
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Figure 6 – Block diagram of measurement campaign
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Confrontation from VHF measurement : Description (2)
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Confrontation from VHF measurement : Description (3)
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VHF AM modulation

Rohde & Schwarz SMA100

Generate an amplitude-modulated
VHF signals

Synchronized RF phases
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Confrontation from VHF measurement : Description (4)
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Combination/Splitting of VHF signals

Power splitter/combiner ZFSC-2-5

Combine the direct signal and the
multipath

Divide the signals towards the two
type of receivers
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Confrontation from VHF measurement : Description (5)
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Analog to IQ digital converter

TNT-SDR dongle type Nooelec
R820T2

Recover the baseband VOR signal

Analog to IQ digital converter

Save IQ binary data
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Confrontation from VHF measurement : Description (6)
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Calibration receiver

Rohde & Schwarz EVS300

ILS/VOR analyzer

Measure the azimuth information
via RF input
⇒ to compare with digital IQ
receiver model
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Confrontation from VHF measurement : Description (7)

VHF AM
Modulator

Calibration
receiver

Power
Combiner

Baseband VOR
signal generator

I

Q

Power
Splitter

IQ
Detector

Digital IQ
receiver model

VHF AM
Modulator

Direct signal generator

Multipath generator

LO sync

Baseband VOR
signal generator

Comparison

LO sync

VHF phase
constant
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Measurement process

The parameters of the IQ receiver model are fixed
Band pass filter 30 Hz
High pass filter 9960 Hz
Low pass DC filter

Set an azimuth difference between direct and multipath at a value of 90◦

⇒ maximize the conventional VOR error

Manual variation of the RF phase shift between the direct signal and the multipath
⇒ generate variations on the bearing error
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Confrontation from VHF measurement : Results

Confrontation result

CVOR frequency = 113 MHz

Recording time = 6 mn

VHF direct signal
Power = -50 dBm
Azimuth = 0◦

Phase = 0◦

VHF multipath signal
Power = -70 dBm
Azimuth = 270◦

Variable phase in [−90◦, 90◦] by
hand random turning

Analysis

Relative similarity between the
behaviours of digital and calibration
receiver

Delay between the two responses
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Figure 7 – Receivers responses
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Confrontation from baseband IQ measurement : Description

Objective

Compare the digital IQ receiver model with a calibration receiver by processing a baseband IQ signal in
complex scenario

Measurement campaign

Generation of baseband IQ signal in a complex scenarios computed with a multipath times series
simulator

Transmission of IQ data by means of standard sound card to R&S EVS300 receiver via its LF input

Receiver processing by ; static model (Odunaiya), digital IQ receiver model and R&S EVS300

IQ signals
Generator
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Q

IQ
Sound Card

Digital IQ
receiver model

Multipath times series
Simulator

Multipath
times series

Static model
(Odunaiya)

I

Q

R&S
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Figure 8 – Block diagram of measurement campaign
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Multipath times series simulator
2-rays model

Planar dielectric ground

Physical optics
Planar dielectric ground

Parabolic equation
Dielectric ground with relief

Input/output

Input

VOR station position and radiation pattern

Positions and characteristics of the wind turbines

Relief

Aircraft trajectory

Space sampling step of trajectory

Aircraft speed

Output

Time series of multipath parameters : amplitude
an, phase θn and azimuth ϕn (relative to
Magnetic North)
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Confrontation from baseband IQ measurement : Configuration

Configuration

CVOR station
F = 113.8 MHz
P = 50 W

1 wind turbine is placed at 1 km from
the VOR

Simplified model
Based on ENERCON E82 size
Mast : ground diameter = 7 m, top
diameter = 3 m, height = 90 m
Nacelle : 3 m × 3 m × 3 m
Blades : length = 10 m

VOR Receiver
Straight trajectory of 15 km
Departure = [500,0,1000] m
Speed = 180 km/h
Space step = λ

5 ≃ 0.526 m
Motionless for the first 5 s

VOR

Wind turbine

Receiver

500 m

15 km

1 km

1
km

x

z

y

Figure 9 – Configuration
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Confrontation from baseband IQ measurement : Results (1)

VOR

Wind turbine

Receiver
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15 km
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Figure 10 – Configuration Figure 11 – Receivers responses

Analysis

Good agreement between receiver model and calibration device
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Confrontation from baseband IQ measurement : Results (2)
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Figure 12 – Configuration Figure 13 – Receivers responses

Analysis

Good agreement between receiver model and calibration device

When the multipath varies slowly ⇒ digital and calibration receiver response = static model response
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Confrontation from baseband IQ measurement : Results (3)
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Figure 14 – Configuration Figure 15 – Receivers responses

Analysis

Good agreement between receiver model and calibration device

When the multipath varies slowly ⇒ digital and calibration receiver response = static model response

When the multipath varies quickly ⇒ digital and calibration receiver response 6= static model response
⇒ It is due to the dynamic effects of multipath
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Confrontation from baseband IQ measurement : Results (4)
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Figure 16 – Configuration Figure 17 – Receivers responses

Analysis

Good agreement between receiver model and calibration device

When the multipath varies slowly ⇒ digital and calibration receiver response = static model response

When the multipath varies quickly ⇒ digital and calibration receiver response 6= static model response
⇒ It is due to the dynamic effects of multipath

Digital and calibration receiver response is shifted with respect to 0◦ between 5 s and 150 s⇒ It is due
to the group delay of receivers25/28
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Dynamic effects of multipath

Geometric criterion for dynamic sensitivity of VOR receiver

[Ben-Hassine et al., EuCAP 2020] : "Validity Domain of the Odunaiya Expression for Computing
the Conventional VOR Multpath Error"

Doppler frequency of multipath depends on the speed of the aircraft and its position with respect to the
VOR station and wind turbine

When the Doppler frequency δfmult is not included in one of the two filter bandwidths of receiver
(W30,WDC ) ⇒ no multipath error

Odunaiya model is considered invalid (red area) when

|δfmult | >
min(W30, WDC)

2
(1)

Figure 18 – Validity domain of the Odunaiya expression (in blue)
26/28



Introduction VOR Receiver Model Confrontation from VHF measurements Confrontation from baseband IQ measurements Conclusion

Plan

1 Introduction

2 VOR Receiver Model

3 Confrontation from VHF measurements

4 Confrontation from baseband IQ measurements

5 Conclusion

27/28



Introduction VOR Receiver Model Confrontation from VHF measurements Confrontation from baseband IQ measurements Conclusion

Conclusion

Conclusion

Analysis of the digital IQ receiver model behaviour

Comparison with a calibration receiver (R&S EVS300) from laboratory measurements by processing a
VHF conventional signal for one canonical multipath

Baseband IQ conventional signal in complex realistic scenarios

Good agreement between results

⇒ Good confidence in the parameters of the digital IQ receiver model

Future works

Validation with a Doppler VOR multipath

Confrontation with other types of receivers (R&S EB200)
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