Introduction 000 VOR Receiver Model 000 Confrontation from VHF measurement

Confrontation from baseband IQ measurements

Conclusior O

Analysis of an IQ Receiver Model by means of Laboratory Measurements for Conventional VOR

Seif Ben-Hassine, Alexandre Chabory, Christophe Morlaas, Rémi Douvenot

ENAC, TELECOM-EMA, Université de Toulouse, Toulouse, France

Funded by

December 6, 2019 EMWT 2019, Toulouse, France

Introduction	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion
000	000	0000000000	00000000	

VOR system

- VOR gives an aircraft its bearing (azimuth) with respect to a ground beacon
- VHF frequency band (108-118 MHz), horizontal polarization
- Two components : a reference signal (REF) and a variable azimuth-dependent signal (VAR)
- Two types of VOR station : Conventional VOR and Doppler VOR

Building restricted areas

- Multipath yields bearing errors in the VOR system
- Surrounding objects can be a potential major contributor to this error and particularly wind turbines
- ICAO recommendations exist but the applied rules differs between countries

Introduction	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion
000	000	0000000000	00000000	
Introduc	rtion			

ENAC-EMA contribution

- Static VOR error accuracy has been given in [Morlaas et al., ITAES 2008]
- In [*Morlaas et al.*, Eucap 2010], a hybridization of parabolic equation with physical optics has been proposed, called VERSO for VOR Error SimulatOR
- Improvements of this method have been discussed in [Claudepierre et al., Eucap 2015]
- Confrontation with in-flight measurements at Boulogne-sur-Mer in [Claudepierre et al., Eucap 2016]
- In [Ben-Hassine et al., EuCAP 2019], a digital IQ receiver model including filtering and demodulation responses, has been developed ⇒ Take into account the variations in time of multipath in the bearing error

Previous study : measurements of VOR signals

• Measurements have been performed in [*Bredemeyer*, FCS 2015] to analyze the effect of multipath on Doppler VOR signal

Objectives

- Develop a tools to assess the impact of wind turbines on bearing in dynamic context
- Analyze the response of digital IQ receiver model for a conventional VOR signal by means of
 - VHF measurement for one canonical multipath
 - Baseband IQ measurement in complex realistic scenarios
 - \Rightarrow Compare the digital IQ receiver model with a calibration receiver

Introduction	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion
000	000	0000000000	00000000	
Plan				

Introduction

VOR Receiver Model

Confrontation from VHF measurements

Confrontation from baseband IQ measurements

Used model parameters

- IQ sampling frequency = 25 kHz
- Decimation rate = 210
- Filtering parameters

	Туре	F _{pass} (Hz)	F_{stop} (Hz)	R_{pass} (dB)	R_{stop} (dB)
Band pass filter 30 Hz	Butterworth	[29,31]	[24,36]	0.1	30
Low pass filter DC	Butterworth	1	2	0.1	20
High pass filter 9960 Hz	Kaiser	8000	7000	Ø	60

	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion
000	000	0000000000	00000000	
Plan				

Introduction

VOR Receiver Model

Confrontation from VHF measurements

Confrontation from baseband IQ measurements

	VOR Receiver Model
00	000

Confrontation from VHF measurements

Confrontation from baseband IQ measurements

Conclusio O

Problematic with in-flight measurements (1)

Figure 4 - Relief from the VOR station to the wind turbines

Figure 3 – Wind farm located at 5 km from the VORC station in Boulogne-sur-Mer

Parameters

- Antenna of the Boulogne-sur-Mer VORC (113.8 MHz)
- 9 windturbines on 3 radials
 - Mast : ground diameter = 7.5 m, top diameter = 2 m, height = 98 m
 - Nacelle : 4 m \times 11 m \times 4 m
 - Blades : length = 35.5 m
- Ground with relief

	VOR Receiver Model
000	000

Confrontation from VHF measurements

Confrontation from baseband IQ measurements

Conclusion O

Problematic with in-flight measurements (2)

Figure 5 – Measured and simulated bearing error on radial $\varphi=78^\circ$

Analysis

- Good agreement for the error maximal value
- Differences between simulations-measurements
 - Residual error without wind turbines (other scatterers, noise)
 - Time variation of multipath

- Atmospheric effects
- Deficiencies in the configuration characteristics
- \Rightarrow Measurement parameters must be controlled to improve the analysis of our receiver behaviour $_{9/28}$

Introduction 000	VOR Receiver Model 000	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion O
Confron	itation from V	HF measurement : Des	scription (1)	
Objective				
a Comp	ore the digital IO re	ceiver model with a calibration	receiver by processing a VHE signal	for one

• Compare the digital IQ receiver model with a calibration receiver by processing a VHF signal for one canonical multipath in controlled environment

Measurement campaign

- Generation of baseband VOR signals (direct + multipath)
- VHF AM modulation
- Combination/Splitting of VHF signals

- Analog to IQ digital converter
- Receiver processing
 - R&S EVS300
 - Digital IQ receiver

Figure 6 – Block diagram of measurement campaign

000	000		00000000	0
	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion

Generation of baseband VOR signals

- HP 8904A generator
- Generate the baseband VOR signals (direct + multipath)
- Synchronized LF phases

000	000 		00000000	0
Introduction	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion

VHF AM modulation

- Rohde & Schwarz SMA100
- Generate an amplitude-modulated VHF signals
- Synchronized RF phases

Introduction 000	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion O
Confront	tation from VI	HF measurement : Des	cription (4)	

Combination/Splitting of VHF signals

- Power splitter/combiner ZFSC-2-5
- Combine the direct signal and the multipath
- Divide the signals towards the two type of receivers

Introduction	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion
Confront	ation from VI	IE measurement : Des	cription (5)	

Analog to IQ digital converter

- TNT-SDR dongle type Nooelec R820T2
- Recover the baseband VOR signal
- Analog to IQ digital converter
- Save IQ binary data

	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion		
000	000	00000000000	00000000	0		
Confrontation from VHE massurement : Description (6)						

Calibration receiver

- Rohde & Schwarz EVS300
- ILS/VOR analyzer
- Measure the azimuth information via RF input
 ⇒ to compare with digital IQ
 - receiver model

Measurement process

- The parameters of the IQ receiver model are fixed
 - Band pass filter 30 Hz
 - High pass filter 9960 Hz
 - Low pass DC filter
- Set an azimuth difference between direct and multipath at a value of 90°
 - \Rightarrow maximize the conventional VOR error
- Manual variation of the RF phase shift between the direct signal and the multipath
 - \Rightarrow generate variations on the bearing error

	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusio
000	000	0000000000	00000000	
<i>c c</i>			1.	

Confrontation from VHF measurement : Results

Confrontation result

- CVOR frequency = 113 MHz
- Recording time = 6 mn
- VHF direct signal
 - Power = -50 dBm
 - Azimuth = 0°
 - Phase = 0°
- VHF multipath signal
 - Power = -70 dBm
 - Azimuth = 270°
 - Variable phase in [-90°, 90°] by hand random turning

Analysis

- Relative similarity between the behaviours of digital and calibration receiver
- Delay between the two responses

	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion
000	000	000000000	00000000	
Plan				

Introduction

VOR Receiver Model

Confrontation from VHF measurements

Confrontation from baseband IQ measurements

	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements
000	000	0000000000	•00000000
~ ~			- · · ·

Confrontation from baseband IQ measurement : Description

Objective

• Compare the digital IQ receiver model with a calibration receiver by processing a baseband IQ signal in complex scenario

Measurement campaign

- Generation of baseband IQ signal in a complex scenarios computed with a multipath times series simulator
- Transmission of IQ data by means of standard sound card to R&S EVS300 receiver via its LF input
- Receiver processing by; static model (Odunaiya), digital IQ receiver model and R&S EVS300

Figure 8 – Block diagram of measurement campaign

Input/output

Input

- VOR station position and radiation pattern
- Positions and characteristics of the wind turbines
- Relief
- Aircraft trajectory
- Space sampling step of trajectory
- Aircraft speed

20/28

Output

• Time series of multipath parameters : amplitude a_n , phase θ_n and azimuth φ_n (relative to Magnetic North)

Canford	ation former has			
000	000	0000000000	0000000	0
	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion

Confrontation from baseband IQ measurement : Configuration

Configuration

- CVOR station
 - F = 113.8 MHz
 - P = 50 W
- 1 wind turbine is placed at 1 km from the VOR
 - Simplified model
 - Based on ENERCON E82 size
 - Mast : ground diameter = 7 m, top diameter = 3 m, height = 90 m
 - Nacelle : 3 m \times 3 m \times 3 m
 - Blades : length = 10 m
- VOR Receiver
 - Straight trajectory of 15 km
 - Departure = [500,0,1000] m
 - Speed = 180 km/h
 - Space step = $\frac{\lambda}{5} \simeq 0.526$ m
 - Motionless for the first 5 s

Confrontation from baseband IQ measurement : Results (1)

	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusi
000	000	0000000000	00000000	
-				

Confrontation from baseband IQ measurement : Results (2)

- Good agreement between receiver model and calibration device
- When the multipath varies slowly \Rightarrow digital and calibration receiver response = static model response

Analysis

- Good agreement between receiver model and calibration device
- When the multipath varies slowly \Rightarrow digital and calibration receiver response = static model response
- When the multipath varies quickly \Rightarrow digital and calibration receiver response \neq static model response \Rightarrow It is due to the dynamic effects of multipath

Analysis

- Good agreement between receiver model and calibration device
- When the multipath varies slowly \Rightarrow digital and calibration receiver response = static model response
- When the multipath varies quickly \Rightarrow digital and calibration receiver response \neq static model response \Rightarrow It is due to the dynamic effects of multipath
- Digital and calibration receiver response is shifted with respect to 0° between 5 s and 150 s \Rightarrow It is due to the group delay of receivers

D				
000	000	0000000000	000000000	
	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion

Dynamic effects of multipath

Geometric criterion for dynamic sensitivity of VOR receiver

[Ben-Hassine et al., EuCAP 2020] : "Validity Domain of the Odunaiya Expression for Computing the Conventional VOR Multpath Error"

• Doppler frequency of multipath depends on the speed of the aircraft and its position with respect to the VOR station and wind turbine

(1)

- When the Doppler frequency δf_{mult} is not included in one of the two filter bandwidths of receiver $(W_{30}, W_{DC}) \Rightarrow$ no multipath error
- Odunaiya model is considered invalid (red area) when

Introduction	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion
000	000	0000000000	00000000	
Plan				

Introduction

VOR Receiver Model

Confrontation from VHF measurements

Confrontation from baseband IQ measurements

	VOR Receiver Model	Confrontation from VHF measurements	Confrontation from baseband IQ measurements	Conclusion
000	000	0000000000	00000000	•
Conclusi	on			

Conclusion

- Analysis of the digital IQ receiver model behaviour
- Comparison with a calibration receiver (R&S EVS300) from laboratory measurements by processing a
 - VHF conventional signal for one canonical multipath
 - Baseband IQ conventional signal in complex realistic scenarios
- Good agreement between results
 - \Rightarrow Good confidence in the parameters of the digital IQ receiver model

Future works

- Validation with a Doppler VOR multipath
- Confrontation with other types of receivers (R&S EB200)