Introduction	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error	Simulation	Conclusion
0000	00000000000	00000	00	0000	00

A Stastistical Model for Assessing the Impact of Wind Turbines on Conventionnal VOR

Alexandre Chabory, Seif Ben Hassine, Christophe Morlaas, Rémi Douvenot

ENAC, TELECOM-EMA, Toulouse, France Université de Toulouse, France

e-mail: alexandre.chabory@recherche.enac.fr

December 6, 2019

Introduction	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error	Simulation	Conclusion
Plan				0000	

Introduction

2 VOR Error Simulator

Probability Distribution for the Multipath Parameters

Statistics of the bearing error

Simulation

Introduction	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error		Conclusion
0000	00000000000	00000	00	0000	00
Contex	t				

- Impact of large size obstacles, such as wind turbines, on VOR performances
- Multipath \Rightarrow Error in the azimuth assessed by the aircraft receiver

Existing tools

Two steps

- $\bullet~$ Computation of the multipath characteristics: magnitude, phase, azimuth $\Rightarrow~$ Electromagnetic simulation
- Computation of the bearing error
 - \Rightarrow Use of the Odunaiya expression or a receiver model

Example

• VERSO: VOR Error Simulator, developed by ENAC, funded by ENAC and DSNA

Limitations

- Require high computationnal resources
- Require to perfectly know the configuration
- Results are highly dependant on the trajectory: Modification of the trajectory of order few meters
 - \Rightarrow Change in the multipath phase
 - \Rightarrow Change in the bearing error

Introduction	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error		Conclusion
0000	00000000000	00000	00	0000	00
Objecti	ve				

Objective

Propose a statistical model for the bearing error with which

- The only parameters are the aircraft and wind turbine positions
- The other parameters (wind turbine size, materials, ground composition, ...) follow statistical distributions

Main steps to develop this model

- Determine the statistical distributions associated with the multipath parameters
- Determine the statistical distribution associated with the bearing error
- Perform Monte Carlo simulations with VERSO to assess the parameters of the statistical distributions

Introduction	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error	Simulation	Conclusion
0000	00000000000		OO	0000	00
Plan					

VOR Error Simulator

- Probability Distribution for the Multipath Parameters
- Statistics of the bearing error

Introduction	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error	Simulation	Conclusion
0000	•0000000000		OO	0000	00
Plan					

Introduction

2 VOR Error Simulator

Probability Distribution for the Multipath Parameters

Statistics of the bearing error

Simulation

Introduction	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error	Simulation	Conclusion
0000	0000000000	00000	00	0000	00

General characteristics of wind turbines

Windturbine characteristics

Mast

- Metallic with a possible reinforced-concrete lower part
- Conical shape of height from 60 to 140 m
- Hub box
 - Metallic or dielectric, metallic generator
 - Ovoid or rectangular shape
- Blades
 - Multilayer dielectric : glass or carbon fiber, epoxy, mix of materials
 - · Lightning protection thin metallic plate or wire

Used model

- Mast: metallic conical section
- Nacelle: metallic rectangular box
- Blade: Simplified multilayer dielectric structure
- Lightning protection: metallic wire

Mesh: multilayer-slab or metallic polygonal facets

Input/output

Input

- VOR station position and radiation pattern
- Positions and characteristics of the wind turbines
- Relief
- Aircraft trajectory

Output

- Scattered field
- VOR error

VERSO		r SimulatOr			
0000	00000000000	00000		0000	00
	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error		Conclusion

VERSO : VOR ERror SimulatOr

Two-rays model

- Take into account the ground in the VOR station antenna radiation
- Calculation of the direct path

Parabolic equation

Model the propagation VOR station \rightarrow wind turbines

Parabolic equation Dielectric ground with relief

 \Rightarrow Grazing incidence, significant influence of the ground relief

Split-step-Fourier parabolic equation method:

- The relief is accounted
- Only the Forward propagation is accounted
- 2D model (no lateral effect of the relief)
- Atmospheric refraction is accounted

VERSO		r SimulatOr		
	00000000000			
	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error	Conclusion

Hybridization

On each polygonal facet of the wind turbine, the incident field is interpolated as a plane wave

VERSO	· \/OR ERro	r SimulatOr			
0000	00000000000	00000	00	0000	00
	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error		Conclusion

Physical optics

- Multilayer-slab or metallic polygonal facets with an incident plane wave
- Currents calculation using the physical optics approximation
- Fast calculation of the radiation integrals
- Hypotheses: large enough wind turbines, no multiple scattering, planar dielectric ground

VOR error

- Scattered field are clustered with respect to their azimuth of arrival
 ⇒ List of multipath: amplitude a_n, phase θ_n, azimuth φ_n
- Conventional VOR error formula (a similar formula exists for Doppler VOR)

$$\varepsilon^{\mathsf{C}} = \tan^{-1} \left(\frac{\sum_{n=1}^{N} a_n \cos(\theta_n - \theta_0) \sin(\varphi_n - \varphi_0)}{a_0 + \sum_{n=1}^{N} a_n \cos(\theta_n - \theta_0) \cos(\varphi_n - \varphi_0)} \right)$$

Introd	
000	0

VOR Error Simulator Probability Distribution for the Multip

Statistics of the bearing error		Conclusion	
00	0000	00	

In-flight measurement campaign

Figure 1: Windfarm located at 5 km from the VORC station in Boulogne-sur-Mer.

Figure 2: Relief from the VOR station to the wind turbines.

Parameters

- Antenna of the Boulogne-sur-Mer VORC (113.8 MHz)
- 9 wind turbines on 3 radials
 - Mast : ground diameter = 7.5 m, top diameter = 2 m, height = 98 m
 - Nacelle : 4 m \times 11 m \times 4 m
 - Blades : length = 35.5 m
- Three in-flight campaigns:
 - Without wind turbines up to a distance of 15 km from the VOR (May 2009) ;
 - With wind turbines masts at approximately 5 km from the VOR (July 2012);
 - With complete wind turbines (November 2012).
- Ground with relief

Analysis

- Good agreement for the error envelop and maximal value
- Relatively strong residual error without wind turbines (other scatterers, noise)
- Rapid oscillations due to complex combination of multipath with various phases. Difficult to reproduce exactly in simulation

Computation time = 13 min

	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error		Conclusion
0000	0000000000	00000	00	0000	00
<u> </u>		and the second			

Complementary analyses via simulations

Influence of the aircraft trajectory

Configuration

Two simulation campaigns with slight changes in the aircraft trajectories

Results

Significant modification of the error \Rightarrow Difficult to compare results for nearby trajectories

Introduction	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error	Simulation	Conclusion
0000		•0000	OO	0000	00
Plan					

2 VOR Error Simulator

Probability Distribution for the Multipath Parameters

Statistics of the bearing error

💿 Simulatior

	VOR Error Simu		Probability Dis	stribution	for the Mu	ltipath Parameters	Statistics of the bearing error		Conclusion
0000	00000000	000	00000				00	0000	00
<u> </u>	1.0		C 1	~	<i>C</i> •				

Statistical Description of the Configuration

Objective

For one wind turbine of known approximate position and at a given observation point, determine the statistics of the multipath parameters (a_1, θ_1, ϕ_1)

Statistical Parameters

• Ground composition

Dry, wet, fresh water, sea water, ...

 \Rightarrow Discrete uniform ditribution

Windturbine position

Variation about the average position

 \Rightarrow Normal distribution

Wind turbine characteristics

- 14 distances Mast length, hub box size, ...
- 4 angles Blade orientation, rotor orientation, ...
 - \Rightarrow Uniform and normal distributions

	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error		Conclusion
0000	00000000000	00000		0000	00
Probab	ility Distribu [.]	tion for the Multipath Para	neters		

Multipath Amplitude

- Statistical variations of the wind turbine characteristics
- Total wind Turbine scattering: Sum of the Scattering of the wind turbine components

 ${\sf Central \ limit \ theorem} \quad \Rightarrow \qquad {\sf Multipath \ amplitude \ follows \ a \ Rayleigh \ distribution}$

Multipath Azimuth

- Wind turbine position: normal distribution of standard deviation $\sigma_{
 m w}$
- $\sigma_{\rm w} \ll {\rm distance} \; {\rm VOR} \; {\rm wind} \; {\rm turbine}$

Azimuth of the multipath = Azimuth of the average position of the wind turbine

Introduction VOR Error Simulator P 0000 000000000 C

Probability Distribution for the Multipath Parameters

Statistics of the bearing error Simulation Conclusio

Probability Distribution for the Multipath Parameters

Configuration

- Wind turbine position: normal distribution of standard deviation $\sigma_{\rm w}$
- r distance from VOR to aircraft
- r_{w1} , r_{w2} distances from VOR to windturbine and from windturbine to aircraft
- Hypothesis $\sigma_{\rm w} \ll r_{w1}, r_{w2}$

Distribution for the path length

Multipath length with respect to the direct path

$$d = r_{w1} + r_{w2} - r$$

Taylor series for $\sigma_w \ll r_{w1}, r_{w2}$

d follows a normal distribution of std

$$\sigma_d = 2\sin\left(\frac{|\phi'|}{2}\right)\sigma_{\rm W}$$

with ϕ' angle between

- the VOR Wind turbine axis
- the Wind turbine Aircraft axis

	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error		Conclu
0000	00000000000	00000		0000	00

Probability Distribution for the Multipath Parameters

Distribution for the phase

- Relative phase of the multipath arg e^{ikd}, with d normal distribution
- For $\sigma_d \geq \lambda/2$, almost uniform phase on 0, 2π

Domain of uniform phase

- Uniform phase except for $|\phi'| \leq 2 \arcsin\left(\frac{\lambda}{4\sigma_{w}}\right)$
- $\bullet~$ When $\phi' \rightarrow$ 0, the error is null from Odunaiya expression

- For σ_w of few λ , uniform phase except in a region where the bearing error is weak
- Example: For $\sigma_w = 4\lambda pprox 10$ m, Uniform phase except for $|\phi'| \leq 7^\circ$

Conclusion

- Rayleigh relative amplitude
- Constant azimuth
- Uniform relative phase

Need for only one parameter to characterize the multipath

 \Rightarrow The parameter of the Rayleigh distribution

	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error		Conclusion
0000	00000000000	00000	•0	0000	00
Plan					

2 VOR Error Simulator

Probability Distribution for the Multipath Parameters

Statistics of the bearing error

<u></u>	C . I . I				
0000	00000000000	00000	00	0000	00
	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error		Conclusion

Statistics of the bearing error

One wind turbine

General Odunaiya expression

$$\varepsilon^{\mathsf{C}} = \tan^{-1} \left(\frac{\sum_{n=1}^{N} a_n \cos(\theta_n - \theta_0) \sin(\varphi_n - \varphi_0)}{a_0 + \sum_{n=1}^{N} a_n \cos(\theta_n - \theta_0) \cos(\varphi_n - \varphi_0)} \right)$$

Expression for one weak multipath

$$\varepsilon^{\mathsf{C}} = rac{a_1}{a_0} \cos(\theta_1 - \theta_0) \sin(\phi_1 - \phi_0)$$

• a_1/a_0 Rayleigh distribution of parameter σ • $\theta_1 - \theta_0$ uniform distribution on 0, 2π **Conclusion** e^C centered normal distribution of standard deviation

$$\sigma_{\varepsilon} = \sigma |\sin(\phi_1 - \phi_0)|$$

Several wind turbines

• Independant distributions for the multipath of each wind turbine

 $\textbf{Conclusion} \quad \boldsymbol{\varepsilon}^{\mathsf{C}} \text{ centered normal distribution of standard deviation}$

$$\sigma_{arepsilon} = \sqrt{\sum_{n=1}^{N} \sigma_n^2 \sin^2(\phi_1 - \phi_0)}$$

Introduction	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error	Simulation	Conclusion
0000	000000000000		OO	•000	00
Plan					

2 VOR Error Simulator

Probability Distribution for the Multipath Parameters

Statistics of the bearing error

Simulation

0000	000000000000000000000000000000000000000	00000	OO	0000	00
Test-Ca	se				

Configuration

Deterministic parameters

- VOR Station of power 50 W and frequency 113 MHz
- Aircraft position : Half sphere of radius 10 km centered on the Wind Turbine
- $\bullet\,$ Windturbine at 3 km from the VOR, on radial 90°

Statistical parameters

• Wind turbine characteristics: database of 2000 wind turbines installed in the Norh of France

Monte Carlo simulations

- Objective: assess the parameter of the Rayleigh distribution
- VERSO is run for several samples of the input parameters
- Convergence test: estimated value variations weaker than 5% during the 10 last iterations

Introduction VOR Error Simulator Probability Distribution for the Multipath Parameters Statistics of the bearing error Simulation Conclusion 00000 0000000000 00000 00000 00000000	Ravleig	h narameter				
	Introduction 0000	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error OO	Simulation OOOO	Conclusion OO

Results

Comments

- Low Elevation: strong multipath due to the mast
- Medium elevation: residual contribution due to the blades
- Near zenith: spurious increase of the relative multipath in the blind cone

	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error	Simulation	Conclusion
0000	00000000000	00000	00	0000	00
Bearing	Error				

Results

Comments

- Low Elevation: strong multipath due to the mast
- Medium elevation: residual contribution due to the blades
- Near zenith: spurious increase of the relative multipath in the blind cone

Introduction 0000	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error OO	Simulation 0000	Conclusion ●O
Plan					

2 VOR Error Simulator

Probability Distribution for the Multipath Parameters

Statistics of the bearing error

Simulation

Conclusion					
0000	00000000000	00000	00	0000	00
	VOR Error Simulator	Probability Distribution for the Multipath Parameters	Statistics of the bearing error		Conclusion

Conclusion

Multipath Probability Distribution

For a wind turbine of known approximated position and at a given obesrvation point, the multipath is so that

- Uniform relative phase
- Constant relative azimuth
- Rayleigh relative amplitude

Parameter of the Rayleigh distribution via Monte Carlo Simulation

Bearing error Probability Distribution

- For one wind turbine, centered normal distribution
- For several wind turbines, centered normal distribution if multipath are independant

Future works

- Develop a method to avoid to run one MC simulation per wind turbine and per aircraft positions
 - \Rightarrow Huge computation resources
- Include the terrain relief
- Similar work for Doppler VOR