Methodology for Assessing the Impact of Wind Turbines on Civil Aviation Primary and Secondary Radars

Alexandre Chabory, Christophe Morlaas, Rémi Douvenot, Hélène Galiègue

alexandre.chabory@recherche.enac.fr

ENAC, TELECOM-EMA, France

Context

Obstacles

Logistics Buildings

Solar panel fields

Wind farm

Impact

Primary Radar

- Retrodiffusion: saturation
- Masking: modification of the gain pattern
- Multipath: ghost echoes

Secondary Radar (cooperative target)

- Masking: modification of the gain pattern, $\Sigma \Delta$ processing
- Multipath: ghost echoes

Objectives

Study case

Objective: Quantify the impact of a unique wind turbine or a wind farm on radar signals

Why: large vacant lots often nearby airports (2 to 15 km far from the radar):

- Industrial point of view: large wind farm settlements
- Civil aviation point of view: maintain availability, continuity and security of radar services

Characteristics of the problem

- Primary and secondary radars at S and L-band respectively
- Wind farms seen as several vertical metallic cylinders, along the same radial or covering a larger azimuthal region
- Distance between radar and wind turbines of a few km
 ⇒ Far-field assumption not verified at L-band frequencies
 ⇒ RCS not valid

Radar antennas: near-field modelling

- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study

- Multipath
- Masking
- $= \Sigma \Delta \text{ processing}$
- Case study
- Conclusion

Radar antenna modelling

Near-field modelling

Classical solutions

- Fine antenna modelling \Rightarrow important computation time
- Antenna Far-field modelling ⇒ not precise enough since obstacles can be closer than the Far-field distance

Alternative solution: Far-field to Near-field transform

Woodward-Lawson method

Far-field gain pattern both in vertical and horizontal planes

 \Rightarrow Limited number of radiating current, defining an equivalent aperture

- Radar antennas: near-field modelling
- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study
- Secondary Radar
 - Multipath
 - Masking
 - $= \Sigma \Delta \text{ processing}$
 - Case study
- Conclusion

Methodology for the electromagnetic modelling

Scattered and total field

- Radar modelling: equivalent aperture
- Wind turbine modelling: physical optics (PO) assumption

 \Rightarrow Analysis of the scattered field, particularly on approach zones, runways and for the retrodiffusion on the radar \Rightarrow Analysis of the gain pattern in the radar main axis

Radar antennas: near-field modelling

- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study

- Multipath
- Masking
- $\bigcirc \ \Sigma \Delta \text{ processing}$
- Case study
- Conclusion

Primary radar: Direct retrodiffusion

Calculation of the scattered field echoes

- Distance radar-wind farm \Rightarrow Use of RCS not appropriate
- Calculation of the scattered field E
- Calculation of the received power Pr using

$$P_{\rm r} = \frac{E^2 \lambda^2}{8\pi \zeta_0} G_{\rm b} \quad {\rm STC},$$

with G_b the antenna reception gain, STC is the Sensitivity Time Control, i.e. an additional attenuation for close echoes, $\zeta_0 \approx 120\pi$ is the vacuum impedance.

In dBm

$$P_{\rm r\,dBm} = E_{\rm dBV/m} + {\rm STC}_{\rm dB} + 30 + 10 \log\left(\frac{\lambda^2}{8\pi\zeta_0}G_{\rm b}\right).$$

• Possible saturation of the primary radar if P_r is greater than the radar sensitivity P_{r0} (ex: -105 dBm).

- Radar antennas: near-field modelling
- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study
- Secondary Radar
 - Multipath
 - Masking
 - $= \Sigma \Delta \text{ processing}$
 - Case study
- Conclusion

Multipath

Figure: Possible multipath scenarii.

Modelling methodology

- Calculation of the scattered electric field at the aircraft
- Estimation of the received power at the radar following two scenarii:
 - $radar \rightarrow wind turbine \rightarrow aircraft \rightarrow radar;$
 - $radar \rightarrow wind \ turbine \rightarrow aircraft \rightarrow wind \ turbine \rightarrow radar.$

Multipath 1: radar \rightarrow wind turbine \rightarrow aircraft \rightarrow radar

Method

- Calculation of the electric field scattered by the wind turbine (PO)
- Modelling of the aircraft by its bistatic RCS σ_a
- Propagation towards the radar at a distance R
- Radar gain G_a in the direction of the aircraft

Received power

$$P_{\mathrm{r}} = rac{\|E\|^2}{2\zeta_0} \sigma_{\mathrm{a}} G_{\mathrm{a}} \left(rac{\lambda}{4\pi R}
ight)^2,$$

Negligible impact if

$$||E|| < \frac{4\pi R}{\lambda} \sqrt{\frac{2\zeta_0 P_{r0}}{\sigma_a G_a}}, \quad \text{with } P$$

with P_{r0} the radar sensitivity

Multipath 2: radar \rightarrow wind turbine \rightarrow aircraft \rightarrow wind turbine \rightarrow radar.

Method

- Calculation of the electric field scattered by the wind turbine (PO)
- Reciprocity theorem, considering both following states:
 - $\textcircled{0} \ \ \text{The radar emits, the aircraft receives} \qquad \qquad \text{radar} \rightarrow \text{wind turbine} \rightarrow \text{aircraft} \ ;$
 - ② The aircraft emits, the radar receives aircraft \rightarrow wind turbine \rightarrow radar.

The reciprocity theorem imposes $P_{e}^{(1)}P_{r}^{(2)} = P_{e}^{(2)}P_{r}^{(1)}$ with

• $P_{\rm e}^{(1)}$ the power emitted by the radar in state ①

 $P_{\rm r}^{(1)}$ the power received by the aircraft in state $\mathbb{O} \Rightarrow P_{\rm r}^{(1)} = \frac{\lambda^2}{4\pi} \frac{\|\mathbf{E}\|^2}{2\zeta_0}$

 $P_{\rm e}^{(2)}$ the power emitted by the target in state $@\Rightarrow P_{\rm e}^{(2)} = \sigma_{\rm a} \frac{\|E\|^2}{2\zeta_0}$

 $P_{\rm r}^{(2)}$ the power received by the radar in state 2

Final expression

$$P_{\rm r} = \frac{\lambda^2 \sigma_{\rm a}}{16\pi \zeta_0^2 P_{\rm e}} \|\boldsymbol{E}\|^4.$$

Negligible impact if

$$\|\boldsymbol{E}\| < \sqrt[4]{\frac{16\pi\zeta_0^2 P_{\rm e} P_{\rm r0}}{\lambda^2 \sigma_{\rm a}}}$$

- Radar antennas: near-field modelling
- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study
- Secondary Radar
 - Multipath
 - Masking
 - $= \Sigma \Delta \text{ processing}$
 - Case study
- Conclusion

Masking

Method

- Calculation of the total electric field at 4 km around the radar and in far field, along the radar main axis, in the presence of a wind turbine (PO)
- Comparison to the nominal gain pattern, in dB

- Radar antennas: near-field modelling
- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study

- Multipath
- Masking
- $= \Sigma \Delta \text{ processing}$
- Case study
- Conclusion

Case study

Configuration

- Radar Radar Star NG, S-band (2750 MHz), 15 kW, 34 dBi maximum gain, 40 m altitude, STC = -20 dBm
- Unique wind turbine 100 m in height, 2.5 m in radius, no blades, distance to radar 1 km.
- Radar direction: towards the center of the wind turbine

- Radar antennas: near-field modelling
- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study

- Multipath
- Masking
- $= \Sigma \Delta \text{ processing}$
- Case study
- Conclusion

Multipath

Figure: Possible multipath scenarii.

Modelling methodology

- Calculation of the scattered electric field at the aircraft
- Estimation of the received power at the aircraft transponder
- Two possible scenarii when the transponder answers:
 - $radar \rightarrow wind turbine \rightarrow aircraft transponder \rightarrow radar;$
 - $radar \rightarrow wind turbine \rightarrow aircraft transponder \rightarrow wind turbine \rightarrow radar.$
- Due to the directive gain pattern, second scenario more probable

Multipath 2: radar \rightarrow wind turbine \rightarrow aircraft transponder \rightarrow wind turbine \rightarrow radar.

Method

- Calculation of the electric field scattered by the wind turbine (PO) at the aircraft
- Comparison to the threshold of the aircraft transponder $P_{\text{transp}} = -74 \text{ dBm}$.

Final expression

Considering $G_{\text{transp}} = 0 \, \text{dB}$

$$P_{\rm r} = \frac{\lambda^2}{8\pi\zeta_0} \|\boldsymbol{E}\|^2$$

No transponder's answer if

$$\|E\| < \frac{\sqrt{8\pi\zeta_0 P_{\mathrm{transp}}}}{\lambda}.$$

Radar antennas: near-field modelling

- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study

- Multipath
- Masking
- $\bigcirc \ \Sigma \Delta \text{ processing}$
- Case study
- Conclusion

Masking

Method

- Calculation of the total electric field at 4 km around the radar and in far field, along the radar main axis, in the presence of a wind turbine (PO)
- Comparison to the nominal gain pattern, in dB

- Radar antennas: near-field modelling
- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study

- Multipath
- Masking
- $= \Sigma \Delta processing$
- Case study
- Conclusion

$\Sigma-\Delta$ processing

Method

- Calculation of the total electric field (far field), along the radar main axis, in the presence of a wind turbine (PO), both for Σ and Δ patterns
- Calculation of the off-boresight angle error

Mathematical expressions

Off-Boresight Angle (OBA) in azimuth

$$OBA_{\mathrm{az}} = \frac{\mathfrak{Re}(E_{\Delta})}{\mathfrak{Re}(E_{\Sigma})}$$

OBA error

$$Err = OBA_{az} - OBA_0$$

with OBA₀ calculated without obstacle.

- Radar antennas: near-field modelling
- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study
- Secondary Radar
 - Multipath
 - Masking
 - $= \Sigma \Delta \text{ processing}$
 - Case study
- Conclusion

Case study

Configuration

- Radar Radar AS909, L-band (1030 MHz emission, 1090 MHz reception), 2 kW, 28 dBi maximum gain, 43 m altitude
- Unique wind turbine 100 m in height, 2.5 m in radius, no blades, distance to radar 1 km.
- Radar direction: towards the center of the wind turbine

- Radar antennas: near-field modelling
- Electromagnetic modelling and assumptions
- Primary Radar
 - Retrodiffusion
 - Multipath
 - Masking
 - Case study
- Secondary Radar
 - Multipath
 - Masking
 - $= \Sigma \Delta \text{ processing}$
 - Case study
- Conclusion

Conclusion

Methodology

Methodology for Assessing the Impact of Wind Turbines on Civil Aviation Primary and Secondary Radars

- Modelling of the antenna near field
- Calculation of the scattered field using PO
- Direct retrodiffusion for primary radars
- Multipath and ghost echoes for primary and secondary radars

Future work

- Radar data treatment to be taken into account
- Coupling between wind turbines (student project on analytical formulation of the electric field scattered by cylinders)

Conclusion

Questions?