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Introduction

Recent advances in Additive Manufacturing (AM) pave the way for new antennas [START_REF] Liang | Three-dimensionally printed/additive manufactured antennas[END_REF]. AM progress allows new capabilities in antenna designs like anisotropic or heterogeneous material manufacturing by controlling the effective permittivity of the dielectric medium. Such properties are particularly interesting for designing new dielectric resonator antennas (DRAs) [START_REF] Marc | A Dielectric Resonator Antenna designed with a structured dielectric material[END_REF].

DRAs offer a great flexibility in the choice of their frequency band, bandwidth, and radiation patterns due to the numerous degrees of freedom [START_REF] Petosa | Dielectric resonator antenna handbook[END_REF]. The number of degrees of freedom depends on the antenna shape, i.e. cylindrical [START_REF] Makwana | Wideband stacked rectangular dielectric resonator antenna at 5.2 GHz[END_REF], [START_REF] Zou | Omnidirectional cylindrical dielectric resonator antenna with dual polarization[END_REF] or rectangular configuration [START_REF] Mongia | Theoretical and experimental investigations on rectangular dielectric resonator antennas[END_REF], [START_REF] Petosa | Rectangular dielectric resonator antennas with enhanced gain[END_REF], [START_REF] Pan | Omnidirectional linearly and circularly polarized rectangular dielectric resonator antennas[END_REF]. DRAs can also exhibit good performance in circular polarization (CP). That is useful for moderns satellite communications and navigation to mitigate the ionosphere multipath fading and maximize the polarization efficiency [START_REF] Li | Omnidirectional Dielectric Resonator Antenna With a Planar Feed for Circular Polarization Diversity Design[END_REF], [START_REF] Oh | A topology-based miniaturization of circularly polarized patch antennas[END_REF]. Generally, CP is achieved by using complex feed structures or incorporating symmetric perturbation elements which modify the antenna shape. In this paper, a single-fed DRA using a uniaxial anisotropic dielectric is proposed to obtain CP, maintaining its square dimensions.

In the literature, anisotropic materials mainly have been proposed to achieve CP for microstrip antenna applications. In [START_REF] Zhang | of circular/dual-frequency linear polarization antennas based on the anisotropic complementary split ring resonator[END_REF], a dual frequency linear polarization microstrip antenna has been performed. The antenna is composed of a metallic anisotropic Complementary Split Ring Resonator (CSRR) with two concentric slots rings and small gaps. The gaps are used to create a perturbation, allowing the antenna operates in CP. In [START_REF] Oh | A topology-based miniaturization of circularly polarized patch antennas[END_REF], a CP antenna formed by a metallic anisotropic conductor of parallel thin metal strips has been developed. The wire-mesh conductor is optimized to design a miniaturized CP antenna and its performance is compared with conventional corner-truncated square microstrip antenna.

However, circularly polarized DRAs using anisotropic dielectric materials have not been proposed in the literature. The related DRA designs that have been proposed use the anisotropic properties of dielectric materials to improve the directivity and control the resonant frequency of DRA antennas. For example, in [START_REF] Yarga | Multilayer dielectric resonator antenna operating at degenerate band edge modes[END_REF], a linearly polarized DRA formed by an anisotropic layered medium with Degenerate Band Edge (DBE) properties has been developed. By using an anisotropic medium alternating barium titanate and aluminium, the coupling of TM011 y and TE101 y modes is altered for controlling the resonant frequency. In addition, a uniaxial anisotropic DRA has been proposed in [START_REF] Yarga | Multilayer dielectric resonator antenna operating at degenerate band edge modes[END_REF] for enhancing the boresight directivity. The directivity improvement is based on the higher mode excitation by using an anisotropic dielectric. In [START_REF] Fakhte | High gain rectangular dielectric resonator antenna using uniaxial material at fundamental mode[END_REF], a uniaxial anisotropic DRA for operating at 3.5 GHz WIMAX band with linear polarization has been designed. The anisotropic material is employed for improving the directivity and bandwidth of the DRA operating at the fundamental TE111 y radiating mode.

In this paper, we want to show how a uniaxial anisotropic material can provide a new degree of freedom in DRA design. We propose a single-fed Circularly Polarized (CP) antenna based on a uniaxial Anisotropic Rectangular DRA (ARDRA). The goal is to design an ARDRA with two orthogonal modes, namely the TE111 y and TE111 x modes, to achieve CP. A methodology for determining the geometrical dimensions and permittivity tensor of the uniaxial ARDRA is proposed using an Eigen mode analysis in Ansys HFSS. Additionally, a parametric analysis is developed to optimize the antenna performance.

Methodology

In order to obtain CP with a single feed, a rectangular DRA can be excited by using a 50 Ω probe feed along the diagonal. In such a way, two degenerate modes are excited. These modes must be 90° out of phase and with same magnitude to produce CP. The resonant frequencies (f 1 <f 2 ) of both degenerate modes can be expressed as [START_REF] Langston | Impedance, axial-ratio, and receive-power bandwidths of microstrip antennas[END_REF] 

f 1 =f o (1- 1 2Q 1
)

(1)

f 2 =f o (1+ 1 2Q 2 ) ( 2 
)
where f o is the center frequency, f 1 and Q 1 are the resonant frequency and quality factor of the TE111 x mode, f 2 and Q 2 are the resonant frequency and quality factor of the TE111 y mode.

CP is generally obtained by changing the antenna dimensions to match (1) and ( 2). Here, we proposed to optimize the permittivity tensor of an anisotropic DRA, while maintaining its square dimensions to design a DRA in CP.

The electric properties of the anisotropic medium depend on the direction of the applied electric field [START_REF] Balanis | Advanced engineering electromagnetics[END_REF]. For our uniaxial anisotropic material, we consider the following permittivity tensor

𝜺 ̿ = [ 𝜺 Ʇ 𝟎 𝟎 𝟎 𝜺 || 𝟎 𝟎 𝟎 𝜺 || ]
The optical axis of the anisotropic medium is here placed along x-direction. The TE111 x mode with f 1 and Q 1 remains as with an isotropic dielectric due to the symmetry in 𝜀 || along y and z directions. On the other hand, the TE111 y mode with f 2 and Q 2 is altered by the anisotropic properties of the dielectric. Indeed, both permittivities 𝜀 Ʇ and 𝜀 || have an impact on the TE111 y mode.

The methodology to design a uniaxial ARDRA operating in CP relies in the following steps:

1. The height of the antenna ℎ = 2. Based on the initial values and the proposed permittivity tensor, the square dimensions of the DRA are computed by using the simplified isotropic Dielectric Waveguide Model (DWM) [START_REF] Petosa | Dielectric resonator antenna handbook[END_REF]. In this step, we analyze the TE111 x mode that relies only on 𝜀 || to find a and b imposing a=b, so that f 1 and Q 1 allow to reach f o using (1).

3. Eigen mode analysis is performed to determine 𝜀 Ʇ of the uniaxial material. To accomplish this requirement, an algorithm in MATLAB is implemented. The algorithm analyzes the data provided by HFSS, resonant frequency and quality factor of the TE111 y mode, and selects the value for 𝜀 Ʇ which satisfy (2) to achieve CP.

Results

A uniaxial DRA in CP at the center frequency f o =2.45 GHz is designed by using the methodology proposed in the previous section. The parameters d=23.3mm and 𝜀 || = 20 are defined as input values. As a result, the square dimension of the DRA is a=b=21.4 mm to satisfy (1). Once the DRA is optimized with our methodology, TE111 x and TE111 y modes are excited using a probe feed placed near the corner of the uniaxial ARDRA. The coupling between the probe and the DR can be controlled by varying the length and position of the probe along y-direction. Thus, a parametric analysis in HFSS is performed to optimize the feed position and maximize the coupling. Fig. 2 depicts the return loss of the ARDRA with a variation of the probe feed position from the corner of the ARDRA along y (coordinate

d f 2 , Δs + d f 2
).

Maximum coupling is obtained at Δs=4 mm, where both degenerate modes present an identical reflection coefficient. Given the anisotropic properties of the DRA, by placing the probe near the diagonal and adjusting the permittivity tensor of uniaxial anisotropic dielectric, -90° phase difference and same magnitudes between both degenerate modes can be achieved in order to obtain left hand CP. The proposed ARDRA has a simulated 3-dB Axial Ratio (AR) of 0.06 dB at 2.45 GHz, ϕ=0 and θ=0°, as shown in Fig. 5. Moreover, the circularly polarized antenna has a 3-dB AR bandwidth of about 2.04%, corresponding to the frequency band of 2.43 GHz -2.48 GHz. In addition, Fig. 6 shows the simulated axial ratio versus theta for the proposed ARDRA for ϕ=0. The axial ratio is below 3 dB at 2.45 GHz, when θ covers from -63° to +48°. Finally, the results obtained in this work are compared with similar projects using anisotropic materials to obtain CP, as shown in Table 1. In [START_REF] Oh | A topology-based miniaturization of circularly polarized patch antennas[END_REF], a metallic anisotropic conductor is used to generate two orthogonal modes for achieving CP in a microstrip antenna at 2.5 GHz. Despite the antenna operates in CP, it presents a reduced impedance and AR bandwidths. Secondly, a microstrip antenna with a metallic square-shaped CSRR-perpendicular provides anisotropic properties in order to achieve CP at 4.2 GHz [START_REF] Zhang | of circular/dual-frequency linear polarization antennas based on the anisotropic complementary split ring resonator[END_REF]. For obtaining CP, the resonant frequencies of the antenna are altered by adjusting the position and size of the CSRR. However, note that the antenna presents a reduced AR bandwidth due to the small size. In contrast with [START_REF] Oh | A topology-based miniaturization of circularly polarized patch antennas[END_REF] and [START_REF] Zhang | of circular/dual-frequency linear polarization antennas based on the anisotropic complementary split ring resonator[END_REF], our proposed antenna is based on a uniaxial anisotropic dielectric material. Observe that using an inhomogeneous dielectric, there is an increase of the number of degrees of freedom and an improvement of the antenna bandwidth based on simulations. 

Conclusion

An anisotropic dielectric resonator antenna has been designed to achieve circular polarization at 2.45 GHz. The location of the optical axis at x-direction allows the independent control of the TE111 y mode in order to accomplish the proper phase shift and magnitude with respect to the TE111 x mode.

The methodology applied in this research by combining the DWM and Eigen modes showed satisfactory results to design a uniaxial anisotropic DRA operating in circular polarization.

In addition, the use of anisotropic dielectrics for DRA design offer new possibilities for obtaining better bandwidth and gain.

The use of uniaxial anisotropic dielectric materials allows to increase the number of degrees of freedom and control the polarization for designing new DRAs with exotic properties.
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 2 𝜀 || and f o are fixed as initial values of the algorithm.

Fig. 1

 1 Fig. 1 shows the design of the proposed antenna. It consists of our uniaxial anisotropic DR on a ground plane of size 0.65 λo × 0.65 λo. The coaxial probe has a diameter d f =0.9 mm and height h f =10.5 mm. The probe and finite size ground plane have a small impact on the frequency response of the DRA. Therefore, the square dimensions (a=b) of the designed DR using our methodology are slightly modified. The final dimensions are a=b=22.3 mm. Finally, Eigen mode analysis of step 3 gives the permittivity tensor of the proposed ARDRA 𝜀 Ʇ =15 and 𝜀 || =20. The electric properties obtained are: f 1 =2.38 GHz, f 2 =2.53 GHz, Q 1 =17.56 and Q 2 =15.53, that satisfy (1) and (2).
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 1 Fig. 1 Configuration of the ARDRA.

Fig. 2

 2 Fig. 2 Simulated S11 of the ARDRA by varying the position of the probe.

Fig. 3

 3 Fig. 3 depicts the simulated return loss of the final ARDRA. Good coupling between the probe feed and DR is achieved. The antenna has an impedance bandwidth (BW for |S 11 | >10 dB) of 9.8% covering the frequency band 2.34 GHz -2.58 GHz.
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 3 Fig. 3 Simulated S11 of the proposed ARDRA.

Fig. 4

 4 Fig. 4 illustrates the simulated Smith chart of the proposed antenna. Note that it achieves a perfect matching at the center frequency f o =2.45 GHz.

Fig. 4

 4 Fig. 4 Simulated Smith chart of the proposed ARDRA.

Fig. 5

 5 Fig. 5 Simulated axial ratio vs frequency of the proposed ARDRA at θ=0° and ϕ=0°.

Fig. 7

 7 Fig. 7 depicts the simulated radiation patterns of the ARDRA, showing good LHCP radiation. Fig. 8 illustrates the simulated 3D radiation pattern of the ARDRA. The antenna patterns have a broadside radiation θ=0° and the maximum directivity is 6.56 dBi at 2.45 GHz.

Fig. 6

 6 Fig. 6 Simulated axial ratio vs theta of the proposed ARDRA at f o =2.45 GHz and ϕ=0°.

Fig. 7

 7 Fig. 7 Simulated normalized directivity of the ARDRA for LHCP and RHCP at f o =2.45 GHz and ϕ=0°.

Fig. 8

 8 Fig. 8 Simulated 3D total directivity of the proposed ARDRA at f o =2.45 GHz.

Table 1

 1 CP antenna performances using anisotropic materials.

	Topology	Size	Impedance	AR	Gain
			BW	BW	
	Wire-mesh	0.16 λo ×	1%	0.7%	5 dBi
	microstrip	0.16 λo			
	antenna				
	[10]				
	Microstrip	0.28 λo ×	4.2%	0.04%	6.2 dBi
	antenna	0.28 λo			
	with CSRR				
	[11]				
	Proposed	0.65 λo ×	9.8%	2.04%	6.6 dBi
	DRA	0.65 λo			
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