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In this article the Modal Expansion Theory (MET) is developed for 2D metamaterial cylindrical waveguides. A new code based on 2D Finite Element Method (FEM) is implemented to compute conformal surface impedances. The MET using this FEM code is successfully applied to waveguides with different 𝜃 -invariant metamaterials. For such cases, computation time is at least 30 times faster than the commercial software HFSS.

Introduction

In the space industry, the launch cost of spacecraft is a constraint. In order to lower it, the size and the weight of the used devices are reduced. Metamaterials in waveguides or horn antennas could be used in this purpose [START_REF] Pollock | Below-Cutoff Propagation in Metamaterial-Lined Circular Waveguides[END_REF] - [START_REF] Pollock | Experimental Verification of Below-Cutoff Propagation in Miniaturized Circular Waveguides Using Anisotropic ENNZ Metamaterial Liners[END_REF]. Thanks to their structuration electromagnetic properties which are not available in natural materials, can be created [START_REF] Shelby | Experimental Verification of a Negative Index of Refraction[END_REF]. With metamaterials, it is possible to obtain a relative permittivity and/or permeability lower than one or less than zero [START_REF] Smith | Composite Medium with Simultaneoustly Negative Permeability and Permittivity[END_REF] - [START_REF] Ziolkowski | Wave Propagation in Media Having Negative Permittivity and Permeability[END_REF]. In research, metamaterials are mostly defined by characterizing both permittivity and permeability. However another method consists in computing their surface impedances at any given volume height [START_REF] Wu | Nature-Inspired Design of Soft, Hard and Hybrid Metasurfaces[END_REF]. In [START_REF] Byrne | Etude et Conception de Guides d'Onde et d'Antennes Cornets à Métamatériaux[END_REF], metamaterials are characterized with a new method called the Modal Expansion Theory. This method aims at studying waveguides [START_REF] Byrne | Etude et Conception de Guides d'Onde et d'Antennes Cornets à Métamatériaux[END_REF] - [START_REF] Byrne | Dispertion Properties of Corrugated Waveguides Based on the Modal Theory[END_REF]. With the MET, it is possible to characterize the dispersion properties of rectangular or cylindrical waveguides with constant anisotropic surface impedances. In [START_REF] Byrne | Modal analysis of Rectangular Waveguides with 2D Metamaterials[END_REF], a 2D FEM code has been added to the MET and allows the characterization of dispersion properties of rectangular waveguides with metamaterial walls. Surface impedances are defined at any given volume height and vary with the frequency and incidence angle of the electromagnetic wave. In this article, 2D metamaterial waveguides are characterized with the cylindrical MET. Thanks to the 𝜃invariance of the structure, this new code is using a 2D FEM computation of the surface impedances deduced from the 3D FEM simplification. Conformal surface impedances are computed with this code. As in [START_REF] Byrne | Modal analysis of Rectangular Waveguides with 2D Metamaterials[END_REF], the surface impedances are dependent on the frequency and incidence angle. The validation of the MET with this new 2D FEM code (for conformal impedances) is presented. Hence the MET is applied on three different 2D metamaterial waveguides to obtain their dispersion diagrams. Results are compared to the dispersion diagrams obtained with HFSS. By using the MET, the computation time is drastically reduced to obtain equivalent results.

Characterization principles

In this article, the MET [START_REF] Byrne | Etude et Conception de Guides d'Onde et d'Antennes Cornets à Métamatériaux[END_REF] is proposed to characterize cylindrical waveguide with metamaterial walls. These waveguides are considered invariant along the 𝑧-axis, see Fig. 1. So electromagnetic fields have an 𝑒 -𝛾𝑧 dependence, with 𝛾 the propagation constant along the 𝑧 -axis. Furthermore the studied metamaterials are also invariant along the 𝜃-axis. The metamaterial periodicity is supposed small compared to wavelength [START_REF] Smith | Composite Medium with Simultaneoustly Negative Permeability and Permittivity[END_REF]. Therefore metamaterials are assumed to be equivalent to anisotropic surface impedances.

Modal Expansion Theory for cylindrical waveguides

In the cylindrical coordinate system, the surface impedance 𝑍 𝑆 ′ is defined as follows:

𝐸 𝑇 ⃗⃗⃗⃗ = 𝑍 𝑆 ′ (𝐻 𝑇 ⃗⃗⃗⃗⃗ × 𝑛 ⃗ ) (1) 
where 𝐸 𝑇 ⃗⃗⃗⃗ and 𝐻 𝑇 ⃗⃗⃗⃗⃗ are the electric and magnetic fields tangent to the cylinder surface, 𝑛 ⃗ the normal unit vector to the cylinder surface. It leads to two impedance definitions:

𝑍 𝑇 ′ = - 𝐸 𝜃 𝐻 𝑍 | 𝜌=𝑎 , 𝑍 𝑍 ′ = 𝐸 𝑍 𝐻 𝜃 | 𝜌=𝑎 (2) 
The dispersion equation is determined in [START_REF] Raveu | Modal Theory for Waveguides with Anisotropic Surface Impedance Boundaries[END_REF] 

where 𝑎 is the internal radius, 𝑢 𝑎 = 𝑘 𝑐 𝑎 , 𝑘 𝑐 the cutoff constant, 𝑘 0 the free space wavenumber, 𝐽 𝑚 the Bessel function of order 𝑚, 𝐽 𝑚 ′ the derivative of the Bessel function 𝐽 𝑚 and 𝑍 0 the free space characteristic impedance . In this article, cylindrical waveguides with 2D metamaterials due to an invariance along the 𝜃 -axis are of interest. Consequently only 0 order modes are studied. Metamaterials could be considered as anisotropic surface impedances but their shape should be undertaken. In [START_REF] Byrne | Modal analysis of Rectangular Waveguides with 2D Metamaterials[END_REF] the MET with a 2D FEM code is successfully applied to rectangular waveguides with 2D metamaterials with invariance along the 𝑦 -axis. In this article, the FEM is developed to cylindrical waveguides with 2D metamaterials with invariance along the 𝜃-axis. The equation ( 3) is simplified for 0 order modes [START_REF] Raveu | Modal Theory for Waveguides with Anisotropic Surface Impedance Boundaries[END_REF] into:

[𝑗𝜔𝜇 0 𝐽 0 ′ (𝑢 𝑎 ) + 𝑍 𝑇 ′ 𝑘 𝑐 𝐽 0 (𝑢 𝑎 )] × [𝑍 𝑍 ′ 𝑗𝜔𝜖 0 𝐽 0 ′ (𝑢 𝑎 ) + 𝑘 𝑐 𝐽 0 (𝑢 𝑎 )] = 0 (4)
where 𝜇 0 is the free space permeability, 𝜖 0 the free space permittivity and 𝜔 angular frequency (by using the convention of electromagnetic fields dependent on 𝑒 𝑗𝜔𝑡 ). From (4) 𝑇𝐸 0𝑛 and 𝑇𝑀 0𝑛 modes could be characterized separately, whatever 𝑛 is. As a matter of fact in (4) either the first term is equal to zero or the second term. The first term with 𝑍 𝑇 ′ will define 𝑇𝐸 0𝑛 modes and the second term with 𝑍 𝑍 ′ will define 𝑇𝑀 0𝑛 modes.

Characterization of conformal metamaterials

As the waveguide is 𝜃 -invariant, the 3D FEM code is simplified into a 2D FEM code. In any 𝑃 plane of the cylindrical waveguide, a unit cell can be extracted, see Fig. 2.

Figure 2: A cylindrical waveguide with an example of 2D metamaterial unit cell.

Γ 1 and Γ 2 are periodic boundaries, Γ 3 is the rotational axis and Γ S is a boundary where the 𝑍 𝑆 surface impedance (𝑍 𝑇 and 𝑍 𝑍 ) is defined. Ω ′ is the plane where the 𝑍 𝑆 ′ surface impedance (𝑍 𝑇 ′ and 𝑍 𝑍 ′ ) is computed. 𝐴 is the radius of the waveguide, ℎ is the height of the metamaterial and 𝑝 the distance between Γ 1 and Γ 2 . The 𝑍 𝑆 ′ conformal surface impedance ( 𝑍 𝑇 ′ and 𝑍 𝑍 ′ ) is computed with the 2D FEM code in the Ω ′ plane. 𝑍 𝑍 ′ defined in ( 2) is generated by 𝐻 𝜃 , that is considered 𝜃 invariant; 𝑍 𝑇 ′ defined in ( 2) is generated by 𝐸 𝜃 , and considered 𝜃 invariant. This code is inserted in the MET solution of (3).

Recursive solution of dispersion equation

The 𝑍 𝑆 ′ surface impedance (𝑍 𝑇 ′ and 𝑍 𝑍 ′ ) depends on the 𝜑 incidence angle [START_REF] Byrne | Modal analysis of Rectangular Waveguides with 2D Metamaterials[END_REF] which is deduced from 𝛽, the phase constant along the 𝑧 -axis. The algorithm of Fig. 3 is implemented to compute the dispersion diagrams. With this algorithm different 2D metamaterials (with a 𝜃 invariance) in cylindrical waveguides can be studied. A 3D FEM code is required to deal with 3D metamaterials or mode with angular dependency (𝑚 order different from 0).

Results

The method and the algorithm are validated in three different cases:

 firstly in a corrugated waveguide,  subsequently the code is applied to a L-shape metamaterial,  finally a stair-shape metamaterial is studied.

In all these cases, results are compared to HFSS solutions.

To study these waveguides with HFSS, the same method as [START_REF] Raveu | Modal Theory for Waveguides with Anisotropic Surface Impedance Boundaries[END_REF] is used. Dispersion diagrams are obtained from the volume of the section represented in Fig. 5, 11 and 14 with dashed lines and using periodic boundary conditions, see Fig. 4. The propagation constant is computed thanks to the phase delay between two periodic boundary conditions and the distance between them. By using the eigenmode solver in HFSS, the frequency of each solution is given. The complete dispersion diagram is obtained by varying the phase delay between the two periodic boundary conditions from 0° to 180°. 

Corrugated cylindrical waveguide

A corrugation invariant in 𝜃 direction is considered. The studied waveguide is represented Fig. 5.

Figure 5: A corrugated waveguide. The blue dashed section is the section used in HFSS and the red doted one is used in the MET.

For the MET, the unit cell is created with the open source software Gmsh [START_REF] Geuzaine | Gmsh: A threedimensional finite element mesh generator with built-in pre-and post-processing facilities[END_REF] and represented in Fig. 6.a. Both figures lead to the same conclusion as Fig. 7: the 𝑍 𝑆 ′ surface impedance (𝑍 𝑇 ′ and 𝑍 𝑍 ′ ) in the Ω ′ plane changes with frequencies, with the 𝜑 incidence angle and also are dependent on the mode.

Cylindrical waveguide with L-shape metamaterial

The studied waveguide is presented in Fig. 11. The L-shape metamaterial is also invariant along the 𝜃-axis. 

Cylindrical waveguide with stair-shape metamaterial

The last waveguide studied is a waveguide with a stair-shape metamaterial 𝜃-invariant, see Fig. 14. Figure 14: A cylindrical waveguide with a stair-shape metamaterial. The blue dashed section is the section used in HFSS and the red doted one is used in the MET. 

Conclusion

The MET has been successfully applied to cylindrical waveguides with 2D metamaterial walls, for 0 order modes. The proposed method appears accurate and extremely faster than HFSS solution, at least 30 times faster. This method allows a comparison between the propagation characteristics of all kinds of 𝜃-invariant metamaterials. In this article three different waveguides have been studied. It has been proved that the shape of the metamaterial can modify the propagation properties in the waveguide. Furthermore all metamaterials can be defined by using their surface impedance at any given volume height. In these three examples the surface impedances are computed at the same volume height ℎ and are different. They depend on the frequencies, on the 𝜑 incidence angle, on the propagating mode and on the metamaterial shape. An extension of the method to 3D metamaterials is now under process. As metamaterials could be 𝜃-dependent, the 3D FEM code could no longer be reduced to a 2D FEM code. With this extension all kinds of metamaterial but also all the mode orders can be dealt with.
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 1 Figure 1: A cylindrical waveguide with anisotropic walls.

Figure 3 :

 3 Figure 3: The MET algorithm to obtain 𝛽.

Figure 4 :

 4 Figure 4: A cylindrical representation of a waveguide with periodic boundary conditions and anisotropic surface simulated in HFSS.
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 6 Figure 6: a) Unit cell mesh and dimensions: 𝐴 = 39.3 𝑚𝑚 , 𝑎 = 23.58 𝑚𝑚 , 𝑑 = 14.3 𝑚𝑚 , ℎ = 15.72 𝑚𝑚 , 𝑝 = 10.3 𝑚𝑚 , and 𝑤 = 9.28 𝑚𝑚 . b) Dispersion diagrams of the corrugated cylindrical waveguide obtained with MET (dots) and HFSS (circles).

Figure 7 :

 7 Figure 7: The 𝑍 𝑍 ′ surface impedance of the 𝑇𝑀 01 mode of Fig. 6.b. While the 𝑍 𝑆 surface impedance (𝑍 𝑇 and 𝑍 𝑍 ) in Γ 𝑆 is null, 𝑍 𝑍 ′ in the Ω ′ plane change with frequencies. This 𝑍 𝑍 ′ impedance is computed with the algorithm of Fig. 3 which means that the 𝜑 incidence angle is different from one frequency to another. In order to observe a 𝑇𝐸 0𝑛 mode, the dispersion diagram of Fig. 6.b is studied up to 7 𝐺𝐻𝑧 and represented in the Fig. 8.

Figure 8 :

 8 Figure 8: Dispersion diagrams of the corrugated cylindrical waveguide obtained with MET (dots) and HFSS (circles).

  Figure 9 represents the 𝑍 𝑍 ′ surface impedance computed in the Ω ′ plane for the 𝑇𝑀 02 mode and figure 10 represents the 𝑍 𝑇 ′ surface impedance for the 𝑇𝐸 01 mode.

Figure 9 :

 9 Figure 9: The 𝑍 𝑍 ′ surface impedance of the 𝑇𝑀 02 mode of Fig. 8.

Figure 10 :

 10 Figure 10: The 𝑍 𝑇 ′ surface impedance of the 𝑇𝐸 01 mode of Fig. 8.

Figure 11 :

 11 Figure 11: A cylindrical waveguide with a L-shape metamaterial. The blue dashed section is the section used in HFSS and the red doted one is used in the MET.

Figure 12 :

 12 Figure 12: a) Unit cell mesh and dimensions: 𝐴 = 39.3 𝑚𝑚 , 𝑎 = 23.58 𝑚𝑚 , 𝑑 1 = 14.3 𝑚𝑚 , 𝑑 2 = 2.5 𝑚𝑚 , ℎ = 15.72 𝑚𝑚 , 𝑝 = 10.3 𝑚𝑚 , 𝑝 1 = 2.5 𝑚𝑚 , 𝑝 2 = 5.3 𝑚𝑚 , and 𝑤 = 5 𝑚𝑚 . b) Dispersion diagrams of the corrugated cylindrical waveguide obtained with MET (dots) and HFSS (circles).

Figure 13 :

 13 Figure 13: The 𝑍 𝑍 ′ surface impedance of the 𝑇𝑀 01 mode of Fig. 12.b.

Figures

  Figures 15 represent the unit cell and the dispersion diagrams.

Figure 15

 15 Figure 15: a) Unit cell mesh and dimensions: 𝐴 = 39.3 𝑚𝑚 , 𝑎 = 23.58 𝑚𝑚 , 𝑑 1 = 14.3 𝑚𝑚 , 𝑑 2 = 7 𝑚𝑚 , ℎ = 15.72 𝑚𝑚 , 𝑝 = 10.3 𝑚𝑚 , 𝑝 1 = 2.5 𝑚𝑚 , 𝑝 2 = 7.5 𝑚𝑚 , and 𝑤 = 5 𝑚𝑚 . b) Dispersion diagrams of the corrugated cylindrical waveguide obtained with MET (dots) and HFSS (circles). The dispersion diagrams are obtained with HFSS (circles in Fig. 15.b) in 1256 minutes and with the MET (dots in Fig. 15.b) it requires an eleven-minute computation times. The reduction time is around 114.With this metamaterial the first mode is not the 𝑇𝑀 01 but the 𝐸𝐻 11 mode. Consequently the propagating modes and their cutoff frequencies change again with the shape of the metamaterial. In this case, the 𝑇𝑀 01 cutoff frequency is now 𝑓 𝑐 = 3.49 𝐺𝐻𝑧 , while it was 3 𝐺𝐻𝑧 for the corrugated waveguide. Moreover the 𝑍 𝑍 ′ surface impedance of the 𝑇𝑀 01 mode is divided by two at 3.8 𝐺𝐻𝑧 compared to the previous cases, Fig.16.

Figure 16 :

 16 Figure 16: The 𝑍 𝑍 ′ surface impedance of the 𝑇𝑀 01 mode of Fig. 15.b.