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Abstract 

In this article the Modal Expansion Theory (MET) is 

developed for 2D metamaterial cylindrical waveguides. A 

new code based on 2D Finite Element Method (FEM) is 

implemented to compute conformal surface impedances. 

The MET using this FEM code is successfully applied to 

waveguides with different 𝜃 -invariant metamaterials. For 

such cases, computation time is at least 30 times faster than 

the commercial software HFSS. 

 

1. Introduction 

In the space industry, the launch cost of spacecraft is a 

constraint. In order to lower it, the size and the weight of the 

used devices are reduced. Metamaterials in waveguides or 

horn antennas could be used in this purpose [1] - [4]. Thanks 

to their structuration electromagnetic properties which are 

not available in natural materials, can be created [5]. With 

metamaterials, it is possible to obtain a relative permittivity 

and/or permeability lower than one or less than zero [6] - 

[8]. In research, metamaterials are mostly defined by 

characterizing both permittivity and permeability. However 

another method consists in computing their surface 

impedances at any given volume height [9]. 

In [10], metamaterials are characterized with a new method 

called the Modal Expansion Theory. This method aims at 

studying waveguides [10] - [12]. With the MET, it is 

possible to characterize the dispersion properties of 

rectangular or cylindrical waveguides with constant 

anisotropic surface impedances. In [13], a 2D FEM code has 

been added to the MET and allows the characterization of 

dispersion properties of rectangular waveguides with 

metamaterial walls. Surface impedances are defined at any 

given volume height and vary with the frequency and 

incidence angle of the electromagnetic wave. 

In this article, 2D metamaterial waveguides are 

characterized with the cylindrical MET. Thanks to the 𝜃- 

invariance of the structure, this new code is using a 2D FEM 

computation of the surface impedances deduced from the 3D 

FEM simplification. Conformal surface impedances are 

computed with this code. As in [13], the surface impedances 

are dependent on the frequency and incidence angle. The 

validation of the MET with this new 2D FEM code (for 

conformal impedances) is presented. Hence the MET is 

applied on three different 2D metamaterial waveguides to 

obtain their dispersion diagrams. Results are compared to 

the dispersion diagrams obtained with HFSS. By using the 

MET, the computation time is drastically reduced to obtain 

equivalent results.  

 

2. Characterization principles 

In this article, the MET [10] is proposed to characterize 

cylindrical waveguide with metamaterial walls. These 

waveguides are considered invariant along the 𝑧-axis, see 

Fig. 1. So electromagnetic fields have an 𝑒−𝛾𝑧 dependence, 

with 𝛾 the propagation constant along the 𝑧 -axis. 

Furthermore the studied metamaterials are also invariant 

along the 𝜃-axis. 
 

 
Figure 1: A cylindrical waveguide with anisotropic walls. 

 

The metamaterial periodicity is supposed small compared to 

wavelength [6]. Therefore metamaterials are assumed to be 

equivalent to anisotropic surface impedances. 

2.1. Modal Expansion Theory for cylindrical waveguides 

In the cylindrical coordinate system, the surface impedance 

𝑍𝑆
′  is defined as follows: 

 

 𝐸𝑇
⃗⃗ ⃗⃗  = 𝑍𝑆

′(𝐻𝑇
⃗⃗⃗⃗  ⃗ × 𝑛⃗ )

 
 
 
 (1) 

 

where 𝐸𝑇
⃗⃗ ⃗⃗   and 𝐻𝑇

⃗⃗⃗⃗  ⃗
 
 
 
 are the electric and magnetic fields 

tangent to the cylinder surface, 𝑛⃗  the normal unit vector to 

the cylinder surface. It leads to two impedance definitions: 
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The dispersion equation is determined in [11] from 

Helmholtz’s equation and the anisotropic boundary 

conditions.  
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where 𝑎  is the internal radius, 𝑢𝑎 = 𝑘𝑐𝑎 , 𝑘𝑐  the cutoff 

constant, 𝑘0  the free space wavenumber, 𝐽𝑚  the Bessel 

function of order 𝑚, 𝐽𝑚
′  the derivative of the Bessel function 

𝐽𝑚 and 𝑍0 the free space characteristic impedance . 

In this article, cylindrical waveguides with 2D metamaterials 

due to an invariance along the 𝜃 -axis are of interest. 

Consequently only 0 order modes are studied. Metamaterials 

could be considered as anisotropic surface impedances but 

their shape should be undertaken. In [13] the MET with a 

2D FEM code is successfully applied to rectangular 

waveguides with 2D metamaterials with invariance along 

the 𝑦 -axis. In this article, the FEM is developed to 

cylindrical waveguides with 2D metamaterials with 

invariance along the 𝜃-axis.  

The equation (3) is simplified for 0 order modes [11] into: 

 

 
[𝑗𝜔𝜇0𝐽0

′(𝑢𝑎) + 𝑍𝑇
′ 𝑘𝑐𝐽0(𝑢𝑎)]     

× [𝑍𝑍
′ 𝑗𝜔𝜖0𝐽0

′(𝑢𝑎) + 𝑘𝑐𝐽0(𝑢𝑎)] = 0 
(4) 

 

where 𝜇0 is the free space permeability, 𝜖0 the free space 

permittivity and  𝜔 angular frequency (by using the 

convention of electromagnetic fields dependent on 𝑒𝑗𝜔𝑡).  

From (4) 𝑇𝐸0𝑛  and 𝑇𝑀0𝑛  modes could be characterized 

separately, whatever 𝑛 is. As a matter of fact in (4) either the 

first term is equal to zero or the second term. The first term 

with 𝑍𝑇
′  will define 𝑇𝐸0𝑛  modes and the second term with 

𝑍𝑍
′  will define 𝑇𝑀0𝑛 modes.   

2.2. Characterization of conformal metamaterials 

As the waveguide is 𝜃 -invariant, the 3D FEM code is 

simplified into a 2D FEM code. In any 𝑃  plane of the 

cylindrical waveguide, a unit cell can be extracted, see Fig. 

2. 

 

 
Figure 2: A cylindrical waveguide with an example of 2D 

metamaterial unit cell. 

Γ1 and Γ2 are periodic boundaries, Γ3 is the rotational axis 

and ΓS is a boundary where the 𝑍𝑆  surface impedance (𝑍𝑇 

and 𝑍𝑍 ) is defined. Ω′ is the plane where the 𝑍𝑆
′  surface 

impedance (𝑍𝑇
′  and 𝑍𝑍

′ ) is computed. 𝐴 is the radius of the 

waveguide, ℎ  is the height of the metamaterial and 𝑝  the 

distance between Γ1 and Γ2.  

The 𝑍𝑆
′  conformal surface impedance ( 𝑍𝑇

′  and 𝑍𝑍
′ ) is 

computed with the 2D FEM code in the Ω′ plane. 𝑍𝑍
′  defined 

in (2) is generated by 𝐻𝜃 , that is considered 𝜃 invariant; 𝑍𝑇
′  

defined in (2) is generated by 𝐸𝜃 , and considered 𝜃 

invariant. This code is inserted in the MET solution of (3).  

2.3.  Recursive solution of dispersion equation 

The 𝑍𝑆
′  surface impedance (𝑍𝑇

′  and 𝑍𝑍
′ ) depends on  the  𝜑 

incidence angle [13] which is deduced from 𝛽 , the phase 

constant along the 𝑧 -axis. The algorithm of Fig. 3 is 

implemented to compute the dispersion diagrams. 

 

 
Figure 3: The MET algorithm to obtain 𝛽. 

 

With this algorithm different 2D metamaterials (with a 

𝜃 invariance) in cylindrical waveguides can be studied. A 

3D FEM code is required to deal with 3D metamaterials or 

mode with angular dependency (𝑚 order different from 0). 

 

3. Results 

The method and the algorithm are validated in three 

different cases: 

 firstly in a corrugated waveguide, 

 subsequently the code is applied to a L-shape 

metamaterial, 

 finally a stair-shape metamaterial is studied. 



3 

 

In all these cases, results are compared to HFSS solutions. 

To study these waveguides with HFSS, the same method as 

[11] is used. Dispersion diagrams are obtained from the 

volume of the section represented in Fig. 5, 11 and 14 with 

dashed lines and using periodic boundary conditions, see 

Fig. 4. The propagation constant is computed thanks to the 

phase delay between two periodic boundary conditions and 

the distance between them. By using the eigenmode solver 

in HFSS, the frequency of each solution is given. The 

complete dispersion diagram is obtained by varying the 

phase delay between the two periodic boundary conditions 

from 0° to 180°. 

 

 
Figure 4: A cylindrical representation of a waveguide with 

periodic boundary conditions and anisotropic surface simulated in 

HFSS. 

3.1. Corrugated cylindrical waveguide 

A corrugation invariant in 𝜃 direction is considered. The 

studied waveguide is represented Fig. 5. 

 

 
Figure 5: A corrugated waveguide. The blue dashed section is the 

section used in HFSS and the red doted one is used in the MET. 

 

For the MET, the unit cell is created with the open source 

software Gmsh [14] and represented in Fig. 6.a. 

 

 
Figure 6: a) Unit cell mesh and dimensions: 𝐴 = 39.3 𝑚𝑚 , 

𝑎 = 23.58 𝑚𝑚 , 𝑑 = 14.3 𝑚𝑚 ,  ℎ = 15.72 𝑚𝑚 , 𝑝 = 10.3 𝑚𝑚 , 

and 𝑤 = 9.28 𝑚𝑚 . b) Dispersion diagrams of the corrugated 

cylindrical waveguide obtained with MET (dots) and HFSS 

(circles). 

Both simulations are made with the same computer (Intel 

(R) Xeon (R), 1.8 𝐺𝐻𝑧 2 processors, 64 𝐺𝐵 of RAM). The 

dispersion diagrams are represented Fig. 6.b, they perfectly 

coincide for 0 order modes. The dispersion diagrams are 

obtained in 622 minutes with HFSS while it requires only 18 

minutes with MET. Consequently the MET code is 34 times 

faster. 

Since only 𝑇𝑀01 mode appears in this dispersion diagram, 

only 𝑍𝑍
′  is of interest. The figure 7 represents the 𝑍𝑍

′  surface 

impedance computed in the Ω′ plane. 

 

 
Figure 7: The 𝑍𝑍

′  surface impedance of the 𝑇𝑀01 mode of Fig. 6.b. 

 

While the 𝑍𝑆  surface impedance (𝑍𝑇  and 𝑍𝑍) in Γ𝑆 is null, 

 𝑍𝑍
′  in the Ω′  plane change with frequencies. This 𝑍𝑍

′  

impedance is computed with the algorithm of Fig. 3 which 

means that the 𝜑  incidence angle is different from one 

frequency to another. 

In order to observe a 𝑇𝐸0𝑛 mode, the dispersion diagram of 

Fig. 6.b is studied up to 7 𝐺𝐻𝑧 and represented in the Fig. 8.  

 

 
Figure 8: Dispersion diagrams of the corrugated cylindrical 

waveguide obtained with MET (dots) and HFSS (circles). 

 

In this new dispersion diagram, two new 0 order modes are 

identified: the 𝑇𝑀02 and the 𝑇𝐸01  modes. Consequently 𝑍𝑍
′  

is of interest for the 𝑇𝑀02 mode and 𝑍𝑇
′  is of interest for the 

𝑇𝐸01 mode as explained in (4). Figure 9 represents the 𝑍𝑍
′  

surface impedance computed in the Ω′  plane for the 

𝑇𝑀02 mode and figure 10 represents the 𝑍𝑇
′  surface 

impedance for the 𝑇𝐸01 mode.  
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Figure 9: The 𝑍𝑍

′  surface impedance of the 𝑇𝑀02 mode of Fig. 8. 

 

 
Figure 10: The 𝑍𝑇

′  surface impedance of the 𝑇𝐸01 mode of Fig. 8. 

 

Both figures lead to the same conclusion as Fig. 7: the 𝑍𝑆
′  

surface impedance (𝑍𝑇
′  and 𝑍𝑍

′ ) in the Ω′ plane changes with 

frequencies, with the 𝜑  incidence angle and also are 

dependent on the mode.  

3.2. Cylindrical waveguide with L-shape metamaterial 

The studied waveguide is presented in Fig. 11. The L-shape 

metamaterial is also invariant along the 𝜃-axis. 

 

 

Figure 11: A cylindrical waveguide with a L-shape metamaterial. 

The blue dashed section is the section used in HFSS and the red 

doted one is used in the MET. 

 

As in the previous case, the unit cell is created with Gmsh 

from the red doted section of Fig. 11. Figures 12 represent 

the unit cell mesh used and the dispersion diagrams obtained 

with the MET (dots) and with HFSS (circles). 

 

 
Figure 12: a) Unit cell mesh and dimensions: 𝐴 = 39.3 𝑚𝑚 , 

𝑎 = 23.58 𝑚𝑚 , 𝑑1 = 14.3 𝑚𝑚 , 𝑑2 = 2.5 𝑚𝑚 , ℎ = 15.72 𝑚𝑚 , 

𝑝 = 10.3 𝑚𝑚 , 𝑝1 = 2.5 𝑚𝑚 , 𝑝2 = 5.3 𝑚𝑚 , and 𝑤 = 5 𝑚𝑚 . b) 

Dispersion diagrams of the corrugated cylindrical waveguide 

obtained with MET (dots) and HFSS (circles). 

 

Both dispersion diagrams in Fig. 12.b perfectly coincide. 

Concerning the computation time with HFSS, the simulation 

lasts around 1032 minutes while this process takes only 20 

minutes with the MET. Hence the time is divided by 51. 

The L-shape metamaterial changes the propagation 

properties of the waveguide (different modes and different 

orders). Indeed the cutoff frequency of the 𝑇𝑀01  mode is 

now  3.11 𝐺𝐻𝑧 , while it was 3 𝐺𝐻𝑧  for the corrugated 

waveguide. Moreover the 𝑍𝑍
′  surface impedance for the 

𝑇𝑀01  mode is slightly different from the corrugation case 

see Fig. 13. 

 

 
Figure 13: The 𝑍𝑍

′  surface impedance of the 𝑇𝑀01  mode of Fig. 

12.b. 

3.3. Cylindrical waveguide with stair-shape 

metamaterial 

The last waveguide studied is a waveguide with a stair-shape 

metamaterial 𝜃-invariant, see Fig. 14.  

 

 

Figure 14: A cylindrical waveguide with a stair-shape 

metamaterial. The blue dashed section is the section used in HFSS 

and the red doted one is used in the MET. 
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Figures 15 represent the unit cell and the dispersion 

diagrams. 

 

 
Figure 15: a) Unit cell mesh and dimensions: 𝐴 = 39.3 𝑚𝑚 , 

𝑎 = 23.58 𝑚𝑚 , 𝑑1 = 14.3 𝑚𝑚 , 𝑑2 = 7 𝑚𝑚 , ℎ = 15.72 𝑚𝑚 , 

𝑝 = 10.3 𝑚𝑚 , 𝑝1 = 2.5 𝑚𝑚 , 𝑝2 = 7.5 𝑚𝑚 , and 𝑤 = 5 𝑚𝑚 . b) 

Dispersion diagrams of the corrugated cylindrical waveguide 

obtained with MET (dots) and HFSS (circles). 

 

The dispersion diagrams are obtained with HFSS (circles in 

Fig. 15.b) in 1256 minutes and with the MET (dots in Fig. 

15.b) it requires an eleven-minute computation times. The 

reduction time is around 114.  

With this metamaterial the first mode is not the 𝑇𝑀01 but the 

𝐸𝐻11 mode.  Consequently the propagating modes and their 

cutoff frequencies change again with the shape of the 

metamaterial. In this case, the 𝑇𝑀01 cutoff frequency is now 

𝑓𝑐 = 3.49 𝐺𝐻𝑧 , while it was 3 𝐺𝐻𝑧  for the corrugated 

waveguide. Moreover the 𝑍𝑍
′  surface impedance of the 

𝑇𝑀01 mode is divided by two at 3.8 𝐺𝐻𝑧 compared to the 

previous cases, Fig. 16. 

 

 
Figure 16: The 𝑍𝑍

′  surface impedance of the 𝑇𝑀01  mode of Fig. 

15.b. 

 

4. Conclusion 

The MET has been successfully applied to cylindrical 

waveguides with 2D metamaterial walls, for 0 order modes. 

The proposed method appears accurate and extremely faster 

than HFSS solution, at least 30 times faster. This method 

allows a comparison between the propagation characteristics 

of all kinds of 𝜃-invariant metamaterials. In this article three 

different waveguides have been studied. It has been proved 

that the shape of the metamaterial can modify the 

propagation properties in the waveguide. Furthermore all 

metamaterials can be defined by using their surface 

impedance at any given volume height. In these three 

examples the surface impedances are computed at the same 

volume height ℎ  and are different. They depend on the 

frequencies, on the 𝜑 incidence angle, on the propagating 

mode and on the metamaterial shape.  

An extension of the method to 3D metamaterials is now 

under process. As metamaterials could be 𝜃-dependent, the 

3D FEM code could no longer be reduced to a 2D FEM 

code. With this extension all kinds of metamaterial but also 

all the mode orders can be dealt with.  
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