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 

Abstract—In this article, the Modal Expansion Theory is 

applied to 2D metamaterial cylindrical waveguides. A new code 

to compute the surface impedances with 2D Finite Element 

Method is put forward. The surface impedances depend on the 

frequency and the incidence angle. The characterization of 

propagation in a 2D metamaterial waveguide is presented by 

using the Modal Expansion Theory and 2D Finite Element 

Method. Comparisons with the software HFSS are carried out in 

order to validate the new method. 
 

Index Terms—Anisotropic surface impedances, cylindrical 

waveguides, dispersion diagrams, metamaterials, Modal 

Expansion Theory  

 

I. INTRODUCTION  

ETAMATERIALS are widely used in industry. They allow 

creating materials with electromagnetic properties that 

are not available in natural materials [1]. Their main property 

arises from their structuration rather than their composition 

[2]. Concerning their structuration, they are periodically set, 

and their period is small compared to the wavelength [2]. 

Thanks to their properties, it is possible to obtain a relative 

permittivity and/or a permeability lower than one or less than 

zero [2]-[4]. In research metamaterials are mostly defined by 

characterizing both permittivity and permeability. The other 

method of characterizing metamaterials is by considering their 

surface impedances at any given volume height [5]. 

Using metamaterials in waveguides or in horn antennas can 

reduce their size and their weight [6]-[9]. This effect is 

fundamental in the space industry, decreasing the mass of 

spacecraft devices lowers the launch cost [10]-[12]. To 

optimize the metamaterial in such devices, the balanced hybrid 

 
Manuscript submitted February 2, 2018; revised April 11, 2018. This work 

was funded by the CNES and made in collaboration between the CNES, MVG 

Industries and the LAPLACE laboratory. 

L. Kuhler is with the University of Toulouse, INPT, UPS, LAPLACE, 
ENSEEIHT, Toulouse 31071, France, in collaboration with the Centre 

National d’Etude Spatiale (CNES), Toulouse 31400, France, and also with 

MVG Industries, Villebon-Sur-Yvette 91140, France (e-mail: 
lucille.kuhler@laplace.univ-tlse.fr) 

G. LeFur is with the Centre National d’Etude Spatiale (CNES), Toulouse 

31400, France (e-mail: gwenn.lefur@cnes.fr) 
L. Duchesne is with MVG Industries, Villebon-Sur-Yvette 91140, France 

(e-mail: luc.duchesne@microwavevision.com)  

N. Raveu is with the University of Toulouse, INPT, UPS, LAPLACE, 
ENSEEIHT, Toulouse 31071, France (e-mail: raveu@laplace.univ-tlse.fr).  

 

condition [13] is commonly used. However this method of 

optimization is time-consuming since commercial software is 

based on 3D meshing. Moreover no proof is given that this 

condition is necessary. In [14] the cross-section of a 

rectangular waveguide has been reduced without this 

condition. 

In previous work [15]-[17] the Modal Expansion Theory 

(MET) has been developed for cylindrical and rectangular 

waveguides with constant anisotropic surface impedances. 

This method allows a fast computation of waveguide 

properties. However real metamaterials have to be taken into 

account. In [18] real 2D metamaterials in rectangular 

waveguides have been studied with surface impedances 

depending on the frequency and incidence angle.  

In this article 2D metamaterial waveguides are 

characterized with the cylindrical MET. The surface 

impedances defined at any given volume height are computed 

thanks to a conformal 2D Finite Element Method (FEM) 

developed in Section II. In this Section the propagation 

equation in a cylindrical waveguide is recalled as well as its 

recursive dependence on the incidence angle. In the final part 

the method validation is presented by comparing the 

dispersion diagrams obtained with HFSS. Three different 

waveguides are studied, the first is a waveguide with fixed 

surface impedances, the second is a corrugated waveguide and 

the last is a cylindrical waveguide with a T-structure 

metamaterial. 

 

II. CHARACTERIZATION PRINCIPLES 

In this article, a cylindrical waveguide with metamaterial 

walls is considered invariant along the 𝑧-axis, see Fig. 1. 

Therefore the electromagnetic field has an 𝑒−𝛾𝑧 dependence, 

with 𝛾 the propagation constant along the 𝑧-axis.   

 
Fig. 1. Cylindrical waveguide with anisotropic walls. 
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The MET is proposed to characterize a cylindrical 

waveguide with metamaterial walls. As metamaterial 

periodicity is supposed to be small compared to wavelength, 

they are assumed to be equivalent to anisotropic surface 

impedances. 

A. Modal Expansion Theory for Cylindrical Waveguides 

In the cylindrical coordinate system, the 𝑍𝑠
′  surface 

impedance is defined as: 

 

 𝐸⃗ 𝑇 = 𝑍𝑆
′(𝐻⃗⃗ 𝑇 × 𝑛⃗ ) (1) 

 

where 𝐸⃗ 𝑇 and 𝐻⃗⃗ 𝑇 are the electric and magnetic fields tangent 

to the cylinder surface, 𝑛⃗  the normal unit vector to the cylinder 

surface. 

Usually in the cartesian coordinate system, 𝑍𝑇
′  stands for the 

TE modes impedance and 𝑍𝑍
′  for the TM modes impedance. In 

cylindrical coordinates, they are defined by: 

 

 𝑍𝑇
′ = −

𝐸𝜃  

𝐻𝑍
|
𝜌=𝑎

, 𝑍𝑍
′ =

𝐸𝑍
𝐻𝜃
|
𝜌=𝑎

. (2) 

 

The dispersion equation (3) is determined in [16] from 

Helmholtz’s equation and the anisotropic boundary conditions. 

 

 

𝑍𝑍
′

𝑍0
(𝐽𝑚
′ (𝑢𝑎))

2

−
𝑍𝑇
′

𝑍0
(
𝑘𝑐𝐽𝑚(𝑢𝑎)

𝑘0
)

2

 

+(
𝑍𝑍
′ 𝑍𝑇
′

𝑍0
2 + 1)

𝑘𝑐𝐽𝑚(𝑢𝑎)𝐽𝑚
′ (𝑢𝑎)

𝑗𝑘0
 

+
𝑍𝑍
′

𝑍0
((
𝑘𝑐
𝑘0
)
2

− 1)(
𝑚𝐽𝑚(𝑢𝑎)

𝑢𝑎
)

2

= 0 

(3) 

 

where 𝑎 is the internal radius, 𝑢𝑎 = 𝑘𝑐𝑎, 𝑍0 the free space 

characteristic impedance, 𝑘𝑐 the cutoff constant, 𝐽𝑚 the Bessel 

function of order 𝑚, 𝐽𝑚
′  the derivative of the Bessel function 

𝐽𝑚 and 𝑘0 the free space wavenumber.  

Equation (3) is simplified for 𝑚=0 modes [16] into: 

 

 
[𝑗𝜔𝜇0𝐽0

′(𝑢𝑎) + 𝑍𝑇
′ 𝑘𝑐𝐽0(𝑢𝑎)]      

× [𝑍𝑍
′ 𝑗𝜔𝜖0𝐽0

′(𝑢𝑎) + 𝑘𝑐𝐽0(𝑢𝑎)] = 0 
(4) 

 

where 𝜇0 is the free space permeability, 𝜖0 the free space 

permittivity and 𝜔 the angular frequency (by using the 

convention of electromagnetic fields dependent on 𝑒𝑗𝜔𝑡). 
Metamaterials are considered as anisotropic surface 

impedances however their shape should be undertaken. In [18] 

this method is applied with success to rectangular waveguides 

with 2D metamaterials with invariance along the 𝑦-axis. In 

this article, the same method is applied to cylindrical 

waveguides with 2D metamaterials due to an invariance along 

the 𝜃-axis. Only 𝑚=0 modes are of interest in this article. 

 

 
Fig. 2. Cylindrical waveguide with an example of a 2D metamaterial unit cell. 

 

B. The Characterization of Conformal Metamaterials 

In this Section conformal surface impedances are computed 

with a FEM. 

The waveguide is invariant along 𝜃, so the 3D FEM code is 

simplified into 2D FEM code. Fig. 2 shows a cylindrical 

waveguide. In any plane 𝑃, a unit cell can be extracted as 

represented in Fig. 2 on the right. 

𝛤1 and 𝛤2 are periodic boundaries, 𝛤3 is the rotational axis 

and 𝛤𝑠  is a boundary where the 𝑍𝑆 surface impedance (𝑍𝑇 and 

𝑍𝑍) is defined. 𝛺′ is the plane where the 𝑍𝑆
′  surface 

impedances (𝑍𝑇
′  and 𝑍𝑍

′  of (2)) are computed. 𝐴 is the radius of 

the waveguide, ℎ is height of the metamaterial and 𝑝 the 

distance between 𝛤1 and 𝛤2.  

 

1) General Formulation 

Each field 𝐸⃗  or 𝐻⃗⃗  is a solution of the propagation equation 

(5). 

 

 ∇2𝑈⃗⃗ + 𝑘0
2𝑈⃗⃗ = 0⃗  (5) 

 

where 𝑈⃗⃗  (𝑈𝜌, 𝑈𝜃 , 𝑈𝑧) is a vector which could be the magnetic 

field 𝐻⃗⃗  or the electric field 𝐸⃗ . 
The 𝜃 component of this equation leads to: 

 

 

1

𝜌

𝜕

𝜕𝜌
(𝜌
𝜕𝑈𝜃

𝜕𝜌
) +

1

𝜌2

𝜕2𝑈𝜃

𝜕𝜃2
+
𝜕2𝑈𝜃

𝜕𝑧2
−
𝑈𝜃

𝜌2
 

                             +
2

𝜌2
𝜕𝑈𝜌

𝜕𝜃
+ 𝑘0

2𝑈𝜃 = 0. 

(6) 

 

As fields are considered 𝜃 invariant (
𝜕𝑈𝑖

𝜕𝜃
= 0 𝑓𝑜𝑟 𝑖 = 𝜌, 𝜃, 𝑧), 

therefore (6) becomes: 

 

 1

𝜌

𝜕

𝜕𝜌
(𝜌
𝜕𝑈𝜃

𝜕𝜌
) +

𝜕2𝑈𝜃

𝜕𝑧2
+ (𝑘0

2 −
1

𝜌2
)𝑈𝜃 = 0. (7) 

 

The variational formulation [19] of (7) is: 

 

 
∬ (𝛻𝑈𝜃 . 𝛻𝑣̅̅̅̅ − (𝑘0

2 −
1

𝜌2
)𝑈𝜃𝑣̅) 𝜌𝑑𝜌𝑑𝑧

 

𝑆

−∫ 𝑣̅𝛻𝑈𝜃 . 𝑛⃗ 𝜌𝑑𝑙
 

𝛤𝑠

= 0 

(8) 
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where 𝑆 is the surface of the unit cell, 𝑣(𝜌, 𝑧) a basis function, 

𝑛⃗  the normal unit vector to 𝛤𝑠, where 𝑣̅ the 𝑣 conjugate 

complex and 𝑑𝑙 the line element along 𝛤𝑠. Along the boundary 

𝛤1 and 𝛤2, 𝑈𝜃 is considered as follows: 

 

 𝑈𝜃|𝛤2 = 𝑈𝜃|𝛤1 × 𝑒𝑥𝑝(−𝛾𝑧𝑝) (9) 

 

𝛤𝑠 is divided into 𝛤ℎ𝑜𝑟  horizontal walls and 𝛤𝑣𝑒𝑟𝑡  vertical walls. 

So: 

- for a vertical wall, 𝑛⃗ = ±𝑧 : 
 

 ∇𝑈𝜃 . 𝑛⃗ = ±
𝜕𝑈𝜃
𝜕𝑧

 (10) 

 

- for a horizontal wall, 𝑛⃗ = ±𝜌 : 
 

 ∇𝑈𝜃 . 𝑛⃗ = ±
𝜕𝑈𝜃
𝜕𝜌

 (11) 

 

(9) and (10) are linked to surface impedances in the following 

parts.  

 

2) The Characterization of 𝑍𝑍
′  

𝑍𝑍
′  defined in (2) is generated by 𝐻𝜃  which is considered 𝜃 

invariant. 𝐻𝜃  is solution of (8).  

The last term of (8) is simplified thanks to (10) and (11): 

- for vertical walls: 

 

 ∇𝐻𝜃 . 𝑛⃗ = ±
𝜕𝐻𝜃
𝜕𝑧

 (12) 

 

with Maxwell’s equation and (1): 

 

 
1

𝑗𝜔𝜖0
𝛻 × 𝐻⃗⃗ |

𝛤𝑆
= 𝑍𝑆 (𝐻⃗⃗ |𝛤𝑆

× (±𝑧 )) (13) 

 

the 𝜌 component of (13) is: 

 

 
1

𝑗𝜔𝜖0
(
1

𝜌 

𝜕𝐻𝑧
𝜕𝜃

−
𝜕𝐻𝜃
𝜕𝑧

)|
𝛤𝑆

= ±𝑍𝑆𝐻𝜃|𝛤𝑆 (14) 

 

due to the 𝜃 invariance, condition (14) becomes: 

 

 
𝜕𝐻𝜃
𝜕𝑧

|
𝛤𝑆

= {
−𝑗𝜔𝜖0𝑍𝑆𝐻𝜃|𝛤𝑆  𝑖𝑓 𝑛⃗ = 𝑧 

𝑗𝜔𝜖0𝑍𝑆𝐻𝜃|𝛤𝑆  𝑖𝑓 𝑛⃗ = −𝑧 
 (15) 

 

so: 

 

 𝛻𝐻𝜃 . 𝑛⃗ = −𝑗𝜔𝜖0𝑍𝑠𝐻𝜃|𝛤𝑆 (16) 

 

- for horizontal walls: 
 

 ∇𝐻𝜃 . 𝑛⃗ = ±
𝜕𝐻𝜃
𝜕𝜌

 (17) 

 

with Maxwell’s equation and (1): 

 

 
1

𝑗𝜔𝜖0
𝛻 × 𝐻⃗⃗ |

𝛤𝑆
= 𝑍𝑆 (𝐻⃗⃗ |𝛤𝑆

× (±𝜌 )) (18) 

 

the 𝑧 component of (18) is: 

 

1

𝑗𝜔𝜖0
(
1

𝜌 
(
𝜕(𝜌 𝐻𝜃)

𝜕𝜌
−
𝜕𝐻𝜌

𝜕𝜃
))|

𝛤𝑆

= ∓𝑍𝑆𝐻𝜃|𝛤𝑆  (19) 

 

where 𝜌 = 𝜌ℎ𝑜𝑟  is the horizontal walls radius. 

Due to the 𝜃 invariance, condition (19) becomes: 

 

 
𝜕𝐻𝜃
𝜕𝜌

|
𝛤𝑆

=

{
 

 (−𝑗𝜔𝜖0𝑍𝑆 −
1

𝜌ℎ𝑜𝑟
)𝐻𝜃|𝛤𝑆  𝑖𝑓 𝑛⃗ = 𝜌 

(𝑗𝜔𝜖0𝑍𝑆 −
1

𝜌ℎ𝑜𝑟
)𝐻𝜃|𝛤𝑆  𝑖𝑓 𝑛⃗ = −𝜌 

 (20) 

 

  so: 

 

 𝛻𝐻𝜃 . 𝑛⃗ = (−𝑗𝜔𝜖0𝑍𝑠 −
𝑛⃗ . 𝜌 

𝜌ℎ𝑜𝑟
)𝐻𝜃|𝛤𝑠  (21) 

 

therefore the formulation of (8) with conditions (15) and (20) 

is: 

 

 
∬ (𝛻𝐻𝜃 . 𝛻𝑣̅̅̅̅ − (𝑘0

2 −
1

𝜌2
)𝐻𝜃𝑣̅) 𝜌𝑑𝜌𝑑𝑧

 

𝑆

 

+ ∑(𝑗𝜔𝜖0𝑍𝑆)∫ 𝑣̅𝐻𝜃𝜌𝑑𝜌
 

𝛤𝑣𝑒𝑟𝑡𝛤𝑣𝑒𝑟𝑡

 

+∑(𝑗𝜔𝜖0𝑍𝑆𝜌ℎ𝑜𝑟 + 𝑛⃗ . 𝜌 )∫ 𝑣̅𝐻𝜃𝑑𝑧
 

𝛤ℎ𝑜𝑟𝛤ℎ𝑜𝑟

= 0. 

(22) 

 

To solve (22) the linear system (23) is implemented: 

 

 𝐴𝐻𝐻⃗⃗ 𝜃 = 0⃗  (23) 

 

where 𝐴𝐻 = [𝐴𝑖𝑗
𝐻 ] and 𝐻⃗⃗ 𝜃 is defined as follows [20]: 

 

 𝐻⃗⃗ 𝜃 = [

𝑢1
⋮
𝑢𝑁
] , 𝐻𝜃 = ∑𝑢𝑗𝛷𝑗

𝑁

𝑗=1

 (24) 

 

where 𝑁 is the number of nodes, 𝑢𝑗  is the value of 𝐻𝜃  at the 

node 𝑗 in the triangular basis of 𝛷𝑖 and 𝛷𝑖 the basis function of 

the vector space. Hence: 
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𝐴𝑖𝑗
𝐻 =∬ (𝛻𝛷𝑗. 𝛻𝛷𝑖 − (𝑘0

2 −
1

𝜌2
)𝛷𝑗𝛷𝑖) 𝜌𝑑𝜌𝑑𝑧

 

𝑆

 

          + ∑(𝑗𝜔𝜖0𝑍𝑆)∫ 𝛷𝑖𝛷𝑗𝜌𝑑𝜌
 

𝛤𝑣𝑒𝑟𝑡𝛤𝑣𝑒𝑟𝑡

          

          + ∑(𝑗𝜔𝜖0𝑍𝑆𝜌ℎ𝑜𝑟 + 𝑛⃗ . 𝜌 )∫ 𝛷𝑖𝛷𝑗𝑑𝑧
 

𝛤ℎ𝑜𝑟𝛤ℎ𝑜𝑟

. 

(25) 

 

If  𝛤𝑠 is a Perfect Electric Conductor 𝑍𝑆 = 0, (25) becomes: 

 

𝐴𝑖𝑗
𝐻 =∬ (𝛻𝛷𝑗. 𝛻𝛷𝑖 − (𝑘0

2 −
1

𝜌2
)𝛷𝑗𝛷𝑖) 𝜌𝑑𝜌𝑑𝑧

 

𝑆

+ ∑ 𝑛⃗ . 𝜌 ∫ 𝛷𝑖𝛷𝑗𝑑𝑧
 

𝛤ℎ𝑜𝑟𝛤ℎ𝑜𝑟

 
(26) 

 

(25) or (26) is solved to obtain 𝐻𝜃  the magnetic field 

component (24). The surface impedance in the plane 𝛺′ means 

a computation of the electric field component 𝐸𝑧 . From 

Maxwell equations: 

 

 ∇ × 𝐻⃗⃗ = 𝑗𝜔𝜖0𝐸⃗  (27) 

 

therefore: 

 

 
𝐸𝑧|𝛺′

 =
1

𝑗𝜔𝜖0
(
𝐻𝜃|𝛺′

 

𝑎
+
𝜕𝐻𝜃
𝜕𝜌

|
𝛺′

 ) (28) 

 

consequently the surface impedance in 𝛺′ is: 

 

 

𝑍𝑍
′ =

𝐸𝑍
𝐻𝜃
|
𝛺′

=
1

𝑗𝜔𝜖0
(
1

𝑎
+

𝜕𝐻𝜃
𝜕𝜌

|
𝛺′

𝐻𝜃|𝛺′
 ) (29) 

 

3) The Characterization of 𝑍𝑇
′  

𝑍𝑇
′  defined in (2) is generated by 𝐸𝜃  which is considered 𝜃 

invariant. 𝐸𝜃  is also solution of (8).  

The same calculation steps as the Section II.B.2) are carried 

out to obtain the formulation for the electric field: 

 

 
∬ (𝛻𝐸𝜃 . 𝛻𝑣̅̅̅̅ − (𝑘0

2 −
1

𝜌2
) 𝐸𝜃𝑣̅) 𝜌𝑑𝜌𝑑𝑧

 

𝑆

 

+ ∑ (
𝑗𝜔𝜇0
𝑍𝑆

)∫ 𝑣̅𝐸𝜃𝜌𝑑𝜌
 

𝛤𝑣𝑒𝑟𝑡𝛤𝑣𝑒𝑟𝑡

 

+∑ (
𝑗𝜔𝜇0𝜌ℎ𝑜𝑟

𝑍𝑆
+ 𝑛⃗ . 𝜌 )∫ 𝑣̅𝐸𝜃𝑑𝑧

 

𝛤ℎ𝑜𝑟𝛤ℎ𝑜𝑟

= 0. 

(30) 

 

To solve (30) the linear system (31) is implemented: 

 

 𝐴𝐸𝐸⃗ 𝜃 = 0⃗  (31) 

 

where 𝐴𝐸 = [𝐴𝑖𝑗
𝐸 ] and 𝐸⃗ 𝜃 is defined as follows: 

 

 𝐸⃗ 𝜃 = [

𝑢1
⋮
𝑢𝑁
] , 𝐸𝜃 = ∑𝑢𝑗𝛷𝑗

𝑁

𝑗=1

 (32) 

 

where 𝑁 is the number of nodes, 𝑢𝑗  is the value of 𝐸𝜃  at the 

node 𝑗 in the triangular basis of 𝛷𝑖 and 𝛷𝑖 the basis function of 

the vector space. It follows that: 

 

𝐴𝑖𝑗
𝐸 =∬ (𝛻𝛷𝑗. 𝛻𝛷𝑖 − (𝑘0

2 −
1

𝜌2
)𝛷𝑗𝛷𝑖) 𝜌𝑑𝜌𝑑𝑧

 

𝑆

 

+ ∑ (
𝑗𝜔𝜇0
𝑍𝑆

)∫ 𝛷𝑖𝛷𝑗𝜌𝑑𝜌
 

𝛤𝑣𝑒𝑟𝑡𝛤𝑣𝑒𝑟𝑡

            

 + ∑ (
𝑗𝜔𝜇0𝜌ℎ𝑜𝑟

𝑍𝑆
+ 𝑛⃗ . 𝜌 )∫ 𝛷𝑖𝛷𝑗𝑑𝑧

 

𝛤ℎ𝑜𝑟𝛤ℎ𝑜𝑟

 

(33) 

 

when 𝛤𝑠  is a PEC: 

 

 𝐸𝜃|𝛤𝑆 = 0 (34) 

 

therefore (33) becomes: 

 

𝐴𝑖𝑗
𝐸 =∬ (𝛻𝛷𝑗 . 𝛻𝛷𝑖 − (𝑘0

2 −
1

𝜌2
)𝛷𝑗𝛷𝑖) 𝜌𝑑𝜌𝑑𝑧

 

𝑆

= 0 (35) 

 

(33) or (35) is solved to obtain 𝐸𝜃  the electric field 

component. The surface impedance in the plane 𝛺′ means a 

computation of the magnetic field component 𝐻𝑧. From 

Maxwell’s equations: 

 

 𝛻 × 𝐸⃗ = −𝑗𝜔𝜇0𝐻⃗⃗  (36) 

 

therefore: 

 

 
𝐻𝑧|𝛺′ =

𝑗

𝜔𝜇0
(
𝐸𝜃|𝛺′
𝑎

+
𝜕𝐸𝜃
𝜕𝜌

|
𝛺′

) (37) 

 

consequently the surface impedance in 𝛺′ is: 

 

 
𝑍𝑇
′ = −

𝐸𝜃
𝐻𝑍
|
𝛺′

= −
𝑗𝜔𝜇0

1
𝑎
+

𝜕𝐸𝜃
𝜕𝜌

|
𝛺′

𝐸𝜃|𝛺′

 

(38) 

 

C. The Recursive Solution of Dispersion Equation 

The surface impedances (𝑍𝑇
′  and 𝑍𝑍

′ ) depend on the 

incidence angle [18]. In addition in cylindrical waveguides 

this angle should be taken into consideration. Fig. 3 shows the 

components of the propagation constants: 
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Fig. 3. Electromagnetic wave propagation in a half-plane (𝜌0𝑧) of the 

cylindrical waveguide with the propagation constant components. 

 

 

𝑘0⃗⃗⃗⃗ = {

𝑘𝜌
𝑘𝜃
𝑘𝑧

= {
𝑘0𝑐𝑜𝑠𝜑
0

𝑘0𝑠𝑖𝑛𝜑
 (39) 

 

where 𝜑 is the incidence angle.  

 Hence the 𝜑 angle is deduced from 𝑘𝑧: 

 

 
𝜑 = 𝑎𝑠𝑖𝑛 (

𝑘𝑧
𝑘0
) (40) 

 

where 𝑘𝑧 is the phase constant along the 𝑧-axis. 

The algorithm in Fig. 4 is implemented to compute the 

dispersion diagrams. 

The FEM code is necessary to compute the conformal 

surface impedances. With this algorithm, different 2D 

metamaterials (with 𝜃 invariance) in cylindrical waveguides 

can be processed. A 3D FEM code will be required to deal 

with 3D metamaterials or modes with angular dependency (𝑚 

order different from 0).  

 

 
Fig. 4. Schematic algorithm to correct the angle 𝜑. 

III. RESULTS 

In this Section, the method and algorithms are validated in 

three different cases: 

- firstly the values of the 𝑍𝑆 surface impedance (𝑍𝑇, 

𝑍𝑍) is fixed at the 𝐴 radius. Dispersion diagrams of 

these waveguides are obtained with the algorithm of 

[16]. A comparison is made with dispersion 

diagrams computed with the algorithm presented 

Fig. 4 and the 𝑍𝑆
′  surface impedances (𝑍𝑇

′ , 𝑍𝑍
′ ) 

evaluated for a given 𝑎 radius,  

- subsequently the code is applied to a metamaterial: a 

corrugation. This result is compared with the result 

of [15], to show the improvements made thanks to 

the 2D FEM code, 

- finally the code is applied to a T-structure 

metamaterial. 

 

A. Cylindrical Waveguides with Isotropic and Anisotropic 

Surface Impedances 

Initially to validate the method, the FEM code is applied for 

the fixed (𝑍𝑇, 𝑍𝑍) surface impedances at the 𝐴 radius. The 

FEM code computes the (𝑍𝑇
′ , 𝑍𝑍

′ ) impedances at another 𝑎 

radius. The unit cell is created with the open source software 

Gmsh [21] and represented in Fig. 5. 

(22) and (30) can be simplified, as there is only one 

horizontal wall, therefore 𝐻𝜃  is a solution of: 

 

∬ (𝛻𝐻𝜃 . 𝛻𝑣̅̅̅̅ − (𝑘0
2 −

1

𝜌2
)𝐻𝜃𝑣̅) 𝜌𝑑𝜌𝑑𝑧

 

𝑆

+ (𝑗𝜔𝜖0𝑍𝑆𝐴 − 1)∫ 𝐻𝜃𝑣̅𝑑𝑧
 

𝛤𝑠

= 0 

(41) 

 

𝐸𝜃  is a solution of: 

 

∬ (𝛻𝐸𝜃 . 𝛻𝑣̅̅̅̅ − (𝑘0
2 −

1

𝜌2
) 𝐸𝜃𝑣̅) 𝜌𝑑𝜌𝑑𝑧

 

𝑆

+ (
𝑗𝜔𝜇0𝐴

𝑍𝑆
− 1)∫ 𝐸𝜃𝑣̅𝑑𝑧

 

𝛤𝑠

= 0. 
(42) 

 

The dispersion diagrams obtained for a cylindrical waveguide 

of radius A = 30 mm and 𝑎 = 28 mm are illustrated for 

various anisotropic surface impedances (curves with dots). 

The results are compared with the dispersion diagrams 

obtained with the code presented in [16] (curves with circles) 

in Fig. 6. The dispersion diagrams are identical hence the 

elaborated algorithm is validated. 

 
Fig. 5. Unit cell mesh and dimensions: 𝐴 = 30 mm, 𝑎 = 28 mm, ℎ = 2 mm, 

𝑝 = 4 mm. 
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B. A Corrugated Cylindrical Waveguide 

A corrugation invariant in 𝜃 direction is now considered. 

Fig. 7 presents the corrugated waveguide. 

To study this waveguide with HFSS, the same method as 

[16] was used. Dispersion diagrams are obtained from the 

section represented in Fig. 6 with dashes and using periodic 

boundary conditions, see Fig. 8. The propagation constant is 

computed thanks to the phase delay between two periodic 

boundary conditions and the distance between them. By using 

the eigenmode solver in HFSS, the frequency of each solution 

is given. The complete dispersion diagram is obtained by 

varying the phase delay between the two periodic boundary 

conditions from 0° to 180°. 

To study this waveguide with the MET, the section of the 

waveguide used is extracted in Fig. 7 with dots. Whereas the 

structure in HFSS is in 3D, for the MET only a 2D 

representation is useful. The unit cell is represented in Fig. 9. 

A 2D waveguide section cannot be studied with HFSS. For a 

MET validation purpose, a comparison is done with this 

software. Since the MET is in 2D and HFSS in 3D, the 

computation time is drastically improved anytime with the 

MET. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Corrugated waveguide. The dashed section is the section used in HFSS 

and the dotted part is used in the MET. 

 
 

 
Fig. 8. Cylindrical representation of a waveguide with periodic boundary 

conditions and anisotropic surface simulated in HFSS. 

 

Fig. 6. Dispersion diagrams of a cylindrical waveguide for various anisotropic surface impedances (𝑍𝑇, 𝑍𝑍). The curves with dots are obtained with the code 

which computes the (𝑍𝑇
′ , 𝑍𝑍

′ ) impedances at a certain distance ℎ (here ℎ = 2 mm) and the curves with circles are obtained with the code based on MET [16]. 
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Fig. 9. Unit cell mesh and dimensions: 𝐴 = 100 mm, 𝑎 = 80 mm, ℎ =
20 mm, 𝑝 = 26.225 mm, 𝑤 = 20.98 mm and 𝑑 = 18.2 mm. 

 

 
Fig. 10. Dispersion diagrams of the cylindrical waveguide with the 

corrugation presented in Fig. 7 obtained with MET (dots) and HFSS (circles). 

 

 

For the corrugation 𝛤𝑆  is a PEC hence (24) and (42) are 

solved. The dispersion diagrams obtained are compared with 

HFSS results in Fig. 10. Both diagrams perfectly coincide with 

each other. There is a clear improvement compared to the 

dispersion diagram in [15]. Using HFSS the dispersion 

diagram is obtained in three days of simulation (Intel (R) 

Xeon (R), 1.8 GHz 2 processors, 64 GB of RAM). Using the 

MET the dispersion diagram requires a twelve-minute 

computation time. Consequently the dispersion diagram is 

obtained with the MET around 360 times faster than with 

HFSS thanks to the 2D resolution. 
 

C. A T-Structure Metamaterial Waveguide 

A T-structure invariant in 𝜃 direction is studied. In Fig. 11 

the waveguide is presented. The dashed section represented in 

Fig. 11 is extracted and simulated in a 3D FEM code (HFSS) 

while the dotted section is inserted in the 2D FEM code in the 

MET. The unit cell and the dimensions of this section are 

represented in Fig. 12. 

 

 

 
Fig. 11. Waveguide with T-structure metamaterial. The dashed section is the 

section used in HFSS and the dotted section is used in the MET. 

 

 
Fig. 12. Unit cell mesh and dimensions: 𝐴 = 50 mm, 𝑎 = 40 mm, ℎ =
10 mm, ℎ1 = 2.025 mm, ℎ2 = 6.075 mm, 𝑝 = 13.1125 mm, 𝑝1 =
2.6225 mm, and 𝑝2 = 7.8675 mm. 

 

 
Fig. 13. Dispersion diagrams of the cylindrical waveguide with the T-structure 

presented in Fig. 11 obtained with MET (dots) and HFSS (circles). 

 

As in the previous case, 𝛤𝑆 is a PEC, so (24) and (42) are 

solved. The dispersion diagrams obtained are compared with 

the HFSS result in Fig. 13. The simulation time (Intel (R) 

Xeon (R), 1.8 GHz 2 processors, 64 GB of RAM) with the 

MET code is 31 minutes compared to the 3D simulation in 

HFSS which lasts almost four days. 

With this new code it is possible to obtain the dispersion 

diagram for 𝑚=0 modes for all kinds of cylindrical 

waveguides with 2D metamaterial invariant along the 𝜃-axis. 
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To have the dispersion diagrams with all the modes, the 

same algorithm can be used, however another MET code 

should be developed using 3D FEM. 

 

IV. CONCLUSION 

 

The Modal Expansion Theory has been developed to 

compute the dispersion properties of cylindrical waveguides 

with 2D metamaterials for 0 order modes. To demonstrate the 

accuracy and the time efficiency of the new method three 

different waveguides have been studied: One waveguide with 

fixed surface impedances and two with metamaterials which 

are invariant in 𝜃 direction. The MET method allows the 

characterization of isotropic and anisotropic waveguides 

properties whereas HFSS characterizes only isotropic 

waveguides. Furthermore all the dispersion diagrams are 

obtained in less than a ten-minute computation time while this 

process takes more than one hour by using HFSS, as a 3D 

Finite Element Method resolution is used in the commercial 

software while in the MET it is a 2D FEM resolution. 

Consequently the time efficiency of the MET is more relevant 

with 2D metamaterials. Indeed for the corrugated waveguide, 

the time needed for characterization of propagation properties 

is divided by 360 with respect to HFSS. As for the T-structure 

waveguide, the time is divided by almost 200.  

The more complicated the structure, the more time is saved. 

This method is now under development for 3D metamaterials, 

to deal with all the mode orders and all other potential 

metamaterial structures. Since structures can vary with 𝜃 the 

3D FEM code cannot be simplified into 2D FEM code 

anymore. 
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