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ShapeWordle: Tailoring Wordles
using Shape-aware Archimedean Spirals

Yunhai Wang, Xiaowei Chu, Kaiyi Zhang, Chen Bao, Xiaotong Li, Jian Zhang,
Chi-Wing Fu, Christophe Hurter, Bongshin Lee, and Oliver Deussen

Fig. 1. Results produced by our ShapeWordle: (left) using the abstracts of VAST, InfoVis, and SciVis papers of IEEE VIS 2018 to fill an
expressive shape of “VIS” and (right) words of the call for papers of IEEE VIS 2019 filled in the shape of the Canadian Maple Leaf.

Abstract—We present a new technique to enable the creation of shape-bounded Wordles, we call ShapeWordle, in which we fit words
to form a given shape. To guide word placement within a shape, we extend the traditional Archimedean spirals to be shape-aware
by formulating the spirals in a differential form using the distance field of the shape. To handle non-convex shapes, we introduce a
multi-centric Wordle layout method that segments the shape into parts for our shape-aware spirals to adaptively fill the space and
generate word placements. In addition, we offer a set of editing interactions to facilitate the creation of semantically-meaningful Wordles.
Lastly, we present three evaluations: a comprehensive comparison of our results against the state-of-the-art technique (WordArt), case
studies with 14 users, and a gallery to showcase the coverage of our technique.

Index Terms—Wordle, Archimedean spiral, shape

1 INTRODUCTION

Wordles [17] have proven to be simple but effective in conveying an
overview of text in an engaging way [35]. As the size of a word
represents its frequency (and thus weight), people can easily identify
the main theme of the text. In addition, the Wordle algorithm produces
an aesthetically pleasing and appealing output by leveraging typefaces
and colors. As Wordles have been gaining a tremendous popularity, a
wide variety of applications have been developed to enable people to
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create expressive and beautiful wordles (e.g., [12, 22, 23, 25, 37, 41]).

With the continuous popularity of Wordles on social media, a number
of tools have emerged, such as WordArt [41] and Tagxedo [25], which
allow people to create Wordles in a certain shape by fitting words into it.
However, the results do not achieve a high fill rate and high data fidelity
at the same time, as shown by two WordArt examples: the word sizes
accurately encode the word frequencies at the cost of a loose filling in
Fig. 2(a), while Fig. 2(b) achieves a tight filling by exaggerating the
sizes of some words (e.g., Day and Church). In addition, we recognize
the opportunity of facilitating the creation of semantically meaningful
Wordles: associating topics into proper parts of a shape is helpful
for presenting multiple topics, and can enhance the communicative
power of Wordles [12, 37]. However, existing tools do not provide
manipulation capabilities: (i) arrange words of different topics into
different parts of a shape, (ii) directly manipulate individual words, and
(iii) fine-tune the Wordle shape.

In this paper, we present ShapeWordle, a new technique that allows
people to generate shape-bounded Wordles, while preserving data fi-
delity. The core of our technique is a shape-aware Archimedean spiral
for guiding the word placement within a Wordle. Formulating the
Archimedean spiral in a differential form enables us to guide it by a
distance field, to generate spirals of arbitrary forms, and thus to fill ar-
bitrary shapes with almost equidistant words. Figs. 2(c,d) show results
generated by the original Wordle tool WordArt and our ShapeWordle
for the same input text. In contrast to Fig. 2(d), the top and bottom por-



Fig. 2. Comparing word clouds produced by different algorithms: generated by WordArt [41] by (a) using the input word frequency and by (b) further
“tweaking” the actual word frequency to fill the space, without respecting the data fidelity; (c) generated by a traditional Wordle layout algorithm [35]
but taking the shape as the boundary constraint; (d) generated by ShapeWordle, our algorithm; and (e) all words enlarged at the same rate for a
dense filling using ShapeWordle (note that such operation is not supported by WordArt). Also, note that the colors do not encode any information; we
manually assign consistent colors for the words to allow more convenient comparisons across the results.

tions in Fig. 2(c) are nearly empty due to the compact spiral placement
strategy of Wordle. In addition, the word distribution in Fig. 2(d) is
more uniform than the one in Fig. 2(a), which was produced using Wor-
dArt. Note that for a fair comparison we intentionally used the same
set of words with exactly the same sizes for both approaches. To obtain
a high fill rate, even when there are not enough words, ShapeWordle
is able to uniformly scale all words to fill the shape, while preserving
their relative weights (see the example shown in Fig. 2(e)).

Besides, ShapeWordle is able to generate multi-centric layouts by
performing a greedy layout strategy to fill each part of a complex shape
with its associated words. Meaningful shape parts are obtained by
first using automatic image/shape segmentation methods [31] and then
performing interactive fine-tuning.

It is challenging to allow interactive editing while achieving a high
filling rate [37] in a word cloud. To tackle this challenge, we develop a
hybrid word representation that allows the editing of important words in
a cloud and filling additional (typically smaller) words in a subsequent
step. The division between the two groups can be done by selecting a
certain percentage of the most frequent words (those with the biggest
size) or by selecting all words beyond a size threshold. Once the
words are split and all important words have been arranged, users are
allowed to interactively manipulate each editable word, change the
overall shape and refine the correspondence between words and shape
parts. Due to this editing functionality, ShapeWordle enables users to
create semantically meaningful wordles such as two examples in Fig. 1,
which cannot easily be achieved by existing tools.

We evaluated our approach by quantitatively measuring the quality
of our results by computing the layout coverage [5], layout uniformity
and shape similarity. The results show that our method is capable of
producing compact Wordles with shapes highly similar to the given
outlines. We also invited 14 people to investigate ShapeWordle as an
authoring tool. Our results demonstrate the advantages of ShapeWordle
over approaches such as WordArt.

In summary our main contributions are:

• We formulate a shape-aware Archimedean spiral to guide and
align Wordle layouts with arbitrarily-given shapes and to facilitate
us to create multi-centric Wordles, where different words are
placed in different parts of the given shape;

• We introduce a set of shape-aware Wordle editing interactions
based on the coherent combination of rigid body operations and
pixel-based placements; and

• We quantitatively evaluated the quality of the resulting Wordles
and conducted case studies with 14 users to illustrate the expres-
siveness of shapeWordle.

2 RELATED WORK

2.1 Word Cloud Visualization
A complete review of the design space of word clouds is beyond the
scope of this paper. We refer the readers to Felix et al. [18]. Here,

we focus our discussion on the layout problem, i.e., given a set of
words with associated weights, create a layout of words, say with one
of the following three options: horizontal, vertical and spatial. The
first two options simply arrange words from top to bottom or from left
to right in alphabetical order or by their weights. In contrast, the last
option does not impose any specific order of positioning the words,
but arranges them subject to various aesthetic and semantic criteria.
A classic example is Wordle [35], which attracts a large number of
users in recent years. The core of a Wordle is a greedy algorithm
that successively layouts words along a spiral. The original algorithm,
however, does not meet many aesthetic and semantic needs of designers,
since it does not allow users to manipulate individual words nor pack
the words into a target shape. To this end, a variety of advanced layout
and editing methods have been proposed in recent years.

Neighborhood graphs. To arrange relevant words next to each other
for forming a semantic layout, often a neighborhood graph is con-
structed with nodes representing words and edges connecting relevant
words with weights. Cui et al. [14] implicitly construct such a graph by
creating a distance matrix that describes the cosine similarity between
words, then place words via a multidimensional scaling of the matrix
using a force-directed scheme to reduce the empty space between words.
Wu et al. [42] improve this layout by using seam carving to further re-
move the empty space, while Paulovich et al. [28] extend this algorithm
for visualizing the neighborhood relationship between documents and
their corresponding word clouds simultaneously. Rather than using
an implicit graph, Barth et al. [4] directly incorporate a neighborhood
graph into their word clouds. They show that respecting the neigh-
borhood relationship is an NP-hard problem. To overcome the related
computational overhead, they present several approximation algorithms
and conduct a quantitative comparison using implicit methods [14, 42],
and show that Wordle is the most compact layout. In this paper, our
focus is to extend Wordle and shape the Wordle into a target shape,
while weakly respecting the neighbor graph.

Spatial information. Two kinds of spatial information have been
integrated into word clouds: geo-spatial position of each word within
a cloud and artistic shape creation. Buchin et al. [9] design geo word
clouds that place words to respect not only the word frequency but also
the relative positions between words. Since the spatial relations between
words are preserved, such clouds can form shapes of geographic regions.
WordArt [41] is a tool for generating compact word clouds in arbitrarily-
specified shapes (see Fig. 2(b)). The results, however, do not respect
the actual word frequency, or the data fidelity. Chi et al. [12] show
an alternative way that takes a Wordle layout as input and employs
constrained rigid body dynamics to re-arrange the words into a target
shape. However, if the initial layout is not similar to the given shape
(which is often the case), the rigid body dynamics often fail to re-shape
the layout for the target shape. In contrast, our ShapeWordle directly
layouts words in a given shape using a shape-aware Archimedean spiral,
allowing the creation of compact layouts.



Fig. 3. (a) Along the spiral started from the orange dot, search for a
position to place the next word (blue rectangle at the white dot), such
that the word does not overlap with the existing words. (b) Illustrating
the spiral movement direction U and the normal (N) and tangent (T)
directions at the white point on the circle (in blue) of radius r. The circle
can be taken as the isoline of the underlying scalar field from the origin,
where the color map on the right reveals the scalar field magnitude (r).

Temporal coherence. Temporal word clouds reveal temporal changes
in a set of time-varying words, while preserving their temporal order.
By combining parallel coordinates and traditional word clouds, parallel
TagClouds [13] arrange words in each time step along one axis and show
the word changes through connecting edges. SparkClouds [24] show
trends between multiple word clouds by integrating sparklines into
them. While both methods perform well for trend visualizations, they
do not generate compact layouts. Alternatively, Cui et al. [14] create
temporally-coherent word clouds using a multidimensional scaling
and a force-directed model to layout words. Chi et al. [12] propose
morphable word clouds [12] by taking an additional shape sequence
as the input. They not only arrange words into a target shape but also
preserve the temporal coherence of the word positions; see Fig. 15.

Interactive editing. Another form of interactions on word clouds is
to allow the users to manually customize the cloud appearance. In the
original Wordle tool, since only the global properties can be changed
but not the individual words, Koh et al. introduce ManiWordle [23]
that allows users to manipulate the typography, color, and composition
of individual words. Later, Jo et al. [22] extend this method for mul-
titouch editing. Although ManiWordle provides flexible controls, it
may produce inconsistent and unpredictable layout changes due to its
underlying placement strategy. To overcome this limitation, Wang et
al. [37] propose EdWordle to preserve the neighbor relations between
words in layouts during the user edits. Enabled by such capability,
users can create semantic Wordles even in irregular shapes, although
doing so requires highly tedious manual edits. Our ShapeWordle not
only automatically generates word clouds that respect a target shape,
but also provides rich interactions for users to edit the shapes and also
the correspondences between words and parts in the shapes.

2.2 Spiral-based Visualization
Spirals are used in many spatial layout processes to compactly arrange
objects. Among their many different forms [36], the Archimedean
spiral is a widely-used one for visualization, since it is known to be
effective in representing periodicity [1]. Already, Gabaglio [19] em-
ployed it to present periodic data. Carlis et al. [10] and Weber et al. [39]
independently present the first prototypes of spiral displays, where the
color and line thickness are used to encode time series data. Later,
Dragicevic and Huot [15] combine spirals with a clock metaphor and
develop a SpiraClock system for showing upcoming events. By ar-
ranging glyphs that encode multiple variables along a curve, a spiral
can further be employed to reveal multivariate data [38], image-based
search results [32], as well as network security data [6].

On the other hand, Archimedean spirals have been used as the un-
derlying visual pattern to guide the placement of visual items. Two
examples are Wordles [35] and balloon treemaps [34], where the words
and circles are arranged along a spiral, starting from the origin using
a greedy strategy. These examples, however, follow a conventional
circular spiral, hence, they might not effectively fill an arbitrary target

shape (see Fig. 2(c)). In this work, we generalize the Archimedean
spirals to better adapt the word placement in target shapes. This allows
us to optimize the generation of Wordles for arbitrary shapes.

3 BACKGROUND

In this section, we first review the Wordle layout algorithm and discuss
its two inherent drawbacks that limit its ability to shape a Wordle. After
that, we briefly describe the Archimedean spiral formulation.

3.1 Wordle Layout Algorithm
Given a list of words and a weight associated with each word, the
Wordle algorithm adjusts the size of each word in proportion to its
weight and then represents the boundary of each word using a spline-
based contour. To arrange the words in a compact and non-overlapping
manner with the more important words closer to the centroid, the
algorithm first sorts the words by the weights in descending order and
then takes the following two steps to place one word at a time:

1. Initialize: pick a random position around the center of the canvas
(see the orange dot in Fig. 3(a));

2. Search-and-update: create a spiral started from the picked ran-
dom position, and search along the spiral for a location to place
the next word, such that the next word does not overlap with any
already-placed word; then, update the word cloud with the word
placement (see Fig. 3(a) for an illustration of the process).

Being able to place words in horizontal, vertical or diagonal directions
allows the creation of many variants. While the initial position can be
completely random, the final Wordle might not be very compact.

Drawbacks. Both steps heavily limits the flexibility of Wordle in cre-
ating arbitrarily-shaped word clouds. First, the Archimedean spiral
always searches for the new position in a circular manner, so the gener-
ated Wordle cannot effectively comply with the target shape (see again
Fig. 2(c)). Second, picking the initial position around a center pro-
duces a single-piece Wordle, hindering the creation of multi-topic word
clouds [37]. Overall, these two factors largely attribute to the general
blobby shape of most Wordles. In contrast, storytelling word clouds
convey semantics by arranging words into complex, multi-part shapes.
There is a gap between the user demands and Wordle functionality.

3.2 Archimedean Spiral
The Archimedean spiral is one of most widely-used Euclidean spirals,
which can be readily defined in polar coordinates:

r(θ) = mθ +b , (1)

where θ is the polar angle, r is the radial distance from the origin,
b = r(0) is the initial distance of the starting point from the origin, and
m controls the spacing between successive turns. Having a uniform
spacing (2mπ) between successive turns is an important and useful
characteristic of the Archimedean spiral for many applications in medi-
cal imaging [27], material design [29], and digital light processing [3].
Such characteristic facilitates an efficient (uniform) space filling (see
Fig. 3), enabling the creation of compact Wordles.

4 SHAPE-AWARE WORDLE

In this section, we present how we achieve shape-aware Wordles by
extending the Archimedean spiral to be shape-aware, and by supporting
the generation of multi-centric Wordle layouts.

4.1 Shape-aware Archimedean Spirals
The Archimedean spiral can also be expressed in Cartesian coordinates,
x and y, by using trigonometric functions:(

x
y

)
= r(θ)

(
cosθ
sinθ

)
. (2)

Taking the derivatives of Eq. (2) with respect to θ yields

{ dx
dθ = mcosθ − r(θ)sinθ
dy
dθ = msinθ + r(θ)cosθ .



Fig. 4. Shape-aware Archimedean spirals. (a) Distance field created from a Christmas tree contour, with the spiral starting from the orange dot and
currently stopping at the white dot; the zoomed view (b) shows the circle of curvature at the point A, where R is the local curvature radius at A and
the red point marks the corresponding circle center. We approximate the movement distance from A to B (denoted as ds) by the arc length Rdη,
where dη is a user-specified parameter for angular speed. (c) Also, we approximate the length of ds by another arc rdθ . (d) The distance from B to C
is computed along the normal direction (in red) with length mdθ (based on Eq. (4)). (e) Our generated shape-aware spiral for the Christmas tree.

Actually, ( dx
dθ ,

dy
dθ ) is the movement direction (denoted as U) of the spi-

ral at (x,y) in the 2D space (see Fig. 3(b) for an illustration). Here, we
can decompose U along N = (cosθ ,sinθ)ᵀ and T = (−sinθ ,cosθ)ᵀ:

U = m
(

cosθ
sinθ

)
+ r(θ)

( −sinθ
cosθ

)
= mN+ r(θ)T , (3)

where N and T are the unit normal vector and unit tangent vector, resp.,

at point (x,y) on a circle of radius
√

x2 + y2 co-centered with the spiral
(see the blue circle in Fig. 3(b)). Such a circle can be interpreted as

the isoline of an underlying distance field φ(x,y) =
√

x2 + y2, which
measures the Euclidean distance from (x,y) to the origin.

According to Eq. (3), the movement direction U of the Archimedean
spiral is governed by N and T. To extend the spiral to be shape-aware
with a roughly constant spacing between successive turns, we first
compute the distance field (denoted by ϕ) associated with the input
shape (see Fig. 4(a)). Then, we align N and T with the isolines of ϕ ,
instead of the isolines of the generic circular distance field φ shown
in Fig. 3(b). In this way, when we construct the spiral from a starting
point inside a shape, the spiral can move in a way that follows the shape
and eventually meets the shape contour (see Fig. 4(d)).

Computing the distance field. A distance field is an effective shape
representation that has been used for edge bundling [16] and trail data
visualization [20]. It is a scalar field that specifies the shortest distance
to a shape contour specified by a distance transform R

2 → R+:

ϕ(p ∈ R
2,Ω) = min

q∈Ω
||p−q|| ,

where p is a point in 2D space, Ω is the shape contour, and q is any point
on Ω. Note that ϕ is zero on the shape contour and gradually increases
towards the center or the medial axis of the shape, and we compute the
distance field using a linear algorithm [8] with time complexity O(n),
where n is the number of points in 2D space.

Extending the Archimedean spiral. To extend the Archimedean spi-
ral to be shape-aware, the main question is how to guide the movement
of the spiral, or how to define the movement direction of the spiral at
any point p in the given shape. Rather than explicitly constructing the
isoline and then computing the isoline normal at p, we take the gradient
of the distance field as N. This strategy can accurately approximate the
normal [33] for continuous scalar fields, like ϕ . Once N is available, T
can be easily obtained because it is a unit vector that is orthogonal to N.
Then, we can re-write Eq. (3) in a differential form:(

dx
dy

)
= mdθN+ rdθT , (4)

where r =
√

x2 + y2. However, using the same θ at every point in an
arbitrary shape might not be proper, since the generated spiral might
not be able to adapt to regions of high-curvature, e.g., near the corners
of the Christmas tree in Fig. 2.

Fig. 5. Examples of shape-aware Archimedean spirals generated on the
same shape using different parameters m, dη , and number of iterations
(nIter).

To characterize such sharp features, we consider the local curvature
along the spiral and approximate the curve by small tangential move-
ments (denoted by ds) perpendicular to N by Rdη and also by rdθ
(see Fig. 4(b) and (c)), where R is the local curvature radius and η is a
user-specified parameter for the angular speed. Doing so, we can write

dθ =
Rdη

r
. (5)

Note that r in Eq. (4) can also be regarded as the local curvature radius
defined on the isolines (concentric circles) of the generic distance
field φ (see Fig. 4(c)), while R is the local curvature radius defined
on the isolines of the shape-aware distance field ϕ . To estimate R at
an arbitrary point in ϕ , we employ the Hessian matrix [7]; see the
supplemental material for details. Putting everything together, we can
rewrite Eq. (4) as

(
dx
dy

)
=

mRdη
r

N+RdηT . (6)

Note that R and r are different at different points, while m and dη are
constant parameters specified by the user.

In our implementation, we compute dx and dy using Eq. (6) to
progressively trace out the spiral from the origin. Typically, we set
m = 1 and dη = π/5, while m and R are measured in pixel units on
the shape image. Since m is a constant, the generated spirals can have
nearly-uniform spacing (2mπ) between successive turns. Fig. 5 shows
some examples. In the case of a straight curve segment R might become
too large, so we empirically set an upper bound of 1.5 pixel units as a
maximum movement distance along the tangential direction to avoid
excessive movements. We ran our method on a quad-core PC with a
23” LCD widescreen, an Intel(R) Core(TM) i7-6700K CPU and 16GB
RAM. For a wordle of 60 words, our method finishes in less than 5s.

Uniform scaling. Putting our shape-aware Archimedean spiral into
the Wordle layout algorithm enables us to efficiently generate shape-
aware Wordles. Fig. 2(d) shows an example result. However, if the
total word areas is far less than the total shape area, it is hard to create a



compact layout. Hence, we define a uniform scaling parameter for the
words in an attempt to maximize the fill rate, where the relative weights
between words are still preserved. Fig. 2(e) shows the result after we
scale up the important words in Fig. 2(d) and regenerate the Wordle.

4.2 Multi-centric Layout

Fig. 6. A shape with
three components.

For an input shape with multiple components,
we use a shape-aware Archimedean spiral
to generate a Wordle layout for each of the
components. Fig. 6 shows an example with
three components, where we generate a multi-
topic Wordle by filling words of a specific
topic in each of the components: tulip, spring,
and flower bulb.

However, if a component has multiple lo-
cal maxima of the distance field, generating
a Wordle layout for the whole component
might not be able to fill it completely. The shape shown in Fig. 7(a) has
two components. Tracing only a single spiral from the global maximum
in the right component misses the top portion of the wing and results
in a large empty area. To accommodate the Wordle algorithm for such
non-convex components, we use a multi-centric layout to generate the
spirals and place words around multiple local maxima.

Shape Segmentation. Given a shape, we detect connected compo-
nents in the shape and generate a distance field per component. We
then use an iterative gradient-descent procedure [11] to locate the local
maxima(s) and the associated shape region(s) (called as parts) in each
component. This allows us to implicitly segment a component into a
few parts. Fig. 7(b) shows an example, where the two components of
the pigeon shape are segmented into four parts.

Word Assignment. Given a list of words to fill a shape, we first set a
font size for each word such that the sum of the areas of all the words
is 70% of the total shape area. We then use a greedy strategy to assign
words to the different parts of the shape. Denoting pi, j as the j-th part
of the i-th component, Ai, j as the area of pi, j , and N as the total number
of input words, the number of words to be assigned to pi, j is

Ai, j

∑u ∑v Au,v
N . (7)

Assuming that the word with the largest weight should be assigned to
the largest part, we then define the largest weight of the words in each
part as

wi, j =
Ai, j

maxu,v Au,v
. (8)

Once ni, j and wi, j have been determined, we simultaneously and ran-
domly assign words from the input word list to every part, such that
the weight of any word in pi, j should not exceed wi, j . If we run out of
space for word placements due to such an assignment, we uniformly
shrink all the words, and repeat the word assignment process.

By tracing multiple spirals around local maxima per part instead of
per component, it is possible to fill also non-convex shape with words;
Examples are given in Fig. 7(a) versus (c). On the other hand, using
traditional Archimedean spirals to fill parts cannot solve the problem;
as demonstrated in Fig. 7(d), circular spirals cannot effectively fill the
abdomen part of the pigeon, resulting in a large empty area.

5 INTERACTIVE SHAPEWORDLE CREATION SYSTEM

In this section, we present our ShapeWordle system, which facilitates
users to interactively create and edit arbitrarily-shaped word clouds,
while preserving their aesthetic characteristics. Like existing word
cloud editing systems [23] [37], our system gives user controls over the
layout through interactive manipulation of individual words and shapes.
On top of these, as presented in the pipeline shown in Fig. 9, the users
can simply load a piece of text and load/select a shape (Fig. 9(a)), apply
a shape segmentation (Fig. 9(b)), and click a button to generate a word
cloud that completely fills the given shape (Fig. 9(c)).

Fig. 7. Multi-centric layouts created by using multiple shape-aware
Archimedean spirals: (a) tracing one spiral per component without shape
segmentation; (b) the four parts segmented in the pigeon; (c) result after
tracing one spiral per segmented part ; and (d) result by tracing one spiral
per part using the traditional Archimedean spirals instead.

Fig. 8. Refining a seg-
mentation by brushing.

Before the layout generation, the user
can manually associate semantically-related
words into specific segmented parts to cre-
ate multi-topic Wordles. If the segmentation
parts are not meaningful, he/she can refine
them via interactive brushing; see an exam-
ple in Fig. 8. Once a word cloud is generated,
the user can further manipulate the impor-
tant words with various editing operations
(Figs. 9(d,e)) and fill in the less important
words to produce the final Wordle (Fig. 9(f)).
In the following, we describe how to com-
pletely fill a shape with a two-step layout and
perform interactive word cloud editing.

5.1 Two-step Wordle Layout
As shown in Fig. 2(e), it might not be always possible to completely
fill up a shape with large words only, even we uniformly scale all the
words. On the other hand, users are mainly attracted by the large words
when viewing a word cloud [2, 23], while paying less attention to the
smaller ones. To efficiently fill a shape, we separate the input words
into two classes: core words are the top N important words that can be
interactively manipulated, while marginal words are used for filling up
the space. To provide consistency-preserving word cloud editing [37],
we represent the core words by their bounding boxes for layout, which
are viewed as rigid bodies at the editing stage. In contrast with the core
words, each marginal word is represented as a binary mask image [23]
with “1” as foreground and “0” as background.

We use this combined representation to generate layouts in two
steps, i.e., placing the core words then marginal words. First, we use
our shape-aware Archimedean spirals to position the core words, so
that their overall shape better aligns with the input shape. Note that if
there are not enough core words, the layout might not be completely
filled (see Fig. 2(d)). To clearly show the core words, we uniformly
enlarge them until they dominate most of the shape area (see Fig. 2(e)).
In contrast, the marginal words are placed by using the traditional
Archimedean spirals for two reasons. First, the large number of tiny
marginal words are mainly used for filling the small empty regions
remaining in the shape; they need not align with the shape. Second,
computing the shape-aware Archimedean spirals for a large number of
tiny marginal words is time-consuming, and unnecessary.



Fig. 9. Pipeline of our approach. (a) The input consists of a set of words with weight values and a shape; (b) the shape is segmented into different
parts; (c) an initial Wordle filled up the given shape; (d) the layout of the important words in the editing mode; (e) the result generated after
manipulating individual important words; (f) the result generated by filling the marginal words into the layout in (e) and if the further editing is required,
user enters the editing model and the layout becomes the one shown in (e).

Fig. 10. Illustration of the uniform constraint: (a) central forces (grey
arrows) towards the virtual rigid body in the middle, where the forces
are applied to surrounding word boxes in the region marked by the red
dashed box; and (b) updated layout, where the position of surrounding
word boxes are re-adjusted.

5.2 Shaped Wordle Editing
After creating a shaped Wordle, users can manipulate it in the edit-
ing mode, where the marginal words disappear and users can modify
the core words interactively (e.g., move, rotate, resize, delete), while
preserving the neighborhood relationship between the core words. Af-
ter the manipulation, the user can simply click a button to fill up the
whole shape with marginal words. Below, we describe how we achieve
consistent word cloud editing with rigid body dynamics [37].

In the editing mode, each word is boxed as a rigid body with a mass,
and a customized rigid body dynamics [37] is applied to move the
words by forces. The dynamics system allows us to avoid word overlap
by imposing non-penetration constraints, which automatically detect
collisions between bodies and move related bodies apart to respond
to the collisions. In doing so, after the user moves/resizes a word,
all surrounding related words will be automatically repositioned. To
support intuitive shape-based editing, we customize the rigid body
dynamics with two additional constraints:

(i) Boundary constraint. To keep the words inside their correspond-
ing shape parts, a boundary constraint is applied to take the shape
boundary pixels as static rigid bodies. If a word contacts with them, it
will be bounced back. If the whole word (or a significant part) goes out
of the boundary, we assume that the user intentionally takes the word
out from the part, so we do not apply the boundary forces to the word.

(ii) Uniform constraint. Removing words will lead to large empty
areas in the layout. To keep the layout uniform, we introduce a uniform
constraint to insert virtual bodies to represent the empty areas with
central forces to pull in the surrounding words.

Fig. 10 shows an example. Suppose a word is removed from (move
out or delete) position p, we insert a virtual rigid body at p and apply a
pulling force on each surrounding word (say, at position x j):

Fj =
v j

||p−x j||2 ,

where v j =
p−x j

||p−x j || is the unit vector from x j to p. Since words that

are further from the virtual body receive smaller forces, we set a range
for applying the force to accelerate the computation. The range is
defined by uniformly scaling the box of the original word (before
removal) three times at the word center; see the red dashed box in
Fig. 10(a) for an illustrative example and Fig. 10(b) for a result after

applying pulling forces. Note that both constraints have been used
for generating morphable word clouds [12], whereas here, they are
only used in the editing mode. Incorporating these constraints might
introduce flickering for words that collide with the static boundary, so
we put them as options for users.

6 EVALUATION

This section presents (i) a quantitative evaluation to compare ShapeWor-
dle with the state-of-the-art, (ii) a case study, and (iii) how we extend
ShapeWordle for creating temporally-shaped Wordles.

6.1 Quantitative Comparison
There are two existing tools we are aware of that can automatically
generate shaped word clouds: WordArt [41] and Tagxedo [25]. For
Tagxedo, we found that it might drop important words if it cannot
accommodate the words in the layout, which is not faithful to the input
data; see supplemental materials for visual comparisons with Tagxedo.
Hence, we compare our ShapeWordle mainly with WordArt, which
is the best tool, so far, for generating word clouds [26]. However,
since the algorithm and code of WordArt are not accessible, we can
only obtain outputs from WordArt in the form of regular RGB images.
Hence, to compare with WordArt, we use ShapeWordle to generate
regular RGB images in the same resolution as those from WordArt.

Metrics. We employ the following three metrics to quantitatively
evaluate the quality of the generated word clouds:

• Layout coverage (LC) is extended from Barth et al. [4] for mea-
suring the overall proportion of empty space in the generated
layout. To do so, we count the number of pixels in text color
(i.e., words in the clouds) and the number of pixels in non-text
background color inside the shape. Hence, a large LC value closer
to one means better coverage.

• Layout uniformity (LU). This metric, from another aspect, mea-
sures the distribution uniformity of the gaps among the words
in the layout, meeting the basic requirements for wordles. We
formulate LU based on the following observation: if the words in
a layout are evenly distributed, the gaps in-between words should
be small and similar in sizes. Hence, given a layout of words, we
first generate a pixel-level distance field (denoted as ϕ), where
each pixel stores the distance to the nearest pixel in text color; see
Fig. 11(a) for an example. Thus, we define LU, which sums up
the per-pixel squared distance values and normalizes the sum by
the total number of non-text pixels inside the shape (nnontext):

LU =
1

nnontext
∑

i
ϕ(pi)

2 , (9)

where pi is the i-th pixel in the shape. Here, a small LU indicates
a better layout uniformity, and we square the distance values to
penalize large distances (in pixel units).

• Shape similarity (SS). The third metric SS aims to measure how
good the generated wordle aligns with the given shape. Here, we
adopt the least distance model [21] to measure the distance from
each boundary pixel. For each pixel on the shape contour ΩB,



Fig. 11. Illustration: computing (a) layout uniformity using the distance
field in input word cloud and (b) shape similarity over boundary pixel pi.

we find the distance (denoted as ρ) to the nearest text color pixel
in the shape; see Fig 11(b) for an illustration. In this way, we
can define SS by summing up per-pixel squared distances over
the shape contour and normalizes the sum by the total number of
pixels on the shape contour (ncontour):

SS =
1

ncontour
∑

pi∈ΩB

ρ(pi)
2 . (10)

Similar to LU, a small SS indicates a layout that better matches
the input shape contour.

Regarding the data fidelity, we did not explicitly include it as a metric,
since our method already fully respects the original weight of words.
For a fair comparison, we also intentionally set the WordArt to produce
layouts that fully respect the data fidelity.

Data. We employed the dataset from Brath et al. [4], which includes
112 articles extracted from the English Wikipedia and 45 scientific
papers from the proceedings of the conferences SEA and ALENEX.
Also, we collected 157 shapes in diverse categories such as animals,
plants, sports, and numbers, and then randomly assigned a unique
shape to each document. To examine how our ShapeWordle behaves in
single-centric and multi-centric Wordles, we further divided the shapes
into two types: single-part shapes, e.g., the Christmas tree in Fig. 2,
and multi-part shapes, e.g., the pigeon in Fig. 7.

Settings. Since the algorithm and code of WordArt are not available,
we tried to use more consistent settings to compare ShapeWordle and
WordArt. First, we draw all the words in both systems in horizontal
orientation using the Duality font. Second, how WordArt maps word
frequency (or weight) to scale the font sizes of the generated words is
unknown. Hence, we first use WordArt to generate a word layout and
then directly take the font size of the generated words (provided in a
downloaded CSS file) as the input word weight in our ShapeWordle.
Third, although both WordArt and ShapeWordle can completely fill
a given shape with a large number of tiny words, to evaluate a layout
quality, we consider mainly the layout of the large important words,
which attract more user attention [30]. In addition, it is actually more
challenging to use fewer words to more uniformly generate shaped
word clouds [12]. Considering these, we fix the number of words as 60,
which is often not enough to entirely fill the input shapes.

Results. We employed our method and WordArt to generate shaped
word clouds for the whole dataset, and computed the LC, LU, and SS
scores for each result. Screenshots of all the generated word clouds
along with their LC, LU, and SS scores can be found in the supple-
mental material. Also, we created the boxplots shown in Fig. 12 to
summarize the scores. In general, a large LC value indicates a better
layout coverage, and it is not possible to achieve a value close to one,
since LC counts only the text-color pixels in the shape. See also the LC
values in the comparison results shown in Fig. 13. Here, we also want
to highlight that for WordArt, we cannot uniformly scale all the words
to improve the coverage, while in our case, thanks to the shape-aware
Archimedean spirals, we can more evenly distribute the words, so we
can further enlarge the words in our ShapeWordle results without word
collisions. So, we can further improve the layout coverage.
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Fig. 12. Boxplots summarize the scores of LC, LU, and SS of our
ShapeWordle (green ones) and WordArt (orange ones). The outliers with
the dark halos are out of the plot range. A larger LC value and smaller
LU and SS values indicate a better result.
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(c) LC:0.16, LU:83, SS:1398 (d) LC:0.15, LU:99, SS:1458
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ShapeWordle WordArt

Fig. 13. Typical results produced from our ShapeWordle (left) and Wor-
dArt (right) for single-centric (top) and multi-centric (bottom) input shapes.

On the other hand, LU and SS measure pixel-level squared distances
to account for the layout uniformity and shape similarity. A small LU
value indicates better layout uniformity with smaller and more evenly-
sized gaps in-between words in the results, while a small SS value
indicates that the words can better match the shape contour. Thanks
again to the shape-aware Archimedean spirals, which enable us to
generate shape-aware layouts that are more uniform. Hence, we can
distribute words more evenly in the shape, as demonstrated by the
results shown in Fig. 13 and by the LU values. Also, ShapeWordle
achieves lower SS values, since our spirals better fit the given shapes.

Furthermore, comparing the results for single- and multi-centric
shapes, we can see that all the LC, LU, and SS scores drop, for both
ShapeWordle and WordArt. This is reasonable, since multi-centric
layouts typically contain multiple smaller parts (Fig. 13 (bottom)),
where it is harder to fill in words that better match the individual
parts. Yet, ShapeWordle still produces more compact and uniformly-
distributed words for both single-centric and multi-centric shapes.

6.2 Case Studies
To explore the expressiveness of ShapeWordle, we performed case
studies with 14 participants from different schools in a local university.
During this study, we exposed all functions of ShapeWordle to the
participants and asked them to create a layout of their own favors. We
closely observed their actions, and after they were done, we had a short
interview with each of them to collect their design philosophy and
feedback on our system. Each case took about 5-20 minutes, including
the design process and interactions. All the participants reported the
creation process as engaging. They agreed that the system was “easy
to learn and fun to play with”. Several users especially mentioned
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Fig. 14. Results designed by the participants in our case studies. (a) the Wikipedia page of Google Chrome [40]; (b) The speech “Towards a Strategy
of Peace” by the former U.S. President John F. Kennedy; (c) the speech “We shall fight on the beaches” by the British politician Winston Churchill; (d)
the novel “Alice’s Adventures in Wonderland”; and (e) prince, rose, and fox from the novel “Little Prince.”

they liked the friendly editing interactions, which allow them to freely
move the words. Two of our participants have produced shaped word
clouds using other tools before. They reported that when generating
personalized layouts, our system saves their time and produces more
satisfying results. Figs. 1 and 14 show several inspiring works produced
by them; more results can be found in the supplemental material.

In the following, we briefly discuss some of the results:

VIS (Fig. 1) was created by an expert (non-author) in visualization. It
includes two shaped Wordles. The left one has three parts: “V”, “I”,
and “S”, where the expert assigned words extracted from the abstracts
of VAST, InfoVis, and SciVis papers of IEEE VIS 2018 to the three
parts, respectively, followed by some refinements to relocate the words
in three minutes. Note that since “I” is too thin, the word “visualization”
is shortened as “Visual” to fit the shape. From this result, we can see the
core topics in VAST, InfoVis, and SciVis, e.g., “Ensemble” for Scivis,
“Set” for InfoVis, and “Cluster” for VAST, while the three parts also
share some common topics like “Network” in InfoVis and VAST, and
“Data” in all of them. For the right Wordle, since IEEE VIS 2019 will
take place in Canada, the expert filled the words from the call for papers
of IEEE VIS 2019 into the shape of the Canadian Maple Leaf, in which
the relationship between Canada and IEEE VIS 2019 can be clearly
shown. To make the layout more interesting, the expert intentionally
edited the word positions over the leaf boundary.

Chrome (Fig. 14(a)) was created by a web programmer who took the
Wikipedia page of “Google Chrome” as the data and directly used the
colors in the Chrome logo. The most attractive words are “Google”,
“Chrome”, and “Browser”, each centering in its associated part. These

three words form a triangle, indicating the main contents of this article.
The word “Chromium” was put at the center of the layout because
most of the source code came from the Chromium project. The words
“developer” and “update” were also placed near the layout center. The
designer wanted to indicate that this project was still being updated
and attracts many developers around the world. The various operating
systems where Chrome can work with were distributed in different
parts of the logo to make the layout more uniform and balanced.

Pigeon (Fig. 14(b)) was designed by a student with web design expe-
rience, using a speech delivered by the former U.S. President, John F.
Kennedy, “Towards a Strategy of Peace,” in 1963. The speech has four
parts. The first part was arranged on the pigeon’s larger wing (in green),
where the president appealed to people to examine their attitude toward
peace. Here, the designer intentionally put the main word “Peace” in
the middle and align some medium-size words with the feather. The
second part was placed on the top wing, where the president talked
about reexamining attitude toward the Soviet Union. The head and
body of the pigeon were assigned with the third part: reexamine the
attitude toward the cold war. Finally, the two important decisions that
Kennedy mentioned last were placed on the tail. Overall, the designer
spent around 20 minutes to create this result.

Winston Churchill (Fig. 14(c)) came from the famous speech of Win-
ston Churchill, “We shall fight on the beaches.” The participant took an
image of Winston Churchill as the shape, and segmented the shape into
three parts: head, face, and collar. Here, she deliberately re-positioned
some large words, where she put “Fight” around the eye location be-
cause that is the theme of the speech, “British” in the head of the



character to indicate Churchill always kept his country and people in
mind, and “Army” and “Power” in the throat of the character to show
that these are the important elements during the war.

Alice (Fig. 14(d)) used the novel “Alice’s Adventures in Wonderland”
as the input data. Comparing to other cases, this result was done in
just four minutes without much additional refinements. Overall, the
participant used the outline of the main character in the novel Alice as
the input shape and then enlarged some words that describe the major
characters in the novel, such as Alice, King, Rabbit, and Queen. She
commented that “the big words align well with the shape. This saves
me much time in editing because it’s already so nice.”

Little prince (Fig. 14(e)) was created by a student interested in litera-
ture, where the data came from three different chapters in “Little Prince”
for filling in the three separate shapes shown in the result, for prince,
rose, and fox, from left to right. The first chosen chapter is about the
little prince meeting a conceited man in the second planet, where the
participant used the shape of the little prince for filling in words. Inter-
estingly, the participant segmented the shape further into several parts
for placing different topics of words, and he put some summary words
such as ‘Conceited” and “Queer” at the bottom part, etc. The second
chosen chapter is about the rose. The participant emphasized several
words that express feelings, e.g., “Overcome”, “Cry”, and “Sadness.”
The third chosen chapter is about the fox, where the participant picked
the story about the little prince meeting the fox and becoming friend
with her. The largest word in the head of the fox is “Tame,” which is
the main thing that the fox told the little prince. And in the tail of the
fox shape, the participant intentionally expanded the words “wasted”
and “rose” to highlight that “it is the time you have wasted for your
rose that makes your rose so important.”

6.3 An Extension for Temporal Data
Last, we extend our method to generate temporal shape Wordles with
time-varying text data. Morphable word clouds [12] is the state-of-the-
art for producing temporal shape wordles but it needs to solve a complex
rigid body dynamics system. Thanks to the shape-aware Archimedean
spirals, we can achieve the goal with a simpler strategy. Given a set of
shapes over time, we first prepare correspondence between successive
shapes. Hence, after we generate a layout for the first shape, we can
take the layout as a reference to guide the word placement in the next
shape. In this way, we can produce shaped Wordles over time, while
accounting for the temporal coherency.

Fig. 15 compares the results generated by our method and Morphable
word clouds [12] by using three key frames of the human life cycle
data. We can see that our results (see Fig. 15(a)) are more compact and
better highlight the large words, because of the background of filling
words. See also the supplemental material for more comprehensive
comparison.

7 CONCLUSION

We presented ShapeWordle, a technique that facilitates users to create
arbitrarily-shaped Wordles. The core of the technique is the shape-
aware Archimedean spirals for guiding the word placement within a
Wordle. By formulating the Archimedean spirals in a differential form,
we can use the distance field of the shape to generate spirals in arbitrary
forms, and accordingly produce shape-aware Wordles. For complex
shapes, we introduce a multi-centric Wordle layout technique, which
first segments the shape into parts then adaptively places words in each
part by using shape-aware spirals. To allow users interactively editing
the words, while densely filling the shape, we further develop a hybrid
word representation that enables the editing of important words in the
clouds and filling in additional small words. Further, we offer a set of
editing interactions to facilitate the creation of semantically-meaningful
Wordles. We evaluated with our system by quantitatively comparing it
with the state-of-the-art tool, conducted case studies, and presented an
extension for generating temporal word clouds.

There are still some limitations of our ShapeWordle that we will
readily consider in the future work. First, the compactness and uni-
formity of our current multi-centric Wordles are not as good as those

Fig. 15. The human life cycle from teenager to elder: (a) the three key
frames created by our method; and (b) presented in Morphable word
clouds [12]. Note that we assigned the same color to the same word in
(a) and (b) to facilitate word-by-word comparison.

of single-centric layout; we will explore strategies to further improve
our word assignments. Second, while our current method can place
words in a shape-aware manner, it cannot automatically change the
word orientation and align the words with the shape. For example,
aligning the words in the feature of the pigeon shown in Fig. 14(b) took
the participant around seven minutes. We will investigate the possibility
of incorporating shape orientation into our spirals in the future. Last,
we will explore more applications of our shape-aware Archimedean
spirals in visualization.
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