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Abstract 
Stand-alone GNSS positioning is challenged to meet the applications’ demanded accuracy and reliability in urban 

environments. In order to obtain an optimal and reliable position estimate using GNSS, it is necessary to have an 

accurate model of the pseudorange and pseudorange-rate error terms’ distributions. Previous research 

contributions addressed the statistical characterization of the pseudorange measurements’ multipath and noise error 

components in an urban environment by proposing a methodology to isolate the multipath error and the thermal 

noise component from the pseudorange measurement. The proposed methodology was adapted to include dual 

constellation measurements in the L1 band, GPS L1 C/A and Galileo E1 OS signal measurements. Moreover, a 

reliable classification of the signal reception conditions, Lion-of-Sight (LOS) and Non LOS (NLOS), was 

addressed.  

 

The work conducted in this article consists first in further adapting the methodology proposed in the previous work 

to the pseduorange rate (Doppler frequency) measurement and second, in inspecting the benefits of the derived 

pseudorange and pseudorange-rate measurements’ error component characterizations when applied on the PVT 

navigation solution. Finally, the analysis of the PVT estimation performance based on satellite measurement 

selection principle is presented. 

 

Introduction 
Global Navigation Satellite Systems (GNSS) is challenged to provide a continuous and accurate positioning 

service in harsh environments, such as urban environments, where the number of Line-of-Sight (LOS) visible 

satellites is limited [1]. Moreover, no orientation (or attitude) information is provided by GNSS standalone 

receivers in spite of being a very important factor for aiding the navigation in this kind of environments. One 
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possible solution to cope with GNSS standalone receiver limitations, which is becoming a potential baseline 

platform for mass-market user devices, is to integrate an Inertial Measurement Unit (IMU), [1]. Such platforms 

aim at combining reasonably low-cost hardware with the provision of the high positioning accuracy, availability 

and reliability. More specifically, this kind of solution increases the quality of the PVT estimations by taking 

advantage of the complementary nature of GNSS and the inertial systems measurements. However, the major 

drawbacks of such a solution are the cost increase and the increased complexity of the PVT algorithms. However, 

nowadays, these drawbacks are mitigated due to the appearance of good performing low-cost IMUs, good-

performing low-cost chipsets and the development of fast GNSS receiver software-radio implementations. 

  

Although IMU complements the weak points of GNSS in urban canyons, the low availability of LOS satellites and 

low-quality measurements (pseudoranges, Doppler frequency, carrier phase) make the hybrid system to still have 

to rely on GNSS measurements for correcting sensor drifts. Therefore, in order to obtain an optimal and reliable 

position estimate, it is necessary to have access to an accurate assessment of the GNSS measurements even in 

difficult environments; in other words, it is necessary to accurately model the pseudorange, doppler and carrier 

phase error distributions due to the presence of the multipath and NLOS received signal conditions.  

 

Initial efforts to assess the quality of GNSS measurements in urban environments have already been done. In [2] 

and [3], a new enhanced characterization of the measurement errors’ weighting in the Kalman Filter was 

approached. In [4] and [5], some different techniques based on detection, de-weighting and mitigation of 

multipath-affected measurement and/or measurement in Non Line-of-Sight signal conditions were developed. In 

[6], a study of the PVT estimation performance based on the combination and the selection of the joint GPS and 

GLONASS satellite measurements was conducted. Finally, in [7], a methodology to characterize the pseudorange 

measurement errors due to multipath for a GNSS receiver in a car in an urban environment was proposed. Applying 

this approach, a realistic model of the GPS + Galileo measurement error in an urban and sub-urban environment 

obtained by discriminating the multipath error contribution from the received signal Line-of-Sight (LOS) or Non 

Line-of-Sight (NLOS) situations was obtained. Moreover, an analysis of the measurement multipath and noise 

error distribution was provided as a function of the satellite elevation and the received signal 𝐶/𝑁0. This same 

methodology applied in [7] may be adapted to provide estimations of the Doppler frequency multipath error 

component distribution. By doing so, the measurements knowledge about multipath error distribution in an urban 

environment, pseudorange and pseudorange-rate, will be enhanced and, consequently, the GNSS standalone 

solution in urban environments, which is also used to correct sensor drifts, will be improved. 

 

The aim of this paper is thus to propose a low-cost GNSS position solution algorithm which exploits the knowledge 

about the a priori multipath error component plus noise distributions of the pseudorange and pseudorange-rate 

measurements using the methodology provided in [7]. The expected benefits of such a solution are an increase of 

the PVT estimation accuracy and reliability without significant modification of the PVT solution algorithm. 

  

Moreover, due to the more precise knowledges of the multipath and noise error joint characteristics and the 

possibility to differentiate between LOS and NLOS received signal conditions, an analysis of PVT estimation 

solutions based on an intelligent satellite measurement selection is proposed. This will be achieved by using the 

NLOS and LOS classification as a function of the received signal parameters (such as C/N0 and elevation angle).  

The PVT solution is calculated by using:  

• all available satellite measurements (LOS + NLOS conditions) 

• satellite measurements only from satellites estimated to be in LOS conditions  

• all available LOS-estimated satellite measurements and a smart selected group of NLOS-estimated 

satellite measurements 

  

All available measurement could be used with their associated uncertainty (Gaussian distribution variance); in this 

case, the NLOS biased measurement could be mitigated due to the fine Gaussian distribution fitting associated to 

the measurement (as a function of the received signal C/N0 and on the elevation angle) and even with the removal 

of the Gaussian mean on the measurement (since EKF requires centred gaussian noise). 

  

The idea of using NLOS measurements instead of discarding them is twofold. One on side, the number of available 

measurements increases and thus the continuity of the solution should be improved. On the other hand, the final 

position estimation accuracy (and thus reliability) depends on the measurements’ quality and on the geometry of 

the employed measurements (Dilution of Precision, DOP). Therefore, although the inclusion of NLOS 

measurements should decrease the measurements quality, the new geometry could improve the final DOP with a 

potential improvement of PVT accuracy.  
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Third and last, following the principle explained in the previous point, it is possible that the best solution does not 

consists in blindly adding all NLOS measurements but only a specific subset should be used in order to ensure that 

the effect of adding them is beneficial to the final PVT accuracy. 

 

The article is organized as follows:  

• Section 1 introduces the pseudorange and pseudorange-rate measurement models and the pseudorange-

rate impairments due to multipath in urban environment.  

• Section 2 recalls the multipath error plus thermal noise characterization, isolated from the pseudorange 

and the pseudorange-rate measurements.  

• Section 3 describes the basic model for a stand-alone GNSS EKF solution and how to employ the doppler 

and pseudorange LOS/NLOS multipath error distribution in the stand-alone GNSS EKF solution to 

increase the estimation accuracy. 

• Section 4 discusses the different methods to exploit LOS/NLOS satellite characterization knowledge in 

the stand-alone GNSS EKF solution to study the PVT estimation performances in different satellite 

conditions (LOS+NLOS, LOS, LOS + mix of NLOS). 

• Finally, conclusions and future works are derived in Section 5. 

1 Pseudorange and Pseudorange-rate models 
 

The definition of pseudorange and pseudorange-rate measurement models for the GPS and Galileo constellations 

are presented in this section, introduncing all the error affecting the measurement. 

 

The pseudorange measurement 𝜌 for a given satellite 𝑖, at epoch 𝑘, is modelled as follows: 

 

 𝜌𝑖[𝑘] = (𝜏𝑖[𝑘] + Δ𝑡𝑅𝑇
𝑖 [𝑘])𝑐 + 𝜀𝑇𝑂𝑇

𝑖 [𝑘] + 𝑀𝑖[𝑘] + 𝜂𝑖[𝑘] 1-1 

where: 

• 𝜏 is the true signal propagation time from the satellite to the receiver on ground, expressed in seconds (s); 

• Δ𝑡𝑅𝑇
𝑖  represents the error between the receiver (𝑅) and the transmitter satellite (𝑇) clock time, expressed 

in s; 

• c denotes the speed of light in meters/seconds (m/s); 

• 𝜀𝑇𝑂𝑇
𝑖  denotes the propagation delays grouped in one term, expressed in m; 

• 𝑀𝑖 denotes the error in m due to multipath; 

• 𝜂𝑖 represents the error, in m, due to receiver AWG noise. 

 

According to equation 1-1 and since this work focuses on a dual-constellation GPS/Galileo receiver platform, it is 

thus required to present the propagation delays for both GPS and Galileo constellations as: 

 

The clock error term for GPS constellation, Δ𝑡𝑅𝑇,𝐺𝑃𝑆
𝑖  is equal to: 

 Δ𝑡𝑅𝑇,𝐺𝑃𝑆
𝑖 [𝑘] = Δ𝑡𝑅,𝐺𝑃𝑆[𝑘] − Δ𝑡𝑇,𝐺𝑃𝑆

𝑖 [𝑘] = (𝑡𝑅[𝑘] − 𝑡𝐺𝑃𝑆[𝑘]) − (𝑡𝑇,𝐺𝑃𝑆
𝑖 [𝑘] − 𝑡𝐺𝑃𝑆[𝑘]) 
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where: 

• 𝑡𝑅 is the receiver time corresponding to epoch 𝑘 of the receiver’s clock in s; 

• 𝑡𝑇,𝐺𝑃𝑆
𝑖  is the satellite clock time based on the satellite clock in s; 

• 𝑡𝐺𝑃𝑆 represents the GPS system time, computed by the GPS Master Control Station on ground as the 

weighted average of each GPS satellite time measurement, expressed also in s; 

• 𝑐 is the speed of light, in m/s. 

 

The clock error term for GPS constellation, expressed in terms of range error, could be defined as 
 Δ𝑡𝑅𝑇,𝐺𝑃𝑆

𝑖 [𝑘]𝑐 = Δ𝑡𝑅,𝐺𝑃𝑆[𝑘]𝑐 − Δ𝑡𝑇,𝐺𝑃𝑆
𝑖 [𝑘]𝑐 = 𝑏𝑅,𝐺𝑃𝑆[𝑘] − 𝑏𝑇,𝐺𝑃𝑆

𝑖 [𝑘] 1-3 

• 𝑏𝑅,𝐺𝑃𝑆 is the receiver’s clock bias with respect to GPS reference time expressed in m;𝑏𝑇,𝐺𝑃𝑆
𝑖  is the i-th 

GPS satellite clock bias with respect to GPS reference time expressed in m. 

 

Performing the same steps for each clock term concerning the 𝑖𝑡ℎ Galileo constellation, the following expression 

can be written: 

 Δ𝑡𝑅𝑇,𝐺𝐴𝐿
𝑖 [𝑘] = Δ𝑡𝑅,𝐺𝐴𝐿[𝑘] − Δ𝑡𝑇,𝐺𝐴𝐿

𝑖 [𝑘] = (𝑡𝑅[𝑘] − 𝑡𝐺𝐴𝐿[𝑘]) − (𝑡𝑇,𝐺𝐴𝐿
𝑖 [𝑘] − 𝑡𝐺𝐴𝐿[𝑘]) 

 

1-4 
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with 𝑡𝑇,𝐺𝐴𝐿
𝑖  and 𝑡𝐺𝐴𝐿 representing the Galileo satellite clock time and the Galileo system time, respectively, 

expressed in s. The clock error term for Galileo constellation, expressed in terms of range error, could be defined 

as 

 Δ𝑡𝑅𝑇,𝐺𝐴𝐿
𝑖 [𝑘]𝑐 = Δ𝑡𝑅,𝐺𝐴𝐿[𝑘]𝑐 − Δ𝑡𝑇,𝐺𝐴𝐿

𝑖 [𝑘]𝑐 = 𝑏𝑅,𝐺𝐴𝐿[𝑘] − 𝑏𝑇,𝐺𝑃𝑆
𝑖 [𝑘] 1-5 

where,  𝑏𝑅,𝐺𝐴𝐿 and  𝑏𝑇,𝐺𝐴𝐿
𝑖  are the receiver’s clock bias and the i-th Galileo satellite clock bias with respect to GPS 

reference time expressed in m. 

 

However, dual constellation GNSS receiver can select only 1 GNSS time reference to express all the received 

measurements in order to have only 1 receiver clock time bias to estimate in the PVT solution. Therefore, taking 

as reference GPS time for example, expression  Δ𝑡𝑅,𝐺𝐴𝐿[𝑘] can be modified as: 

 

 Δ𝑡𝑅,𝐺𝐴𝐿[𝑘] = 𝑡𝑅[𝑘] − 𝑡𝐺𝐴𝐿[𝑘] = (𝑡𝑅[𝑘] − 𝑡𝐺𝑃𝑆[𝑘]) + (𝑡𝐺𝑃𝑆[𝑘] − 𝑡𝐺𝐴𝐿[𝑘])

= Δ𝑡𝑅,𝐺𝑃𝑆[𝑘] + Δ𝑡𝐺𝑃𝑆/𝐺𝐴𝐿[𝑘] 

1-6 

 

where Δ𝑡𝐺𝑃𝑆/𝐺𝐴𝐿 is the inter-constellation clock offset expressed in seconds, , and, in terms of ranging error, 

 Δ𝑡𝑅,𝐺𝐴𝐿[𝑘]𝑐 = Δ𝑡𝑅,𝐺𝑃𝑆[𝑘]𝑐 + Δ𝑡𝐺𝑃𝑆/𝐺𝐴𝐿[𝑘]𝑐 = 𝑏𝑅,𝐺𝑃𝑆[𝑘] +  δb[𝑘] 1-7 

where δb is the inter-constellation clock bias expressed in meters.Based on the relations provided in 1-1 and 1-6, 

the code propagation delay for the 𝑖𝑡ℎ GPS satellite epoch 𝑘, is provided by: 

 

 𝜌𝐺𝑃𝑆
𝑖 [𝑘] = (𝜏𝐺𝑃𝑆

𝑖 [𝑘] + Δ𝑡𝑅𝑇,𝐺𝑃𝑆
𝑖 [𝑘])𝑐 + 𝜀𝑇𝑂𝑇,𝐺𝑃𝑆

𝑖 [𝑘] + 𝑀𝐺𝑃𝑆
𝑖 [𝑘] + 𝜂𝐺𝑃𝑆

𝑖 [𝑘] = 

= [𝜏𝐺𝑃𝑆
𝑖 [𝑘] + (Δ𝑡𝑅,𝐺𝑃𝑆[𝑘] − Δ𝑡𝑇,𝐺𝑃𝑆

𝑖 [𝑘])]𝑐 + 𝜀𝑇𝑂𝑇,𝐺𝑃𝑆
𝑖 [𝑘] + 𝑀𝐺𝑃𝑆

𝑖 [𝑘] + 𝜂𝐺𝑃𝑆
𝑖 [𝑘] = 

= 𝑐𝜏𝐺𝑃𝑆
𝑖 [𝑘] + 𝑐Δ𝑡𝑅,𝐺𝑃𝑆[𝑘] − 𝑐Δ𝑡𝑇,𝐺𝑃𝑆

𝑖 [𝑘] + 𝜀𝑇𝑂𝑇,𝐺𝑃𝑆
𝑖 [𝑘] + 𝑀𝐺𝑃𝑆

𝑖 [𝑘] + 𝜂𝐺𝑃𝑆
𝑖 [𝑘] = 

= 𝑟𝐺𝑃𝑆
𝑖 [𝑘] + 𝑏𝑅,𝐺𝑃𝑆[𝑘] − 𝑏𝑇,𝐺𝑃𝑆

𝑖 [𝑘] + 𝜀𝑇𝑂𝑇,𝐺𝑃𝑆
𝑖 [𝑘] + 𝑀𝐺𝑃𝑆

𝑖 [𝑘] + 𝜂𝐺𝑃𝑆
𝑖 [𝑘] 
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where the newly introduced terms for each epoch 𝑘 denote: 

• 𝑟𝐺𝑃𝑆
𝑖 = √(𝑥𝑇,𝐺𝑃𝑆

𝑖 − 𝑥𝑅)
2
+ (𝑦𝑇,𝐺𝑃𝑆

𝑖 − 𝑦𝑅)
2
+ (𝑧𝑇,𝐺𝑃𝑆

𝑖 − 𝑧𝑅)
2
 is the true geometrical range between the i-

th GPS satellite and the receiver for which (𝑥𝑇,𝐺𝑃𝑆
𝑖 , 𝑦𝑇,𝐺𝑃𝑆

𝑖 , 𝑧𝑇,𝐺𝑃𝑆
𝑖 ) denotes the i-th satellite position at 

transmit time, computed from the broadcast ephemeris file and expressed in the ECEF frame, and 
(𝑥𝑅 , 𝑦𝑅 , 𝑧𝑅) denotes the user position at receiver time, expressed in the ECEF frame. 

 

The same relation also holds for the code propagation delay of the Galileo satellites, expressed as: 

 

 𝜌𝐺𝐴𝐿
𝑖 [𝑘] = 𝑟𝐺𝐴𝐿

𝑖 [𝑘] + 𝑏𝑅,𝐺𝑃𝑆[𝑘] − 𝑏𝑇,𝐺𝐴𝐿
𝑖 [𝑘] − δb[𝑘] + 𝜀𝑇𝑂𝑇,𝐺𝐴𝐿

𝑖 [𝑘] + 𝑀𝐺𝐴𝐿
𝑖 [𝑘] + 𝜂𝐺𝐴𝐿

𝑖 [𝑘] 1-9 

 

For simplicity, 𝑏𝑅,𝐺𝑃𝑆 = 𝑏𝑅. 

 

In order to observe the atmosphere-induced delays, the GPS and Galileo propagation delays can be written as: 

 

 𝜌𝐺𝑃𝑆
𝑖 [𝑘] = 𝑟𝐺𝑃𝑆

𝑖 [𝑘] + 𝑏𝑅[𝑘] − 𝑏𝑇,𝐺𝑃𝑆
𝑖 [𝑘] + 𝐼𝐺𝑃𝑆

𝑖 [𝑘] + 𝑇𝐺𝑃𝑆
𝑖 [𝑘] + 𝑀𝐺𝑃𝑆

𝑖 [𝑘] + 𝜂𝐺𝑃𝑆
𝑖 [𝑘] 
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 𝜌𝐺𝐴𝐿
𝑖 [𝑘] = 𝑟𝐺𝐴𝐿

𝑖 [𝑘] + 𝑏𝑅[𝑘] − 𝑏𝑇,𝐺𝐴𝐿
𝑖 [𝑘] − δb[𝑘] + 𝐼𝐺𝐴𝐿

𝑖 [𝑘] + 𝑇𝐺𝐴𝐿
𝑖 [𝑘] + 𝑀𝐺𝐴𝐿

𝑖 [𝑘] + 𝜂𝐺𝐴𝐿
𝑖 [𝑘] 
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where: 

• 𝐼𝐺𝑃𝑆
𝑖  and 𝐼𝐺𝐴𝐿

𝑖  represent the ionosphere propagation delay contributions on the GPS and Galileo 

pseudorange measurements, respectively, expressed in m; 

• 𝑇𝐺𝑃𝑆
𝑖  and 𝑇𝐺𝐴𝐿

𝑖  represent the troposphere propagation delay contributions on the GPS and Galileo 

pseudorange measurements, respectively, expressed in m. 

 

The nominal pseudorange-rate measurement from a given constellation, 𝐶, 𝜌𝐶̇ , including the propagation delays 

and measurement errors, computed by the receiver for a given satellite 𝑖, at the epoch 𝑘 is modelled as follows: 

 

 𝜌̇𝐶
𝑖 [𝑘] = (𝑥̇𝑖𝑇,𝐶[𝑘] − 𝑥̇𝑅,𝐶[𝑘])𝑢𝐶,𝑥

𝑖 + (𝑦̇𝑖
𝑇,𝐶
[𝑘] − 𝑦̇𝑅[𝑘]) 𝑢𝐶,𝑦

𝑖 + (𝑧̇𝑖 𝑇,𝐶[𝑘] − 𝑧̇𝑅[𝑘])𝑢𝐶,𝑧
𝑖 +

(𝑏̇𝑖 𝑇,𝐶[𝑘] − 𝑏̇𝑅[𝑘]) + δḃ[𝑘] + 𝐼𝐶̇
𝑖 [𝑘] + 𝑇̇𝐶

𝑖[𝑘] + 𝑀̇𝐶
𝑖 [𝑘] + 𝜂̇𝑖

𝐶
[𝑘]  

 

1-12 
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where: 

• (𝑥̇𝑖 𝑇,𝐶 , 𝑦̇
𝑖
𝑇,𝐶
, 𝑧̇𝑖𝑇,𝐶) and (𝑥̇𝑅,𝐶 , 𝑦̇𝑅,𝐶 , 𝑧̇𝑅,𝐶) represent the i-th satellite of C constellation (GPS or Galileo) 

and user’s velocity vectors in the ECEF reference frame, respectively, expressed in m/s; 

• 𝑢𝐶
𝑖 = [𝑢𝐶,𝑥

𝑖 , 𝑢𝐶,𝑦
𝑖 , 𝑢𝐶,𝑧

𝑖 ] = [
(𝑥𝑇,𝐶
𝑖 −𝑥𝑅)

|𝑟𝑇,𝐶
𝑖 −𝑟𝑅|

2

,
(𝑦𝑇,𝐶
𝑖 −𝑦𝑅)

|𝑟𝑇,𝐶
𝑖 −𝑟𝑅|

2

,
(𝑧𝑇,𝐶
𝑖 −𝑧𝑅)

|𝑟𝑇,𝐶
𝑖 −𝑟𝑅|

2

] denotes the LOS unit vector between satellite 

and receiver; 

• 𝑏̇𝑇
𝑖  is the satellite clock drift; 

• 𝑏̇𝑅 is the receiver clock drift; 

• δḃ is the inter-constellation clock drift, which is assumed to be negligible with the respect to the other 

terms; 

• 𝐼𝑖̇ is the delay drift of the error due to the presence of the ionosphere; 

• 𝑇̇𝑖 is the delay drift of the error due to the presence of the troposphere; 

• 𝑀̇𝑖 is the rate of change of the error due to the presence of the multipath; 

• 𝜂̇𝑖 denotes the rate of change of the receiver’s thermal noise effect. 

 

One of the errors affecting the pseudorange-rate measurement is the error introduced by the multipath effect, 

which is the dominant error source in the urban environment. The multipath is difficult to remove or at least 

mitigate by low-cost equipment and is hard to model since the multipath effect depends on the environment 

and the emitter’s and receiver’s velocities. The next section is devoted to the isolation of the multipath and 

the noise error components from the pseudorange-rate measurements. 

 

2 Doppler frequency Multipath and Noise Joint Error Component 
 

In this section, the methodology used in [7]: 

- to isolate the multipath error and the noise from the pseudorange measurement and, 

- to characterize it in terms of the receiver 𝐶/𝑁0 and LOS/NLOS received signal conditions 

is adapted to the pseudorange-rate measurements. 

 

In section 2.1, the methodology applied to isolate the pseudorange-rate multipath and noise joint error isolation 

will be recalled, while in section 2.2, the overall characterization results, which comprises the pseudorange and 

the pseudorange-rate multipath and noise error distributions, are discussed.  

 

2.1 Doppler frequency Multipath and Noise Joint Error Component Isolation 
 

The proposed method consists in isolating, as much as possible, the multipath error component from the other 

pseudorange-rate measurement terms. The procedures employed for the removal of the different terms depends on 

the nature of each term: 

• The satellite-to-receiver range-rate can be easily subtracted if the receiver and satellite position are 

known; 

• The removal of all atmospheric and satellite-dependent elements can be obtained by differencing the 

pseudorange-rate measurements with the measurements of a nearby reference station; 

• The receiver clock drift can be estimated first and removed later. 

 

In this section, the method is adapted to the pseudorange-rate measurements. The three steps are summarized 

below: 

 

1. To obtain a pseudorange-rate residual which contains only the pseudorange-rate error, also called “range-

rate-free” component, removing the true range-rate component from the range-rate measurement. The 

same can be done to obtain “range-rate-free” reference station pseudorange-rate residuals. 

 

2. To remove the impairments from the vehicle receiver pseudorange-rate residual which are common to 

the reference station ones. The removal is achieved by differencing the user “range-rate free” 

measurement from the “range-rate free” reference station pseudorange-rate residual. The differential 

measurement can be simplified into (2-1) as justified in [7]: 

 𝜖̇𝑖(𝑡) ≈  𝑏̇(𝑡) + 𝑀𝑁̇𝑢
𝑖 (𝑡) 2-1 

 where  
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• the reference station Doppler multipath error component as well as the residual atmospheric 

errors and residual ephemeris errors are assumed to be negligible with respect to 𝑀̇𝑢
𝑖 (𝑡); 

• Multipath error and thermal noise are modelled as a single error term, 𝑀𝑁̇𝑢
𝑖(𝑡) since the reference 

station thermal noise component is considered to be negligible compare to receiver noise and 

multipath in urban environments; 

• the vehicle-reference station receiver clock drift difference, are estimated together as a unique 

term called clock drift term, 𝑏̇𝑢(𝑡). 
 

3. To isolate each individual multipath error component in addition to the thermal noise components, 

𝑀𝑁̂̇𝑢
𝑖(𝑡), [7], from the clock drift term, 𝑏̇(𝑡). The isolation process is conducted by 

a. Estimating 𝑏̇(𝑡) from the pseudorange-rate residual difference terms;  

b. Removing/subtracting the estimated clock drift term, 𝑏̇(𝑡), from each pseudorange-rate residual 

difference, 𝜖̇𝑖(𝑡), to estimate each 𝑀𝑁̂̇𝑢
𝑖(𝑡). In order to estimate 𝑏𝑢̇(𝑡), a lowpass frequency filter 

could be applied to the any pseudorange-rate residual difference term since this term has its 

power spectrum density around the lowest frequencies among all the pseudorange-rate residual 

difference terms [7]. The lowpass filter is a first-order Butterworth with a cutoff frequency equal 

to 0.01 Hz, as showed in Figure 1. 

 

 

 

 

 Figure 1 – Isolation of multipath and thermal noise error component from clock drift 

component  

 

 

2.2 Multipath and Noise Joint Error Component Characterization 
 

This section discusses the characteristics of the Multipath and noise joint error characterization isolated from the 

pseudorange [7] and the pseudorange-rate, having applied the methodology in section 2.1. 

Since the multipath and noise isolation and characterization is provided in [7], this work is focused on the results 

isolated from the pseudorange-rate. Once the multipath error plus thermal noise component, 𝑀𝑁̂̇𝑢
𝑖 , is isolated, the 

multipath plus noise joint characterization process can be applied in order to obtain a mathematical model, which 

defines the multipath plus noise joint error component statistical behaviour. The section 2.2.1 describes the user 

equipment and the experimental setup used to make the pseudorange error characterization in [7]. The section 

2.2.2 successively shows the results of Multipath and noise joint error characterization isolated from the 

pseudorange [7] and the pseudorange-rate obtained using the experimental data as applied in 2.2.1. 

2.2.1 Experimental setup 
The equipment used during the data collection campaign consists of the following devices: 

a. U-Blox M8T: GPS receiver.  

b. Novatel & Span GPS/GLONASS receiver.  

c. CNES Toulouse reference station receiver 

d. IDS uEye Camera with fish-eye lens 

e. Laptop used for the experiment 

f. ENAC test vehicle used to do the experimental data campaign. 

 

The role of the uBlox M8T receiver in the experiment is to be the low-cost “mass-market” receiver working in the 

L1 frequency band which collects the data to be analysed. The role of the NovAtel SPAN receiver is to obtain a 

very precise trajectory of the car during the data collection campaign which will be used as the true position of the 

receiver at any instant of time. Moreover, the SPAN receiver is also responsible for providing the vehicle heading 

information which can be extrapolated to the test receiver antenna using the known level-arm between IMU and 

the antenna. The SPAN receiver accuracy is at the decimetre-level or better. 
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Figure 2– Picture of the vehicle used for the 

experiment 

Figure 3- Rooftop of the vehicle, showing the uBlox, 

NovAtel antennas and the fish-eye camera 

 

The reference station used in the experiment is the one located in the Toulouse site of the Centre National d’Etudes 

Spatiales (CNES). Figure 2, Figure 3, show the test vehicle and the roof of the vehicle. Inside the van a small 

laboratory allows to work with the laptops and take the data campaign under control. The role of the fish-eye 

camera consists in taking the pictures of the vehicle sky-environment in synchronization with the U-Blox estimated 

time. The fish-eye camera used in this study consists of a fish-eye lens attached to an IDS company CMOS sensor. 

The camera has a field angle greater than 180° and captures images of the entire perimeter with an elevation angle 

range going from 0° to 90°. The captured images are in a greyscale and have a resolution of 1280 × 1024 pixes. 

 

The trajectory followed in Toulouse urban area is divided in three different sections, ordered in the chronologically 

sequence. 

The selected location for the data campaign was Toulouse urban area. The location was chosen in order to have a 

representation of different types of obstacles and different LOS/NLOS scenarios: 

- the city center, with large and small streets around tall buildings and areas including bunch of trees; 

- the suburbs; large and small streets in presence of small buildings; 

open areas close to the river. 

 

2.2.2 Multipath and noise joint distribution characterization results 
 

The 𝑀𝑁̂̇𝑢
𝑖  first is characterized and organized in several received signal 𝐶/𝑁0 bands [7]. After applying the image 

processing and the signal processing LOS/NLOS characterization, [7] the components are classified into different 

groups with the same characteristics where each group represents a specific received satellite signal reception 

condition (Non Line-of-Sight, Line-of-Sight, mix of LOS and NLOS).  

As stated in [7], the pseudorange multipath error and noise components joint model is characterized by the 

Empirical probability density function, 𝑃𝐷𝐹(𝑀𝑁̂𝑢
𝑖). From the Empirical probability density function could be 

extracted also the sample mean 𝜇(𝑀𝑁̂𝑢
𝑖) and the sample standard deviation, 𝜎(𝑀𝑁̂𝑢

𝑖). As an example, a set of 

results regarding the pseudorange multipath and noise error distribution is presented in Table 1, obtained from the 

dataset used in [7]. 

A set of results regarding the pseudorange multipath and noise error distribution is presented in Table 1. Table 1 

provides the sample mean, sample standard deviations and receiver signal conditions of  𝑀𝑁̂𝑢
𝑖  results obtained 

from the dataset used in [7]. The results are divided in three different sections depending on the LOS/NLOS 

received signal conditions, as stated in [7]. For low 𝐶/𝑁0 bands, below 35 dB-Hz, the error distributions are 

classified as NLOS signal condition error distributions. The resulting error distributions are positive-biased, non-

Gaussian and non-symmetric, featured by high standard deviations, which are inversely related to the 𝐶/𝑁0. For 

the 𝐶/𝑁0 bands higher than 38 dB-Hz, the distributions are depending on satellite measurement errors classified 

as LOS signal conditions. The distributions are zero-mean Gaussian shaped with a standard deviation inversely 

related to the 𝐶/𝑁0 decrease. The 36/38 dB-Hz band contains pseudorange errors isolated from a mix of NLOS 

and LOS satellites.  

 

Then, the methodology proposed is adapted to the characterization of the pseudorange-rate measurements, the 

results are showed in Table 2. The pseudorange-rate multipath error and noise components joint model is 
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characterized by the Empirical probability density function, 𝑃𝐷𝐹 (𝑀𝑁̂̇𝑢
𝑖). From the empirical probability density 

function, could be extracted the sample mean 𝜇 (𝑀𝑁̂̇𝑢
𝑖) and the sample standard deviation, 𝜎 (𝑀𝑁̂̇𝑢

𝑖).  

 

Some results taken from the table are presented next. Figure 4 corresponds to the LOS multipath error component 

PDF in the 45-50 dB-Hz C\N0 range. The multipath error component has a Gaussian shape centred in 0. Finally, 

Figure 5 corresponds to the NLOS multipath error component PDF in the 20-25 dB-Hz C\N0 range. The PDF 

seems to be a symmetric and zero-mean distribution. The PDF’s positive and negative tails seem to be higher than 

the example presented before. This phenomenon is probably due to the presence of the Doppler spreading and, 

mainly, due to a higher level of thermal noise and a higher number of multipath rays. 

 

𝐂/𝐍𝟎 range 𝜇(𝑀𝑁̂𝑢
𝑖) [m] 𝜎(𝑀𝑁̂𝑢

𝑖) [m] RX signal condition 

32/34 (dB-Hz) 9,5608 19,95 
Definition of NLOS conditions 

34/36 (dB-Hz) 6,6890 15,98 

36/38 (dB-Hz) 2,9046 12,97 Mix LOS and NLOS conditions 

38/40 (dB-Hz) 0,9005 0.9163 

Definition of LOS conditions 40/42 (dB-Hz) -0,0246 0.2632 

42/44 (dB-Hz) 0,0047 0.0581 

 

Table 1 - Table containing the pseudorange multipath error component pdf’s mean values and standard 

deviations characterized by a different 𝐶/𝑁0 range 

 

  

Figure 4 - Pdf of pseudorange-rate multipath and 

noise joint error component in the 45-50 dB-Hz C\N0 

band. 

Figure 5 - Pdf of pseudorange-rate multipath and 

noise joint error component in the 30-35 dB-Hz 𝐶\𝑁0 

band. GPS constellation cas 

𝐂/𝐍𝟎 range 𝜇 (𝑀𝑁̂̇𝑢
𝑖) [m] 𝜎 (𝑀𝑁̂̇𝑢

𝑖)  [m] RX signal condition 

32/34 (dB-Hz) 0,0820 1,4343 
Definition of NLOS conditions 

34/36 (dB-Hz) 0,0457 1,2233 

36/38 (dB-Hz) 0,0348 1,1300 Mix LOS and NLOS conditions 

38/40 (dB-Hz) -0,0078 0,6924 

Definition of LOS conditions 40/42 (dB-Hz) -0,0434 0,4948 

42/44 (dB-Hz) -0,0464 0,3675 
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Table 2 - Table containing the pseudorange-rate multipath error component pdf’s mean values and standard 

deviations characterized by a different 𝐶/𝑁0 range 

3 Proposed Extended Kalman Filter 
 

This chapter provides a clear description of the proposed GNSS dual-constellation Extended Kalman Filter 

implemented in this work, focusing on the state space description and the measurement processing computation. 

Successively, a possible improvement of the EKF, based on the knowledges presented in section 2, is discussed. 

 

The first section, 3.1, provides the State Space description. The next sections, 3.2 and 3.3, provide the Extended 

Kalman Filter Measurement model used in this work with the estimator computational steps, and the Measurement 

noise covariance matrix, respectively.  

 

Finally, a modification of the Measurement noise covariance matrix based on the multipath and noise error joint 

distribution knowledges in urban environment is proposed in section 3.4, and applied to the EKF model in section 

3.5. As a consequence, the performances of the two EKF models, basic one and modified one, are provided in 

section 3.5. 

 

3.1 EKF State Space description 
 

The state vector, at a given epoch 𝑘, is equal to: 

 

 𝑥𝑘 = (𝑝, 𝑣, 𝑎, 𝑏, 𝑏̇, 𝛿𝑏) = (𝑥, 𝑦, 𝑧, 𝑥̇, 𝑦̇, 𝑧̇, 𝑥̈, 𝑦̈, 𝑧̈, 𝑏, 𝑏̇, 𝛿𝑏) 

 

3-1 

where: 

• 𝑝 = [𝑥, 𝑦, 𝑧]𝑇represents the 3-D user’s position expressed in the ECEF frame in m 

• 𝑣 = [𝑥̇, 𝑦̇, 𝑧̇]𝑇 represents the 3-D user’s speed expressed in the ECEF frame in m/s 
• 𝑎 = [𝑥̈, 𝑦̈, 𝑧̈]𝑇 represents the 3-D user’s speed expressed in the ECEF frame in m/s2 

• [𝑏, 𝑏̇]
𝑇
denotes the user’s clock bias in m, and drift in m/s, respectively. 

• 𝛿𝑏 is the GPS-to-Galileo inter-constellation bias, in m.  

 

and the state covariance matrix is equal to: 

 

𝑃0 =

(

 
 
 
 
 
 
 
 
 
 
 
 

𝜎𝑥
2 0 0 0 0 0 0 0 0 0 0 0

0 𝜎𝑦
2 0 0 0 0 0 0 0 0 0 0

0 0 𝜎𝑧
2 0 0 0 0 0 0 0 0 0

0 0 0 𝜎𝑥̇
2 0 0 0 0 0 0 0 0

0 0 0 0 𝜎𝑦̇
2 0 0 0 0 0 0 0

0 0 0 0 0 𝜎𝑧̇
2 0 0 0 0 0 0

0 0 0 0 0 0 𝜎𝑥̈
2 0 0 0 0 0

0 0 0 0 0 0 0 𝜎𝑦̈
2 0 0 0 0

0 0 0 0 0 0 0 0 𝜎𝑧̈
2 0 0 0

0 0 0 0 0 0 0 0 0 𝜎𝑏,𝐺𝑃𝑆
2 0 0

0 0 0 0 0 0 0 0 0 0 𝜎𝑏̇,𝐺𝑃𝑆
2 0

0 0 0 0 0 0 0 0 0 0 0 𝜎𝛿𝑏
2 )

 
 
 
 
 
 
 
 
 
 
 
 

 

 

3-2 

where  

• 𝜎𝑟
2 = [𝜎𝑥

2, 𝜎𝑦
2, 𝜎𝑧

2] is the initial position error variance,  

• 𝜎𝑣
2 = [𝜎𝑥̇

2, 𝜎𝑦̇
2, 𝜎𝑧̇

2] is the initial speed error variance,  

• 𝜎𝑎
2 = [𝜎𝑥̈

2, 𝜎𝑦̈
2, 𝜎𝑧̈

2] is the initial acceleration error variance, 

• 𝜎𝑏,𝐺𝑃𝑆
2  is the initial GPS clock bias error variance, 

• 𝜎𝑏̇,𝐺𝑃𝑆
2  is the initial GPS clock drift error variance, 

• 𝜎𝛿𝑏
2  is the initial GPS-to-Galileo inter-constellation bias error variance. 
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The first stage of the EKF estimation, referred to as the “state prediction”, corresponds to the forward time 

projection of the state vector 𝑥𝑘
− and state covariance matrix 𝑃𝑘

− prior to the measurement inclusion, is performed 

in two steps: 

 

1. State prediction: Propagation of the state vector estimate through time using 

 𝑥𝑘
− = Φ𝑘−1𝑥𝑘−1

+  

 

3-3 

 

2. State Covariance Matrix Prediction 

 𝑃𝑘
− = Φ𝑘−1𝑃𝑘−1

+ Φ𝑘−1
𝑇 + 𝑄𝑘−1 

 

3-4 

where Φ is the phase transition matrix, 3-5, and 𝑄 the system noise covariance matrix, 3-6. 

The discrete state transition matrix Φ𝑘 is equal to [8]: 

Φk−1 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 𝜏𝑠 0 0

𝜏𝑠
2

2
0 0 0 0 0

0 1 0 0 𝜏𝑠 0 0
𝜏𝑠
2

2
0 0 0 0

0 0 1 0 0 𝜏𝑠 0 0
𝜏𝑠
2

2
0 0 0

0 0 0 1 0 0 𝜏𝑠 0 0 0 0 0
0 0 0 0 1 0 0 𝜏𝑠 0 0 0 0
0 0 0 0 0 1 0 0 𝜏𝑠 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 𝜏𝑠 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

3-5 

where 𝜏𝑠 is the time constant, equal to 1 second. 

While, the system noise covariance matrix is equal to [8]: 

𝑄𝑘 = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

4

1

5
𝑆𝑎𝜏𝑠

5 0 0
1

2

1

4
𝑆𝑎𝜏𝑠

4 0 0
1

2

1

3
𝑆𝑎𝜏𝑠

3 0 0 0 0 0

0
1

4

1

5
𝑆𝑎𝜏𝑠

5 0 0
1

2

1

4
𝑆𝑎𝜏𝑠

4 0 0
1

2

1

3
𝑆𝑎𝜏𝑠

3 0 0 0 0

0 0
1

4

1

5
𝑆𝑎𝜏𝑠

5 0 0
1

2

1

4
𝑆𝑎𝜏𝑠

4 0 0
1

2

1

3
𝑆𝑎𝜏𝑠

3 0 0 0

1

2

1

4
𝑆𝑎𝜏𝑠

4 0 0
1

3
𝑆𝑎𝜏𝑠

3 0 0
1

2
𝑆𝑎𝜏𝑠

2 0 0 0 0 0

0
1

2

1

4
𝑆𝑎𝜏𝑠

4 0 0
1

3
𝑆𝑎𝜏𝑠

3 0 0
1

2
𝑆𝑎𝜏𝑠

2 0 0 0 0

0 0
1

2

1

4
𝑆𝑎𝜏𝑠

4 0 0
1

3
𝑆𝑎𝜏𝑠

3 0 0
1

2
𝑆𝑎𝜏𝑠

2 0 0 0

1

2

1

3
𝑆𝑎𝜏𝑠

3 0 0
1

2
𝑆𝑎𝜏𝑠

2 0 0 𝑆𝑎𝜏𝑠 0 0 0 0 0

0
1

2

1

3
𝑆𝑎𝜏𝑠

3 0 0
1

2
𝑆𝑎𝜏𝑠

2 0 0 𝑆𝑎𝜏𝑠 0 0 0 0

0 0
1

2

1

3
𝑆𝑎𝜏𝑠

3 0 0
1

2
𝑆𝑎𝜏𝑠

2 0 0 𝑆𝑎𝜏𝑠 0 0 0

0 0 0 0 0 0 0 0 0 𝑆𝑐𝑘𝐺𝑃𝑆,𝜙𝜏𝑠 +
1

3
𝑆𝑐𝑘𝐺𝑃𝑆,𝑓𝜏𝑠

3
1

2
𝑆𝑐𝑘𝐺𝑃𝑆,𝑓𝜏𝑠

2 0

0 0 0 0 0 0 0 0 0
1

2
𝑆𝑐𝑘𝐺𝑃𝑆,𝑓𝜏𝑠

2 𝑆𝑐𝑘𝐺𝑃𝑆,𝑓𝜏𝑠 0

0 0 0 0 0 0 0 0 0 0 0 𝑆𝑐𝑜𝑛𝑠𝑡𝜏𝑠)
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where, 

• 𝑆𝑎 is the acceleration PSD matrix resolved about the axes of ECEF frame, These depends on the dynamic 

of the application. A suitable value used for the data campaign under exam [1] is 1 m2s−3; 

• 𝑆𝑐𝑘,𝜙 is the receiver clock phase-drift PSD, typical value for a TCXO is 0.01 m2 [1]; 

• 𝑆𝑐𝑘,𝑓 is the receiver clock frequency-drift PSD, typical value for a TCXO is 0.04 m2 [1]; 

• 𝑆𝑐𝑜𝑛𝑠𝑡  is the inter-constellation GPS-to-Galileo PSD, which is considered small compared to the 𝑆𝑐𝑘,𝜙; 

• The used value is equal to 0.0001 m2, [9]; 
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• 𝜏𝑠 is the time constant, which is equal to 1 second. 

3.2 Measurement Model 
 

The measurement vector is based on the pseudorange and pseudorange-rate measurements obtained from a given 

satellite at a given epoch 𝑘, as showed in 1-10, 1-11, and 1-12. Moreover, the pseudorange and pseudorange-rate 

measurements are corrected before being used by the EKF in order to remove the satellite clock bias, and 

ionosphere and troposphere error components [10]. After the application of the error correction models to the GPS 

and Galileo pseudorange and pseudorange-rate measurements, respectively, a resultant ionosphere residual 

appears in the received observations. The same happens after the application of a tropospheric and satellite clock 

correction models. Therefore, the corrected pseudorange and pseudorange-rate measurement models for both GPS 

and Galileo satellites remain the same as in the above section, but with the appearance of residuals for the 

ionosphere, troposphere and satellite clock terms instead of the initial terms: 

 

 𝜌̃𝐺𝑃𝑆
𝑖 [𝑘] = 𝑟𝐺𝑃𝑆

𝑖 [𝑘] + 𝑏𝑅[𝑘] − 𝑏̃𝑇,𝐺𝑃𝑆
𝑖 [𝑘] + 𝐼𝐺𝑃𝑆

𝑖 [𝑘] + 𝑇̃𝐺𝑃𝑆
𝑖 [𝑘] + 𝑀𝐺𝑃𝑆

𝑖 [𝑘] + 𝜂𝐺𝑃𝑆
𝑖 [𝑘] 3-7 

 𝜌̃𝐺𝐴𝐿
𝑖 [𝑘] = 𝑟𝐺𝐴𝐿

𝑖 [𝑘] + 𝑏𝑅[𝑘] − 𝑏̃𝑇,𝐺𝐴𝐿
𝑖 [𝑘] + δ𝑏[𝑘] + 𝐼𝐺𝐴𝐿

𝑖 [𝑘] + 𝑇̃𝐺𝐴𝐿
𝑖 [𝑘] + 𝑀𝐺𝐴𝐿

𝑖 [𝑘] + 𝜂𝐺𝐴𝐿
𝑖 [𝑘]  

where: 

• 𝑏̃𝑇,𝐶
𝑖  denotes the GPS and Galileo satellite clock bias residual after correction expressed in m 

• 𝐼𝐶
𝑖  denotes the GPS and Galileo ionosphere residuals affecting the i-th satellite after the application of the 

Klobuchar an Ne-quick ionosphere correction models, respectively, expressed in m/s 

• 𝑇̃𝐶
𝑖  denotes the GPS and Galileo troposphere residuals affection the i-th satellite after the application of 

the troposphere UNB-3 correction model, respectively, expressed in m/s 

 

A similar relation can be written for the corrected 𝐶 constellation pseudorange-rate measurements as follows: 

 

 𝜌̃̇𝐶
𝑖 [𝑘] = (𝑥̇𝑇,𝐶

𝑖[𝑘] − 𝑥̇𝑅,𝐶[𝑘])𝑢𝑅𝑇,𝑥,𝐶
𝑖 + (𝑦̇𝑇,𝐶

𝑖[𝑘] − 𝑦̇𝑅[𝑘])𝑢𝑅𝑇,𝑦,𝐶
𝑖 + (𝑧̇𝑇,𝐶

𝑖[𝑘] − 𝑧̇𝑅[𝑘])𝑢𝑅𝑇,𝑧,𝐶
𝑖

+ (𝑏̇𝑅[𝑘] − 𝑏̃̇𝑇,𝐶
𝑖 [𝑘]) 𝑐 + 𝐼̇̃𝐶

𝑖 [𝑘] + 𝑇̃̇𝐶
𝑖[𝑘] + 𝑀̇𝐶

𝑖 [𝑘] + 𝜂̇𝐶
𝑖 [𝑘] 
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where: 

• 𝑏̃̇𝑇,𝐶
𝑖  denotes the GPS and Galileo satellite clock residual drift affecting the i-th pseudorange-rate 

measurement, assumed to be negligible with the respect to the other components. 

• 𝐼̇̃𝐶
𝑖  denotes the GPS and Galileo ionosphere residual rate affecting the i-th pseudorange-rate measurement  

• 𝑇̃̇𝐶
𝑖  denotes the GPS and Galileo troposphere residual rate affecting the i-th pseudorange-rate measurement  

 

Finally, the corrected pseudorange and pseudorange-rate measurements obtained from the 𝑁 different visible 

satellites are included in the “corrected” measurement vector 𝑧̃𝑘 at a given epoch 𝑘, as input of the navigation filter 

provided by: 

 

 𝑧̃𝑘 = {𝜌̃𝐶
1[𝑘], 𝜌̃𝐶

2[𝑘], 𝜌̃𝐶
3[𝑘], … , 𝜌̃𝐶

N[𝑘]| 𝜌̃̇𝐶
1[𝑘], 𝜌̃̇𝐶

2[𝑘], 𝜌̃̇𝐶
3[𝑘], … , 𝜌̃̇𝐶

N[𝑘]} 3-9 

 

The dual-constellation observation matrix 𝐻𝑘, used in the proposed EKF, 3-10, is constructed by combining the 

partial derivatives terms concerning the pseudorange and pseudorange-rate measurements for the GPS and Galileo 

locked satellites: 
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𝐻𝑘 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−𝑢𝑥,𝐺𝑃𝑆
1 −𝑢𝑦,𝐺𝑃𝑆

1 −𝑢𝑧,𝐺𝑃𝑆
1 0 0 0 0 0 0 1 0 0

−𝑢𝑥,𝐺𝑃𝑆
2 −𝑢𝑦,𝐺𝑃𝑆

2 −𝑢𝑧,𝐺𝑃𝑆
2 0 0 0 0 0 0 1 0 0

… … … … … … … … … … … …
−𝑢𝑥,𝐺𝑃𝑆

𝑁 −𝑢𝑦,𝐺𝑃𝑆
𝑁 −𝑢𝑧,𝐺𝑃𝑆

𝑁 0 0 0 0 0 0 1 0 0

−𝑢𝑥,𝐺𝐴𝐿
1 −𝑢𝑦,𝐺𝐴𝐿

1 −𝑢𝑧,𝐺𝐴𝐿
1 0 0 0 0 0 0 1 0 1

−𝑢𝑥,𝐺𝐴𝐿
2 −𝑢𝑦,𝐺𝐴𝐿

2 −𝑢𝑧,𝐺𝐴𝐿
2 0 0 0 0 0 0 1 0 1

… … … … … … … … … … … …
−𝑢𝑥,𝐺𝐴𝐿

𝑁 −𝑢𝑦,𝐺𝐴𝐿
𝑁 −𝑢𝑧,𝐺𝐴𝐿

𝑁 0 0 0 0 0 0 1 0 1

0 0 0 −𝑢𝑥,𝐺𝑃𝑆
1 −𝑢𝑦,𝐺𝑃𝑆

1 −𝑢𝑧,𝐺𝑃𝑆
1 0 0 0 0 1 0

0 0 0 −𝑢𝑥,𝐺𝑃𝑆
2 −𝑢𝑦,𝐺𝑃𝑆

2 −𝑢𝑧,𝐺𝑃𝑆
2 0 0 0 0 1 0

… … … … … … … … … … … …
0 0 0 −𝑢𝑥,𝐺𝑃𝑆

𝑁 −𝑢𝑦,𝐺𝑃𝑆
𝑁 −𝑢𝑧,𝐺𝑃𝑆

𝑁 0 0 0 0 1 0

0 0 0 −𝑢𝑥,𝐺𝐴𝐿
1 −𝑢𝑦,𝐺𝐴𝐿

1 −𝑢𝑧,𝐺𝐴𝐿
1 0 0 0 0 1 0

0 0 0 −𝑢𝑥,𝐺𝐴𝐿
2 −𝑢𝑦,𝐺𝐴𝐿

2 −𝑢𝑧,𝐺𝐴𝐿
2 0 0 0 0 1 0

… … … … … … … … … … … …
0 0 0 −𝑢𝑥,𝐺𝐴𝐿

𝑁 −𝑢𝑦,𝐺𝐴𝐿
𝑁 −𝑢𝑧,𝐺𝐴𝐿

𝑁 0 0 0 0 1 0)
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3.3 Measurement Noise covariance Matrix 
 

The measurement noise covariance matrix at given epoch 𝑘, 𝑅𝑘, models the noise-like errors on the pseudorange 

and pseudorange-rate measurements, such as tracking errors, multipath variations, and satellite clock noise. In the 

Kalman Filter, the measurement errors are modelled as White Gaussian noise errors, therefore, 𝑅𝑘 is modelled as 

diagonal matrix where the diagonal factors are the measurement error variances: 

 

𝑅𝑘 =

(

 
 
 
 
 
 
 

𝜎
𝜌𝐶
1
2 [𝑘] 0 0 0 0 0

0 𝜎
𝜌𝐶
2
2 [𝑘] 0 0 0 0

… … … … … …
0 0 𝜎

𝜌𝐶
𝑁
2 [𝑘] 0 0 0

0 0 0 𝜎
𝜌̇𝐶
1
2 [𝑘] 0 0

0 0 0 0 𝜎
𝜌̇𝐶
2
2 [𝑘] 0

… … … … … …
0 0 0 0 0 𝜎

𝜌̇𝐶
𝑁
2 [𝑘])
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Depending on the different satellite 𝑖, from the different constellation, 𝐶, at a given epoch 𝑘, the theoretical 

pseudorange measurement error variances are equal to:  

 𝜎
𝜌𝐶
𝑖
2 [𝑘] = (𝜎

𝐶,𝐷𝐿𝐿𝑖
2 [𝑘] + 𝜎

𝐶,𝑀𝑃𝑖
2 [𝑘]) + 𝜎

𝐶,𝑈𝑅𝐴𝑖
2 [𝑘] + 𝜎

𝐶,𝐼𝑖
2 [𝑘] + 𝜎

𝐶,𝑇𝑖
2 [𝑘] 3-12 

where, 

• 𝜎𝐷𝐿𝐿
2  is the variance of the DLL tracking error due to the AWGN noise at epoch 𝑘 

• 𝜎𝑀𝑃
2  is the variance of the DLL tracking error due to multipath at epoch 𝑘 

• 𝜎𝑈𝑅𝐴
2  is the variance communicated by the User Range Accuracy at epoch 𝑘 

• 𝜎𝐼
2 is the ionosphere residual error variance after Klobuchar ionosphere model correction at epoch 𝑘 

• 𝜎𝑇
2 is the variance of the troposphere residual error after UNB-3 troposphere model correction at epoch 

𝑘. 

 

while the theoretical pseudorange-rate measurement error variances are equal to: 

 𝜎
𝜌̇𝐶
𝑖
2 [𝑘] = (𝜎

𝐶,𝐹𝐿𝐿𝑖
2 [𝑘] + 𝜎

𝐶, 𝑚𝑝̇ 𝑖
2 [𝑘]) 3-13 

 

• 𝜎𝐹𝐿𝐿
2  is the variance of the FLL tracking error due to the AWGN noise at epoch 𝑘; 

• 𝜎𝑚𝑝̇
2  is the variance of the FLL tracking error due to multipath at epoch 𝑘. 

 

3.4 Modified Measurement Noise Covariance Matrix 
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The basic Measurement Noise Covariance Matrix, presented in 3-11, could be modified exploiting the knowledges 

of the realistic multipath and noise joint error characteristics discussed in the section 2.2.  

 

The theoretical pseudorange and pseudorange-rate error variances, 3-12, 3-13, could be modified substituting the 

theoretical model of the DLL and FLL tracking error due to the AWGN noise and the multipath: 

-  𝜎
𝐶,𝐷𝐿𝐿𝑖
2 [𝑘] + 𝜎

𝐶,𝑀𝑃𝑖
2 [𝑘] for the pseudorange measurement variances, 

-  𝜎
𝐶,𝐹𝐿𝐿𝑖
2 [𝑘] + 𝜎

𝐶, 𝑚𝑝̇ 𝑖
2 [𝑘] for the pseudorange-rate measurement variances 

with the realistic pseudorange and pseudorange-rate multipath plus noise joint error distribution variances obtained 

through Table 1 and Table 2, 𝜎(𝑀𝑁̂𝑢
𝑖) and 𝜎 (𝑀𝑁̂̇𝑢

𝑖). 

 

As assumed in Section 2.2, the pseudorange error distribution is clearly divided in three different sections 

depending on the received signal 𝐶/𝑁0 and the LOS/NLOS received signal conditions. It is stated that for high 

𝐶/𝑁0, when the distribution is obtained by isolated errors coming from signal defined to be in LOS conditions, 

the error model is Gaussian and zero-mean, while in case of signals defined in NLOS, the distribution is non-

Gaussian, non-symmetric and positive biased.  However, the basic Kalman filter is an optimal estimator with the 

assumption that the measurement errors are modelled as White Gaussian zero-mean distributions. Whereby, to 

solve this problematic, the measurement vector is proposed to be modified as follows in 3-14: 

 

 𝑧̃′𝑘 = (𝜌̃𝑘,𝐺𝑃𝑆
1 − 𝜇(𝑀𝑁𝑃̂), … , 𝜌̃𝑘,𝐺𝑃𝑆

𝑚 − 𝜇(𝑀𝑁𝑃̂), … , 𝜌̃𝑘,𝐺𝐴𝐿
𝑁

− 𝜇(𝑀𝑁𝑃̂), 𝜌̃̇𝑘,𝐺𝑃𝑆
1 , … , 𝜌̃̇𝑘,𝐺𝑃𝑆

𝑚 , … , 𝜌̃̇𝑘,𝐺𝐴𝐿
𝑁 ) 

3-14 

 

The new measurement vector is obtained modifying the pseudorange measurements removing the mean of the 

multipath and noise joint error distribution presented in Table 1, in order to obtain a zero-biased error distribution 

model. Then, the resulting distribution is over bounded by a zero-mean Gaussian distribution whose, as performed 

for LOS case. 

 

The resulting equations for the pseudorange and pseudorange-rate measurement variances are described in 3-15 

and 3-16, respectively.  

 𝜎
𝜌𝐶
𝑖
′2[𝑘] = (𝜎

𝑀𝑁𝑢
𝑖̂

2 [𝑘]) + 𝜎
𝐶,𝑈𝑅𝐴𝑖
2 [𝑘] + 𝜎

𝐶,𝐼𝑖
2 [𝑘] + 𝜎

𝐶,𝑇𝑖
2 [𝑘] 
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 𝜎
𝜌̇𝑖
′2[𝑘] = (𝜎

𝑀𝑁̂̇𝑢
𝑖

2 [𝑘])  

where σMNP̂
2  and 𝜎

𝑀𝑁̂̇𝑢
𝑖

2  are the variance of the isolated pseudorange and pseudorange-rate Multipath plus AWGN 

noise error, from the proposed model in 2.2. 

 

The new Measurement Noise Covariance Matrix is thus defined as follows: 

 𝑅𝑘
′ = diag (𝜎𝐶, 𝜌1

′2 [𝑘],  … , 𝜎
𝐶, 𝜌𝑁
′2 [𝑘],  𝜎𝐶, 𝜌̇1

′2 [𝑘],  … , 𝜎
𝐶, 𝜌̇𝑁
′2 [𝑘]) 

 

3-16 

 

3.5 Proposed EKF Model Results 
 

In this section, the PVT performances of the proposed basic EKF, using the theoretical 𝑅 matrix (3-11) and with 

the modified 𝑅′ matrix (3-16), based on the realistic knowledge of MP and noise joint error distributions from 

pseudorange and pseudorange-rates are presented.  

 

The PVT estimator is applied on a dataset collected in the Toulouse sub-urban and urban area, obtained as stated 

in section 2.2.1 [7]. The performances are evaluated with respect to the data collected by a Novatel & SPAN 

receiver [7], which is used as a reference receiver in the Multipath and noise isolation methodology with an 

accuracy at the decimetre level. The Root Mean Square Error (RMSE) is used as a performance metric, as resumed 

in Table 3. 

 

The proposed EKF algorithms are compared to: 

• gLAB (GNSS-Lab Tool), EKF software (single-constellation, GPS); 

• RTKlib Least Square (LS) software; 

• ublox M8T real receiver (dual constellation, GPS+Galileo) position measurement collected during the 

data campaign. 
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As summarized in Table 3, the proposed standard EKF has comparable performances with respect to the RTKlib 

solutions, while the gLAB has lower performances. The performances are worse with the respect of the real ublox 

receiver since the RMSE is 15 m and the ublox RMSE is around 6.7 m. 

 

Applying the proposed EKF with the modified 𝑅′ matrix, it is noted an increase of performances compared to the 

standard EKF, around 30%. Even if it is able to increase the performances of the PVT estimation, the resulting 

performances are not comparable with respect to the ublox performances, 10.4 and 6.7, respectively. 

 

Position Estimation RMSE[𝑚] 

Ublox M8T 6,735 

gLAB 31,194 

RTKlib (LS Solution) 12,094 

Proposed Method (1) 𝑅𝑘 14,9744 

Proposed Method (2) 𝑅𝑘
′  10,4852 (Increased precision by ~30%) 

 

Table 3 – RMSE of the Proposed EKF with the basic Measurement Noise Error Covariance Matrix in orange, 

the Proposed EKF with the modified ) 𝑅𝑘
′  in green, compared to several PVT software and a real ublox M8T 

receiver. 

4 Satellite Selection 
 

The last section provides the Extended Kalman Filter state description, measurement vector description, and finally 

it provides also a possible modification of the Measurement Covariance Matrix based on the knowledges in 2.2. 

In the section 4.1, a review of the possible impairments impacting the precision of the Kalman Filter estimation is 

analysed, followed by the introduction of the Satellite Measurement Selection concept, which leads to the 

proposition of several methods provided to both try to improve the PVT accuracy with a low-complex method and 

to pose the basis of  a possible systematic Satellite Selection method for low-cost GNSS receivers. 

 

4.1 Dependencies of the Kalman Filter estimation Precision 
 

The precision of the Kalman Filter estimations depends on two different factors:  

• the precision of the state propagation model and,  

• the precision of the measurement innovation model.  

 

First, the precision of the state propagation model is necessary to better model the dynamics of the state under 

estimation; second, the precision of the measurement vector is important to reduce the possible impairments 

introduced by the a-priori state propagation based on the innovation thanks to the use of real measurements, 

reducing, therefore, the a-priori uncertainties.  In fact, even with a well-designed model of the propagation states, 

the estimation uncertainties will grow in time if the a-priori estimations are not corrected by the measurements. 

However, the measurements precision degrades significantly in the urban environment, leading to a lack of PVT 

estimation accuracy. Focusing on the PVT performances of a low-cost receiver in the urban environment, it is 

fundamental to analyse how the error affect the measurements and to explore some innovative low-complex 

solutions to reduce the impact of the measurement errors. 

 

The precision of the measurement innovation vector is based on two different criteria: 

• The quality of the satellite measurement, which could be classified a-priori by the 𝐶/𝑁0 of the received 

signal, the elevation angle of the satellite, the NLOS/LOS received signal conditions. A satellite 

measurement featured by low 𝐶/𝑁0 and/or low elevation angle and/or NLOS received signal conditions, 

could be a-priori defined as “bad” satellite in the measurement vector. The presence of “bad” satellites 

leads to a certain level of estimates accuracy degradation. This problematic could be reduced by the 

realistic knowledges of the measurement errors in the given environment, as focused in the first part of 

the actual work. 

• The geometry of the set of satellites used to make the innovation of the state. A poor signal-geometry, 

reduces the accuracy of the estimates. Usually, in the urban environments, the number of satellites in view 
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is reduced and these satellites are mostly positioned to similar sky portion, reducing systematically the 

signal-geometry. 

 

In the next section a resume of the method applied to reduce the impact of the “bad” satellites is presented. 

Successively, the satellite selection criteria, based on a trade-off between the selection of the satellite 

measurements and the knowledge of the satellite signal-geometry, is discussed. 

 

4.2 Satellite Selection: Motivations 
 

As discussed in section 3.5, the impact of the so-called “bad” satellites should be reduced to increase the accuracy 

of the PVT solution. A way to reduce their impact is based on the knowledges the Signal Processing Module of a 

low-cost stand-alone GNSS receiver has of the measurement errors. Basically, the Processing Module could select 

a weight for the measurements, which is calculated by means of the knowledges of the satellite measurement error 

variances through the use of the Measurement Noise Covariance Matrix, as showed in 3.4. On the contrary, it is 

not able to select/exclude satellite measurements exploiting any different criteria. Therefore, the PVT solution will 

be estimated by leans of all the possible satellite measurements, weighted with respect to the a-priori knowledges 

of the measurement error model. 

 

An innovative solution could be afforded if the Processing module has additional knowledges of the measurement 

errors. It could be possible to select only the satellite measurements determined to be useful measurement in order 

to improve the PVT solutions. Supposing that the Signal Processing Module is built with a systematic methodology 

to characterize the LOS/NLOS signal conditions related to the satellite measurement. Then, a possible satellite 

selection criterion could be inspected: as an example, it is possible to apply a weight only on the satellite 

measurement classified as LOS and remove the satellite measurements classified as NLOS. The possibility to 

apply a systematic selection of only a portion of satellite measurements instead of taking the whole set of satellite 

measurements is the so-called Satellite Selection criteria.  

 

The Satellite Selection could be also used to improve the PVT accuracy taking into account the trade-off between 

the exclusion of the “bad” satellites and the overall satellite-geometry factor: the basic satellite selection based on 

the LOS received signal conditions, depicted in section 4.4, could improve the PVT accuracy but has a significant 

drawback: as already stated, in the urban environment the number of satellites in the LOS visibility usually is 

reduced with the respect of open space environment. Sometimes only few satellites are in view, therefore the 

satellite measurement innovation vector is usually affected by poor geometry. 

 

Removing a-priori satellite measurements considered NLOS could not be an optimal solution: a smaller set of 

satellite is going to be used to make the innovation, decreasing the quality of the signal geometry. The related PVT 

solution could be worst even if the estimator is excluding all the NLOS satellites. 

  

A smart Satellite Selection method could be the way to select the satellite measurement in order to reduce the 

impact of the “bad” satellite measurements without impacting the quality of the satellite measurement geometry, 

which is however limited in the urban environments. In the section 4.1, several Satellite Selection Methods are 

proposed and analysed. 

 

4.3 Satellite Selection methods 
 

Following the final assumptions derived in section 4, this section presents some Satellite Selection Methods 

analysed in this work. The satellite selection methods are divided in two groups: 

1. The Satellite Selection Methods based only on knowledges of the GNSS error models in the urban 

environment and/or a signal-geometry metric; 

2. The Satellite Selection Methods based on the a-posteriori reference SPAN position in addition to the 

knowledges of the GNSS error models in the urban environment and/or a signal-geometry metric. 

 

The first group contains: 

• A low-complex method based on the LOS satellite measurement selection. As previously mentioned, the 

easiest way to exploit the knowledges on the measurement models and the NLOS/LOS received signal 

condition classification is removing all the satellite measurements defined to be NLOS. The method is 

presented in section 4.4. 
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• A complex systematic Satellite Selection based on the minimization of such a Geometrical Weight, which 

exploits also the knowledges of the realistic GNSS error model. Two different Geometrical Weight Metric 

are used, Weighted Position DOP and Kalman error covariance matrix, depicted in Section 4.5 

 

The second group is used to make analysis, derive some possible insights, and put some basis of the potential 

improvements provided by the Satellite Selection, exploiting the reference receiver position, in section 4.6: 

• First, a reverse engineering operation is performed to obtain information provided by the satellite 

measurement set which minimize the RMSE, in Section 4.6.1.1. The performance given by this method 

is unachievable but provides insights to develop a potential high performing satellite selection method. 

• Second, in order to make more analysis on the selection of NLOS and LOS satellites, another method 

based on the mixed selection of LOS satellite measurements and a smart selection of NLOS satellite 

measurements is analysed (Section 4.6.2). 

 

4.4 LOS Satellite Selection (LOS S.S.) 
 

The first method, treated in this section, is called LOS satellite selection. Section 4.4.1 describes the method while 

section 4.4.2 shows the results. 

 

4.4.1 LOS S.S. Proposed Methodology   
As the name suggests, the method is based on the selection of the satellite measurement set constituted of LOS 

satellite signal condition only. For this purpose, a 𝐶/𝑁0 threshold is defined to differentiate between LOS and 

NLOS measurement conditions: every measurement above the threshold is selected by default. For this purpose, 

in the previous work [7], the 𝐶/𝑁0 threshold selected was 35 dB-Hz. Therefore, in this work the empirical threshold 

proposed in the previous work is applied. The goal of the method is to try to improve the accuracy of the estimation 

using a low-complex solution, in order to be easily applied to low-cost GNSS receivers. 

 

4.4.2 LOS S.S. Results 
 

Table 4 illustrates the RMSE obtained using LOS satellite selection compared with the performances of the 

proposed EKF without any satellite selection and the ublox M8T performances. The use of LOS satellite selection 

improves the PVT accuracy: a RMSE reduction from 10.48 m to 7.4 m is observed, which means an accuracy 

improvement of roughly 30%. Furthermore, the performances of the proposed EKF with the application of LOS 

satellite selection approaches the receiver performances, even if the accuracy of the ublox receiver estimated 

position is still higher.  

 

Figure 6 presents the performances in terms of RMSE error of three proposed methods: EKF with R matrix 

(Proposed Method (1), Section 3.3) – blue line, EKF with R′ matrix (Proposed Method (2), Section 3.4) – red line, 

and EKF with R′ matrix and LOS satellite selection (section 4.4) – yellow line. A sensible increase of PVT 

accuracy could be noticed from the initial EKF to the one with LOS satellite selection, roughly 55% of increase of 

accuracy. 

 

Figure 7 and Figure 8 show the histograms of the size of satellite measurement set selected and excluded by the 

method. Note that the mean of the satellite measurement selected’ size is around 10. 

 

Solution RMSE [𝒎] 

Ublox M8T 6,735 

Proposed Method (2) 𝑹𝒌
′  10,4852 

LOS SS 7,40 
 

Table 4 – RMSE error of the PVT solutions based on LOS Satellite Selection. 
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Figure 6 – Plot of the RMSE error of PVT solution 

based on the Proposed Method (1), blue curve, the 

Proposed Method (2), red curve, LOS satellite 

selection, yellow line 

Figure 7 – Histogram of the selected satellite set size, 

used to provide the PVT estimation 

 
Figure 8 – Histogram of the excluded satellite set size 

 

The LOS satellite selection improves the PVT estimation precision, has low-complexity and could be used in low-

cost receivers. The most important upgrade needed by this method is a realistic and more reliable classification of 

LOS/NLOS received satellite conditions. Increasing these knowledges is vital to have a higher refinement of the 

PVT performances. 

 

4.5 Minimization of Weighted Geometrical Metric Satellite Selection (WGM S.S.) 
 

The LOS satellite selection, even if able to increase the performances of the PVT estimator, should be not able to 

select in a-priori way the best set of satellite measurements needed by the Processing module to get the best PVT 

performances. In fact, as already stated, the NLOS satellite measurement removal could be detrimental in the 

hypothesis of urban canyon, where the original set of measurement could be small, which also means a small set 

of LOS satellite measurements. Therefore, a method able to select the a-priori best set of satellite measurements 

from the combined knowledge of the geometry of the satellite measurements set and the realistic knowledges about 

the GNSS measurement error in urban environment, (quality of satellite measurement), should be inspected. The 

actual section inspects a method based on the minimization of two different Weighted Geometrical Metric. Section 

4.5.1 presents the steps of the algorithm, then, the section 4.5.2 analysis the results.  

 

4.5.1 WGM S.S.: Proposed Methodology 
 

The goal of the method is to try to improve the accuracy of the PVT compared to the LOS satellite selection method 

by exploiting the minimization of a given Weighted Geometrical Metric. As a trade-off, an increase of the total 

satellite selection method complexity is allowed. 

 

In the state of the art, for the Least Square algorithm, to have a-priori information on the quality of the measurement 

vector, a weighted geometrical metric is used which combines the knowledge of the Dilution of Precision (DOP), 

[1], [11] and the knowledge of the Measurement Noise Covariance Matrix, 𝑅, [1]. The resultant Metric is called 
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Weighted DOP (WDOP) [12], [13]. Moreover, the Kalman Filter keeps track of the geometrical metric and the 

satellite measurement weights in a more complex way, balancing also the knowledges about the state propagation 

model, through the Innovated Kalman Error Covariance State Matrix [1]. 

 

The basic idea behind the satellite selection method analysed in this section is to try to select the set of satellites 

which minimize a Weighted Geometrical Metric, identified in the minimization of the Weighted Position DOP 

(WPDOP) or in the minimization of the Kalman Error Covariance Position State Matrix (Kalman 𝑃+). 

 

The minimization of Weighted Geometrical Metric is based on the sequent steps: 

 

1. At a given epoch 𝑘, during the EKF innovation phase, the Processing Module selects all the possible 

combination of satellite measurement sets which fulfil the following conditions: the minimum satellite 

set size is equal to 5 satellites, while the maximum size goes from a minimum of 5 up to all the possible 

visible satellites. 

2. The state vector error covariance matrix update applying the different satellite measurement set, is given 

by: 

 𝑃𝑘
+𝑠𝑒𝑡𝑖 = (𝐼 − 𝐾𝑘

𝑠𝑒𝑡𝑖𝐻𝑘
𝑠𝑒𝑡𝑖)𝑃𝑘

− 4-1 

where 

• 𝐼 is the identity matrix. 

• 𝐾𝑘
𝑠𝑒𝑡𝑖 is the Kalman gain defined using the selected satellite measurement set, at epoch k; 

• 𝐻𝑘
𝑠𝑒𝑡𝑖  is the observation matrix defined using the selected satellite measurement set, at epoch k; 

• 𝑃𝑘
− is the a-priori State Error Covariance Matrix. 

3. Each satellite measurement set, 𝑠𝑒𝑡𝑖[𝑘], selected by the Processing Module is used by the EKF to generate 

the innovation measurement vector, 𝑧̃𝑘, and is used to calculate the WPDOP𝒌
𝒔𝒆𝒕𝒊 , or the Kalman 𝑃𝑘

+, using 

the specific set of satellites. 

 

WPDOP𝑘
𝑠𝑒𝑡𝑖 = √𝑡𝑟 [(𝐻𝑘

𝑠𝑒𝑡𝑖
𝑇
𝑅′𝑘
𝑠𝑒𝑡𝑖

−1
𝐻𝑘
𝑠𝑒𝑡𝑖)

−1

]

3

 

4-2 

 
𝑃𝑘
+𝑠𝑒𝑡𝑖 = √𝑡𝑟 [𝑃𝑘

+𝑠𝑒𝑡𝑖]
3

 
 

where 

• 𝐻𝑘
𝑠𝑒𝑡𝑖 is the Measurement Design Matrix using only the selected set of satellites, 𝑠𝑒𝑡𝑖[𝑘], at a 

given epoch 𝑘; 

•  𝑅′𝑘
𝑠𝑒𝑡𝑖 is the Measurement Noise Covariance Matrix proposed in this work, (section 3.4), 

Matrix using only the selected set of satellites, 𝑠𝑒𝑡𝑖[𝑘], at a given epoch 𝑘; 

• [… ]𝑇 is the transpose operation; 

• [… ]−1 is the inverse operation; 

• 𝑡𝑟[… ]3 is the trace operation, limited only to the first three component of the matrix, which are 

linked to the position DOP and the position State Error Covariance Matrix. 

4. Among all the possible combinations of satellite sets, the one which minimize the WPDOP, 𝑠𝑒𝑡𝑊𝑃𝐷𝑂𝑃𝑚𝑖𝑛[𝑘], 
or the Kalman 𝑃𝑝𝑘

+ , 𝑠𝑒𝑡𝑃+𝑚𝑖𝑛[𝑘] is chosen: 

 𝑠𝑒𝑡𝑊𝑃𝐷𝑂𝑃𝑚𝑖𝑛[𝑘] = 𝑠𝑒𝑡𝑖[min(WPDOP𝑘
𝑠𝑒𝑡𝑖)] 4-3 

 𝑠𝑒𝑡𝑃+𝑚𝑖𝑛[𝑘] = 𝑠𝑒𝑡𝑖 [min (𝑃𝑝𝑘
+𝑠𝑒𝑡𝑖)]  

5. Finally, the resultant satellite set which minimize the given metric is used to finalize the EKF innovation 

phase: 

 𝑠𝑘+1𝑊𝑃𝐷𝑂𝑃𝑚𝑖𝑛 = 𝐸𝐾𝐹(𝑠𝑒𝑡𝑊𝑃𝐷𝑂𝑃𝑚𝑖𝑛) 4-4 

 𝑠𝑃+𝑚𝑖𝑛 = 𝐸𝐾𝐹(𝑠𝑒𝑡𝑃+𝑚𝑖𝑛)  

 

 

The step 1 can be modified to establish a more elaborated rules that need to be fulfilled by a satellite set to be 

retained as candidate for the next steps. Therefore, the evaluated satellite measurement set could be constrained in 

several ways: 

• The satellite measurement set size could be modified in order to contain a defined number of satellites; 

in the section 4.5.2 the satellite measurement size will be defined by the all visible satellites, only 5 and 

only 7 satellites. 

• The satellite measurement set could be defined including a satellite measurement defined by different 

signal LOS/NLOS conditions. Section 4.5.3 in particular, analyses the performances of PVT estimation 
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using the WPDOP minimization applied to a particular set of satellites obtained combining all the possible 

satellite measurements considered in LOS conditions and a random number of satellite measurements 

considered in NLOS conditions: all LOS satellite measurements plus one NLOS, two NLOS, and three 

NLOS satellite measurement. 

 

4.5.2 WGM S.S. Results: Different maximum satellite measurement size 
 

As stated in 4.5.1, the evaluation of the results is obtained applying: 

1. the WPDOP minimization fixing the minimum size of the satellite measurement set to 5 satellites and the 

maximum size to: 

1. all visible satellites; 

2. 7 satellites; 

3. 5 satellites. 

2. the Kalman Error Covariance Position State Matrix minimization fixing the minimum size of the satellite 

measurement set to 5 satellites and the maximum size to all visible satellites. 

 

Table 5 shows the related RMSE obtained as explained in point 1 and 2 of this section, compared to: 

• RMSE of PVT estimation using LOS satellite selection. 

• The performances of the proposed EKF without any satellite selection and. 

• The ublox M8T performances. 

 

The use of the WPDOP\Kalman Error Covariance Matrix minimization does not improve the precision of the PVT 

Estimations for any satellite set size. As stated in literature [13], the WPDOP is usually decreasing with respect to 

the number of satellites used to make the solution. Even if it is applied a weight which corresponds to a realistic 

knowledge of the GNSS measurement errors in the urban environment, this statement is still verified: a higher 

number of satellites corresponds to a lower WPDOP. Therefore, due to the WPDOP monotonic behaviour with 

respect to the number of satellites, to use the chosen metric as a standalone method is not a good solution.  

 

In the same way, the minimization of the Kalman Error Covariance Position State Matrix, which acts similarly to 

the WPDOP minimization does not improve the precision of the PVT Estimations. From the previous observations, 

it could be stated that the Kalman filter makes a de-weighting of the “bad” measurement (in the case under exam 

with the respect of the received signal 𝐶/𝑁0), but it could not be able to find the right satellite in order to minimize 

the RMSE. In fact, comparing the results with the LOS method, it can be stated that the keeping all the satellites 

and just weighting them (de-weighting a-priori bad satellites, NLOS, with respect to good satellites, LOS) provides 

worse position performance than just removing the NLOS satellites.   

 

Figure 9 presents the performance in terms of RMSE error of satellite selection based on the Kalman 𝑃𝑝𝑘
+  

minimization and the performances of the LOS satellite selection: the blue curve is the RMSE of the proposed 

EKF with the application of the realistic knowledges about the GNSS error in the urban environment and the 

application of the LOS satellite selection; while the red curve is the same but with minimization of Kalman 𝑃𝑝𝑘
+  

satellite selection. The LOS satellite selection has higher performances in comparison with the second one. 

 

Figure 10 presents the performances in terms of RMSE error of satellite selection based on the WPDOP 

minimization: the blue curve is the RMSE of the proposed EKF with the application of the WPDOP minimization 

satellite selection with the maximum size of satellite set equal to all visible satellites; the red curve is the same but 

the maximum size of satellite set equal to 5, and for the yellow curve the maximum size of satellite set equal to 7. 

It is impossible to notice any improvements between the different cases. 
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Solution RMSE [𝑚] 

Ublox M8T 6,735 

Proposed Method (2) 𝑅𝑘
′  10,4852 

LOS selection 7,40 

Min WPDOP all sat 10,91 

Min WPDOP <= 7 10 

Min WPDOP = 5 10,43 

Min P Kalman 10,9 
 

Table 5 – RMSE of WGM SS, with different maximum satellite set size compared to the Proposed Method 

(2), the LOS SS and the ublox receiver 

 

  
Figure 9 – RMSE of WPDOP SS using all visible 

satellites, blue curve, only a set of 5 satellites, red 

curve, a set of 7 satellites, yellow curve 

Figure 10 – RMSE of KP SS using all visible 

satellites, blue curve, and LOS SS, red curve 

 

4.5.3 WGM S.S. Results: Different combination of LOS and NLOS satellite measurement 
 

The section presents the evaluation of the results obtained applying the WPDOP minimization applied to particular 

set of satellites obtained combining all the possible satellite measurements considered in LOS conditions and a 

random number of satellite measurements considered in NLOS conditions: all LOS satellite measurements plus 

one, two and three NLOS satellite measurement. 

 

Table 6 shows the related RMSE obtained as explained above compared with PVT performances of: 

• WPDOP minimization satellite selection using all the visible satellites,  

• LOS satellite selection,  

• proposed EKF without any satellite selection 

• ublox M8T performances  

 

Reducing the number of NLOS satellite measurements improves the performances of the PVT estimator; using all 

the LOS satellite measurement and just one NLOS satellite measurement, when possible, has RMSE error around 

8.84 m, with an increase of performances around 15% with respect to the Proposed method without any satellite 

selection and an increase of performance around 18% compared to the WPDOP minimization using all visible 

satellites. Conversely, the LOS satellite selection has in any case higher performances compared to the 

combinations proposed. The performances degrade if the satellite set contains a higher number of NLOS satellite 

measurement. As stated in the previous section, the NLOS satellites measurements used in the Kalman Filter, even 

de-weighted, have a relevance in the PVT estimation when used together with all the LOS satellites. 

 

Figure 11 presents the performance in terms of RMSE of the satellite selection based on the WPDOP minimization 

with a base satellite measurement set formed by all LOS satellites and a given number of NLOS satellites: the blue 
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curve is the RMSE of the proposed EKF with the application of the WPDOP minimization satellite selection with 

the maximum size of satellite set equal to all LOS satellites; the red curve is the same but the maximum size of 

satellite set equal to all LOS satellites and one NLOS satellites, same for the yellow curve but two NLOS satellites 

and finally three NLOS satellites in the case of  magenta line. 

 

 

 

Solution RMSE [m] 

Ublox M8T 6,735 

Proposed Method (2) 𝑅𝑘
′  10,4852 

LOS selection 7,40 

ALL VISIBLE SAT 10,91 

ALL LOS + 1 NLOS 8,84 

ALL LOS + 2 NLOS 9,7 

ALL LOS + 3 NLOS 10,52 
 

 
Table 6 – RMSE of WGM SS, with different 

maximum satellite set defined by: all LOS plus 1 

NLOS, 2 NLOS and 3 NLOS 

Figure 11 – RMSE of WPDOP SS, with different 

maximum satellite set defined by: all LOS, blue curve, 

all LOS plus 1 NLOS, red curve, 2 NLOS, yellow 

curve and 3 NLOS, magenta curve. 

 

4.6 Additional Analysis: Satellite Selection based on Minimization of RMSE 
 

The study of the satellite selection methods described until now shows that the LOS satellite selection improves 

the accuracy of the PVT estimator but it is not able to reduce the RMSE error to the 1m-level. An a-priori satellite 

selection based on the WPDOP minimization and Kalman Error State Covariance Matrix does not improve the 

PVT accuracy, therefore it is needed to add further information regarding the quality of satellite measurements, 

otherwise the minimization of the Weighted Geometrical Matrix is unproductive.  

 

The NLOS satellite measurements, even de-weighted by the EKF thanks to the realistic model proposed in this 

work, are still impacting the PVT estimation performances. A gradual removal of NLOS satellite measurements 

coincides with an increase of performances.  Based on the previous observations, the PVT performance obtained 

using LOS satellite selection could not be overtaken by others low-complex methods. It is necessary to research 

an innovative way to exploit the Satellite Selection criteria in order to improve systematically the PVT accuracy.  

 

To do so, a possible initial way to research for additional information and to build the foundation of an optimal 

satellite selection set method could be the application of a reverse engineering analysis. The reverse analysis is 

based on the satellite measurements selection which minimizes at each epoch the RMSE. Moreover, if a systematic 

way to exploit a trend in the observed results could be proved in the future works, having knowledges about the 

best satellite sets given the minimum RMSE it should be also possible to provide an analysis of the PVT 

performances modifying the evaluated satellite measurement set, combining the LOS satellite measurements with 

the NLOS satellite measurements which minimize the RMSE. 

 

In section 4.6.1 minimization of the RMSE Satellite Selection is presented. Section 4.6.1.1 presents the insights 

and the comments related to this approach. While, the selection of LOS and smart selected NLOS is discussed in 

4.6.2. Finally, the results of the last approach are analysed in 4.6.2.1. 

 

 

4.6.1 Minimum RMSE Satellite Selection: Proposed Methodology 
 

In this section, the minimization of the RMSE Satellite Selection algorithm is presented. Basically, the proposed 

method calculates all the possible satellite set combinations to calculate the position estimation. Hence, knowing 

the reference SPAN position estimation, it is selecting the set of satellite measurements which minimizes the 

RMSE.  
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The minimization of the RMSE Satellite Selection is based on the sequent steps: 

 

• At a given epoch 𝑘, during the EKF innovation phase, the Processing Module selects all the possible 

combination of satellite measurement sets, 𝑠𝑒𝑡𝑖[𝑘], which fulfil the following conditions: the minimum 

satellite set size is equal to 5 satellites, while the maximum size is equal to all the possible visible 

satellites. 

•  Each satellite measurement set, 𝑠𝑒𝑡𝑖[𝑘], selected by the Processing Module is used by the EKF to 

generate the innovation measurement vector, 𝑧̃𝑘: 

 𝑝𝑘+1𝑠𝑒𝑡𝑖
= 𝐸𝐾𝐹(𝑠𝑒𝑡𝑖[𝑘]) 4-5 

• Hence, knowing the reference SPAN position estimation, 𝑝𝑘+1𝑆𝑃𝐴𝑁, the calculation of the RMSE using 

𝑝𝑘+1𝑆𝑃𝐴𝑁  as a reference solution is performed, 𝑅𝑀𝑆𝐸𝑘+1
𝑠𝑒𝑡𝑖.  

 

• The minimum RMSE satellite measurement set, 𝑠𝑒𝑡𝑚𝑖𝑛𝑅𝑀𝑆𝐸[𝑘], is selected by minimizing 𝑅𝑀𝑆𝐸𝑘+1
𝑠𝑒𝑡𝑖 . 

 

 𝑠𝑒𝑡𝑚𝑖𝑛𝑅𝑀𝑆𝐸[𝑘] = min[𝑅𝑀𝑆𝐸𝑘+1
𝑠𝑒𝑡𝑖] 4-6 

 

4.6.1.1 RMSE Minimization Results 
 

The section evaluates the results obtained applying the RMSE minimization satellite selection. 

 

Table 7 presents the RMSE obtained using RMSE minimization (Figure 12), compared with the performances of 

the proposed EKF without any satellite selection and the ublox M8T performances. As shown in the table, 

theoretically, and unachievable with a systematic satellite selection method, the minimum RMSE is around 0.4m. 

The obtained results, if systematically proved by a trend, could provide some new information to be exploited in 

a feasible satellite selection method to increase the PVT accuracy for a stand-alone GNSS receiver. 

 

It is important to remark that the application of this method should be verified, as explained before, by the 

possibility to extract systematically a possible trend in the satellite measurement set. Next work will be focused 

on that, if possible. If it could be supposed an hypothetic systematic trend, some consideration could be extracted 

from the analysis of the results. More than being focused on the potential increase of performances, the study could 

tell also several information about the best satellite measurements set using to get the minimum RMSE. 

 

Figure 13 and Figure 14 show the histograms of the size of LOS+NLOS and NLOS satellite measurement sets 

selected by the method, respectively. The minimum RMSE is usually reached using a restricted set of satellites, 

more than half of time only 5 satellite measurements, instead of using a larger set of satellites. In these cases, the 

measurement redundancy is avoided. Moreover, a restricted number of satellite measurements considered in NLOS 

conditions are used among the LOS satellite measurements (in average 1.2 NLOS measurements) to obtain the 

minimum RMSE. This means that the NLOS should not be excluded a-priori, but a satellite selection method 

which is able to select the NLOS satellite measurement, (usually considered “bad” satellites defined by low 

weight), is needed. It remains to be seen, if a systematic method choosing as often as possible the required satellite 

set can be developed. 

 

Solution 𝐑𝐌𝐒𝐄 [𝒎] 

Ublox M8T 6,735 

Proposed Method (2) 𝑹𝒌
′  10,4852 

Min RMSE 0,37021 
 

 
Table 7 – Minimum RMSE compared to the 

Proposed Method (2) and the ublox receiver RMSE 

Figure 12 – Minimum RMSE 
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Figure 13 – Histogram of the selected satellite set 

size, used to provide the PVT estimation which 

minimizes the RMSE 

Figure 14 – Histogram of the NLOS selected satellite 

set size, used to provide the PVT estimation which 

minimizes the RMSE 

 

4.6.2 Smart LOS and NLOS satellite selection: Proposed Methodology 
 

As stated in the section 4.6.1.1, it should be required a satellite selection method which is able to select the NLOS 

satellite measurements useful to increase to PVT performances. An example of NLOS satellite selection is 

provided by the proposed method in section 4.5.3, where the NLOS satellite measurement are selected minimizing 

the WPDOP metric. As already stated, the method does not introduce any improvement.  

 

As also provided in the section 4.6.1.1, only a restricted set of LOS satellite should be used to make the PVT 

estimation. It is then mandatory analyse also the impact of LOS satellite measurements on the PVT accuracy, 

because the selection of LOS satellite instead of taking all the possible LOS satellite measurement increases the 

complexity of a possible feasible method. 

 

A possible way to study the impact of LOS and NLOS satellite measurements on the PVT performances could be 

trying to define the satellite set by using all the possible LOS satellite measurements followed by a smart NLOS 

satellite selection. In this specific case, the selected NLOS satellite measurements are the satellite measurements 

taken in 4.6.1.1 to minimize the RMSE. 

 

4.6.2.1 Mixed LOS and smart NLOS S.S. Results 
 

The section is devoted to the evaluation of the results obtained applying the LOS satellite selection and a smart 

NLOS satellite selection based on the NLOS measurements which minimize the RMSE error. Table 8 shows the 

RMSE obtained using the proposed method, compared with the performances of the proposed EKF without any 

satellite selection and the ublox M8T performances. Figure 15 shows the RMSE evaluation in time of PVT solution 

using the proposed method. 

 

Several comments could be afforded regarding the analysis under exam: 

• The PVT performances applying the proposed method are comparable with the ublox M8T receiver 

performances, better than LOS satellite selection, 6.6m versus 7.4m.  

• The use of smart selected NLOS satellite measurements has a positive impact on the PVT estimation 

accuracy. Assuming that there is a way to select these optimal NLOS measurements, the WDOP is not a 

good method to select NLOS satellite measurements;  

• Using all the possible LOS satellite measurements instead of a smart selected set of LOS measurements 

impair the possibility to reach high-level of PVT accuracy. It is then needed a methodology to refine the 

characterization of LOS satellite measurements in order to choose them in a smarter way since in addition 

to select the correct NLOS we must remove the LOS which hide the impact of the NLOS. 

• The use of all LOS satellites in the Kalman Filter may mask the NLOS satellite which are optimal to 

calculate the PVT solution: NLOS satellites are de-weighted w.r.t. to the better satellites due to the "a-

priori" worst sigma, even if some NLOS are better than some LOS for the PVT computation. 

• It is finally mandatory find a new classification of “useful” satellite measurement based on more 

information in order to study a systematic and effective satellite selection algorithm. 
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Solution 𝐑𝐌𝐒𝐄 [𝒎] 

Ublox M8T 6,735 

Proposed Method (2) 𝑹𝒌
′  10,4852 

LOS sat + NLOS min rmse 6,6 
 

 
 

Table 8 – RMSE obtained using all LOS satellites and 

the NLOS set of satellites compared to the Proposed 

Method (2) and the ublox receiver RMSE 

Figure 15 – RMSE of WPDOP SS using all visible 

satellites, blue curve versus RMSE obtained using 

all LOS and a NLOS set of satellites 

 

5 Conclusions and Future works 
 

 

The first part of this work is based on the application of Multipath and noise joint error isolation methodology to 

obtain the isolation and, afterward, the characterization of the Doppler frequency measurements. The 

characterization is based on the evaluation of the empirical probability density function characterized by several 

received signal 𝐶/𝑁0 bands. 

The resulting distributions are characterized by a Gaussian and zero mean behaviour. 

 

Second, a low-cost EKF GNSS algorithm is implemented, exploiting the knowledges of the a priori multipath error 

component plus noise joint error distributions of the pseudorange and pseudorange-rate measurements; by means 

of the Noise Measurement Covariance Matrix modification. The resulting modified EKF model provides an 

increase of precision of ~30% compared to the same EKF model based on the theoretical Measurement Noise 

Covariance Matrix. 

 

Moreover, some satellite selection methods are presented and analysed in this work. The first is a low-complex 

method and is based on the LOS satellite measurement selection. The LOS satellite selection improves the PVT 

estimation precision by almost 30%, has low-complexity and could be used in low-cost receivers. The second 

method is a more-complex systematic satellite selection based on the minimization of a Weighted Geometrical 

Metric, Weighted Position DOP and the Kalman Error Covariance Position State Matrix. The use of the 

WPDOP\Kalman Error Covariance Matrix minimization does not improve the precision of the PVT Estimations. 

As analysed from this method, it seems that it is better to remove satellite measurements than keeping them all, 

applying only the standard EKF de-weight approach on the “bad” satellite measurements. 

 

The second section is used to make some analysis of the possible satellite selection performance potential,  

exploiting the knowledges of the reference receiver position:  the goal of the study is to get some insight or hints 

from the proposed approach in order to see a possible trend that allows to determine a potential systematic satellite 

selection method. The proposed approach is based on: 

• Firstly, a reverse engineering operation, performed to assess the ideal maximum performances of the 

satellite selection: the method selects the set of satellites giving the minimum position RMSE. The 

obtained insights reveal, if a trend could be systematically observed and derived, a potential powerful 

method to increase the PVT accuracy for a stand-alone GNSS receiver. The minimum RMSE is usually 

reached using a restricted set of satellites, instead of using a larger set of satellites. Moreover, a restricted 

number of satellite measurements considered in NLOS conditions are used among the LOS satellite 

measurements. 

• Secondly, in comparison with the method proposed in the first group, a method based on the selection of 

LOS satellite measurements and a smart selection of NLOS satellite measurements is analysed. The 
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selected NLOS satellites measurements are the NLOS measurement which potentially minimize the 

RMSE per each time epoch. The PVT performances applying the proposed method are comparable with 

the ublox M8T receiver performances, better than LOS satellite selection. The use of smart selected 

NLOS satellite measurements has a positive impact on the PVT estimation accuracy. Moreover, the good 

influence of the NLOS satellite measurements should probably be masked by some of the LOS satellite 

measurements of the EKF. Therefore, the conclusion is that if a potential method could be derived from 

these preliminary studies, it should also remove the LOS satellite measurements to allow the EKF to 

exploit the useful NLOS satellite measurements.  It is finally mandatory find a new classification of 

“useful” satellite measurement based on more information in order to study a systematic and effective 

satellite selection algorithm. 

 

The future works will focus on the improvement of the realistic knowledge regarding the Pseudorange and Doppler 

frequency error measurements in urban environment increasing the dataset with new data campaigns, with 

enhanced characteristics based on larger higher sample frequency of the measurements and a more accurate 

LOS/NLOS receiver signal condition detection. At the same time, also the PVT estimator should be improved by 

means characterizing the multipath errors from possible correlation in time and space. Finally, a more complex 

PVT solution will be implemented taking into account the non-Gaussianity of the pseudorange NLOS multipath 

error measurements, as the exploitation of the Particle Filter. 
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