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Abstract— This paper proposes a new optimization scheme using 
neural network for runway balancing to minimize departure and 
arrival aircraft delay. While other researchers have proposed 
solutions to the runway balancing problem using a simulation-
based technique to calculate aircraft delay, the proposed method 
replaces the simulation by a neural network model-based 
estimation using the actual operational data, thus providing the 
following two advantages. First, accurate estimation of aircraft 
delay can improve the solution of the runway balancing problem. 
Second, the simulation process is not required in the optimization. 
Although it is difficult to develop an accurate simulation model 
especially under uncertain environment, the neural network 
model can estimate the average delay without explicitly modeling 
uncertainty. In this paper, as a first step, the effectiveness of the 
proposed method is validated through simulations. First, 
simulations considering uncertainty are used to generate the data, 
which are then used to train the neural network. The neural 
network predicts the delay under the current traffic and only this 
predicted delay is used for the runway balancing optimization 
with simulated annealing. The simulation result shows that the 
result by neural network outperforms the one by the simulation-
based method under uncertainty. This means that the neural 
network can accurately estimate the delay under uncertainty 
environment, and is applicable in the optimization process. 

Keywords; simulated annealing, arrival manager, convolutional 
neural network 

I.  INTRODUCTION 

Airport runway is a main bottleneck of air traffic control 
system, and thus more efficient runway usage is needed to 
maximize capacity and optimize traffic handling[1]. Apart 
from new runway construction, there are two main approaches 
to increase runway capacity: take-off/landing separation 
reduction and runway balancing. The former is a 
straightforward idea to increase the runway capacity, and 
various methods are proposed such as optimal aircraft 
sequencing considering wake turbulence category, time-based 
separation applied under strong head wind, and development of 
new separation standard (RECAT) [2]. The latter (runway 
balancing) aims at optimal runway allocation of take-
off/landing aircraft to multiple runways. Although this method 
works only when there are multiple runways at the airport, it is 
one of the promising solutions for major airports in the world 
with multiple runways. This research focuses on runway 
balancing.  

There have been many prior studies to optimize the runway 
allocation of departures and/or arrivals. To optimize the 
runway allocation, there are several types of the objective 
functions to be minimized depending on the problems, such as 
aircraft delay[3][8][13], makespan[7], and combination of 
makespan/aircraft delay and other factors such as noise, fuel 
consumption, and congestion level [4][5][6][9][10][11][12]. 
The runway allocation is a combinatorial optimization, and 
various optimization methods are applied such as mixed integer 
linear programming[10], genetic algorithm[3][4], simulated 
annealing[8][9][11], ant colony optimization[6], swarm 
intelligence algorithm[7], bat algorithm[13], greedy method[5], 
and dynamic programming[12]. Also, many researchers 
optimize the aircraft sequencing and runway allocation 
simultaneously. Operational constraints, such as conflict on air 
routes and taxiing, are also considered in some studies[11]. 
Most researchers consider deterministic environment only, and 
just a few researches are found to take uncertainties into 
account. However, uncertainty exists in real world, and the 
uncertainty of take-off time is usually greater than that of 
landing time because the boarding process includes large 
uncertainty. Therefore, uncertainty becomes critical when the 
runway handles departure aircraft. 

To tackle uncertainty, several approaches are considered. 
One is robust optimization. The robust optimization assumes a 
certain time window of uncertainty, and the best strategy is 
found under the worst scenario. Runway sequencing has been 
optimized with robust optimization as shown in [14]. With this 
method, the optimization is converted to a deterministic 
optimization problem, so the deterministic optimization 
method can be applied. The optimal parameters found for the 
worst case scenario are not necessarily optimal for various 
uncertain scenarios, however. Another method is to run 
numerous simulations by changing uncertainty parameters, and 
sets of simulation results are evaluated by the expected value 
(sample average approximation) or its alternatives. This 
method is referred to as a simulation method here. There are 
some researches using the simulation method for runway 
balancing and sequencing[7][15]. This method can consider 
many uncertain scenarios, but requires large computational 
time.  



However, both methods discussed above have a common 
problem: they require an accurate runway simulation model, 
and especially the following important parameters should be 
found: take-off/landing separation, interaction of departure and 
landing, and their uncertainty. The optimal runway balancing, 
for example, is usually obtained by minimizing the objective 
function that is estimated based on such simulation models. 
Intricate airport operations make it difficult to develop an 
accurate simulation model. If the simulation model is 
inaccurate, the obtained optimal solutions becomes less reliable. 
To tackle this issue, the authors propose a new optimization 
approach without using a simulation or parameter estimation of 
airport operations. The objective function must be calculated 
for optimization, but the authors propose that this be done by a 
neural network (NN) trained with the actual operational data 
directly. Since the NN training process requires both inputs and 
outputs from actual data, the NN can learn the actual operation 
environment directly by the actual data. In addition, the actual 
operation includes various types of uncertainties, which are 
difficult to be handled in the optimization. However, the NN is 
trained to minimize the error between the model output and 
data output, which means that the NN estimates output of the 
expected value considering uncertainty.  

This approach should work in theory, but investigation is 
necessary to evaluate its performance in practice. Therefore, in 
this paper, the above simulation-free approach is formulated 
and the result is compared to the simulation-based approach. 
One of the advantages of the proposed method is the use of the 
actual operational data directly with no simulation environment 
required. However, to validate the proposed method, as a first 
step, the simulated data including uncertainty instead of real-
world data is used for NN training, which makes it possible to 
evaluate the obtained NN performance.  

This paper starts with the problem formulation in Sec. II, 
and the NN model is developed in Sec. III. Sec. IV shows the 
simulation environment and results, and Sec. V concludes this 
paper. 

 
Figure 1.  Airport layout and runway configuration under north wind at 

Tokyo International Airport. 

 

II. PROBLEM FORMULATION 

A. Airport operation and simulation method 

This time, Tokyo International Airport (Haneda Airport) is 
set as a target airport, and the runway balancing problem is 
considered. Fig. 1 shows the airport layout and runway 
operations under north wind. Runway A is used for arrival only, 
and is independent of traffic on other runways. On the other 
hand, Runway C is used for both departure and arrival i.e. 
mixed-mode operation. Runway D is used for departure only, 
but the arrival to Runway C also affects the departure from 
Runway D. Under this condition, the runway balancing for 
arrivals between Runways A and C is considered. 

In this paper, as a first step, the above runway operation is 
simply described in the following mathematical forms. 

1) Inputs 

 D: Set of departure aircraft {1,..., }DD n  

 RD: Set of departure runways { , }D DR c d , where cD 

is Runway C used by departures and d is Runway D. 

 A: Set of arrival aircraft {1,..., }AA n  

 RA: Set of arrival runway { , }A AR a c , where a is 

Runway A and cA is Runway C used by arrivals. 

 PTOTi: Earliest possible take-off time for aircraft i. 
i D   

 PLDTi: Earliest possible landing time for aircraft i. 
i A   

 nom
ir : Nominal runway for departure and arrival. 
nom

i Dr R i D    and 
nom

i Ar R i A    

 ir : Departure/Arrival runway. 
nom

i ir r i D    and 

i Ar R i A   

2) Decision variables 

 i i A   : binary variable for arrival runway decision. 

1

0

nom
i i

i

r r

otherwise



 


. 

3) Variables given by the airport operation 

 it : Actual take-off or landing time. i A D    

4) Contraints 
 Runway separation 

j i ijt t S i j A D       where Sij: Minimum 

separation between aircraft i and j where aircraft i 
precedes aircraft j. 
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 Earliest landing time 

, nom
i i

i i r r
t PLDT w i A     where wr1,r2 1 2, Ar r R  : 

Additional flight time required when the nominal 
runway is r1 and the landing runway is r2.  

1 2

1 2
,

0

120r r

if r r
w

otherwise


 


 

 Earliest take-off time 

i it PTOT i D    

 Arrival is always given priority over departure. 

To simplify the problem, the take-off and landing 
separations are set the same regardless of the wake turbulence 
category, and are equal to 120 s. The departure-arrival (C 
runway-C runway) or arrival-departure (C runway-C runway 
and C runway-D runway) separations are also set to 120 s. 
N(a,b) indicates the normal distribution with average a and 
standard deviation b, so the separation is not constant but 
randomly distributed. Arrival is always given priority over 
departure, so the departure from both C runway and D runway 
cannot take off if arrival at C runway is approaching and 
enough separation cannot be established.  

The objective function to be minimized is the total delay of 
all aircraft. However, the landing runway re-assignment in 
general requires additional ATC workload, so the number of 
runway re-assignment is also included in the objective function, 
defined as the following form where  is the weight factor. 
Here, the runway re-assignment indicates the case where the 
nominal and the actual runways are different. 

    i i i i i
i D i A

J t ETOT t ELDT 
 

       

If PLDT and PTOT of all aircraft are known in advance, it 
is easy to optimize the runway balancing, which is not the case 
in the real world. Both have a considerable uncertainty, but 
departure aircraft tend to have larger uncertainty than arrivals, 
because the departure aircraft can start pushback only when all 
passengers are onboard, which causes the large uncertainty. 
The estimated time of PLDT and PTOT is denoted by ELDT 
(Estimated Landing Time) and ETOT (Estimated Take-off 
Time), respectively. This time, the following uncertainty value 
is assumed according to past researches[16][17]. 



(0, 300 ) 15 min

(0,120 )

N s if T
ETOT PTOT

N s otherwise

 
  

  

 (0, 0.02 )ELDT PLDT N T    

where T  is the time difference between ELDT/ETOT 
and the current time. This means that the uncertainty of ELDT 
is linear to the estimated flight time to the runway with the 
standard deviation of 2% flight time. The uncertainty of ETOT 
is assumed to become small at 15 minutes before ETOT, 
because at this time the largest contributor to the uncertainty, 
i.e. the boarding process, is completed. 

The decision variables are the landing runway of each 
arrival aircraft only. However, the last minutes change of 
landing runway is not possible considering both ATC and pilot 
workload perspectives, so it is assumed that the runway 
decision must be made 30 minutes before ELDT. Therefore, 
the runway decision must be made under uncertainty. 

B. Optimization method 

The optimized parameters are i i A . However, all i  

do not need to be optimized at the same time, because aircraft 
due to depart further in the future cause little impact on the 
runway decision of the aircraft 30 minutes before the landing. 
As in other researches, this time, the sliding windows approach 
is applied[11]. The sliding window approach optimizes the 
aircraft with a certain time window of ELDT only, and the 
target aircraft are changed as time proceeds. This optimization 
process is done repeatedly, with the latest result being used for 
decision making.  

Assuming that there are n aircraft to be optimized, the 
possible combination is 2n. If n is sufficiently small, the 
objective function for all combinations is calculated, and the 
best one is chosen. However, when n increases, it is impossible 
to calculate all combinations. Therefore, simulated annealing is 
applied to find the best solution. The simulated annealing is a 
metaheuristic optimization algorithm, and imitates the 
annealing process in metallurgy. The simulated annealing is 
often used to solve combinatorial optimization problems, and is 
therefore applicable here as well. The general optimization 
process of the simulated annealing is shown as follows. 

III. NN DEVELOPMENT FOR OBJECTIVE FUNCTION 

CALCULATION 

A. Inputs and outputs of the network 

In this research, the authors propose that the objective 
function is calculated by data-trained NN. Therefore, first the 

Initialization i:=i0, T:=T0 
While T > Tfinal do 
 Generate solution j near solution i 
 if f(i) > f(j) then i := j 

 else i := j with probability of 
( ) ( )

exp
f i f j

T

 
 
 

 

 end if 
 Compute T 
i becomes the final solution. 



NN inputs and outputs should be decided. First the inputs are 
considered. The possible inputs are the ETOT/ELDT of each 
aircraft and its runway information. This time, to represent both 
ETOT/ELDT and runway information, the number of aircraft 
on each runway at each time slot are set as inputs. Fig. 2 shows 
the image of the inputs. There are four different queues in this 
runway operation (runway A for arrival, runway C for arrival, 
runway C for departure, and runway D for departure). In each 
queue, the number of aircraft is set to each time slot of 
ETOT/ELDT. The size of time slot is set to 120 s. The time 
slot starts with the current time and ends at the end of sliding 
window. Since the runway re-assignment is considered within 
the sliding window only, the aircraft out of the sliding window 
do not affect the decision of the runway re-assignment. In this 
example, 1 hour sliding window is assumed, and 4*30 inputs 
are made. This input size (1 hour sliding window) is used for 
NN development. 

 
Figure 2.  Representation of NN inputs. 

As for the outputs, the objective function is the sum of the 
delay and the number of runway re-assignment. Only the delay 
should be calculated by NN, and the number of runway re-
assignment is implicitly incorporated in the decision variable. 
This time, the following four output values are set as NN 
outputs. 
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i D r d

o t ETOT
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Each output is affected by different inputs (aircraft). Since 
it is easier to develop several small networks than a single large 
network, four separate NNs are made. The sum of all four 
outputs corresponds to the delay of all aircraft, which exactly 
matches the objective function given in Eq. (1) except the 
number of runway re-assignment. Each network requires only 
the necessary inputs that affect the output. Table 1 summarizes 
the used input in each network. 

B. NN structures 

Next, NN structures are considered. There are various types 
of possible networks, such as feedforward fully-connected NN 
(FFNN) and convolutional NN (CNN). To estimate the delay 
of aircraft, a single aircraft usually affects the nearby aircraft, 
and queue length is propagated to the later aircraft. As for 
FFNN, all inputs are connected, but most connections are 
actually not needed for estimating the delay. The unnecessary 
connections often cause over-fitting and results in the failure of 
training a network. On the other hand, CNN connects the 
neighborhood inputs only, and smaller network can be created. 
A popular application of CNN is image processing. Although 
the inputs are 2 dimensional in image processing, time 
sequence data in this research is considered as 1 dimensional 
data, and CNN is applied.  

TABLE I.  INPUTS AND OUTPUTS USED IN EACH NETWORK. 

Network name Inputs Outputs 
Network1 Arr-A (30 inputs) o1 
Network2 Arr-C (30 inputs) o2 
Network3 Arr-C, Dep-C (30*2 inputs) o3 
Network4 Arr-C, Dep-D (30*2 inputs) o4 

 
Figure 3.  NN structures used in this research. 

TABLE II.  THE PARAMETERS IN NN USED IN THIS RESEARCH. 

Layers Variables Values 
Network1,2 Network3,4 

1st  
(convolution) 

Number of out channels 128 256 
Strides 3 3 
Kernel size 3 3 

2nd  
(convolution) 

Number of out channels 128 256 
Strides 2 2 
Kernel size 2 2 

3rd  

(fully-connected) 
Number of hidden nodes 128 256 

4th  

(fully-connected) 
Number of hidden nodes 128 256 

1st-4th Activation function ReLu[18] ReLu 
Output Activation function Linear Linear 



Fig. 3 summarizes the NN structures used in this research. 
The first and second layers use a convolutional layer, and the 
third and fourth layers use a fully-connected layer. Table 2 
summarizes the detailed values of the network. Since 
Network3 and Network4 have more inputs than Network1 and 
Network2, the NN size is set larger in Network3 and Network4. 
However, the general NN structures are set the same for all 
networks. 

C. Training data and NN training 

Training data sets are required to train the NN. In reality, 
the actual operational data is used, but this time data must be 
generated via simulations. The data should include various 
scenarios, and various patterns of runway balancing, otherwise 
the data would be biased, and the appropriate NN cannot be 
made. Therefore, through a data generation process, NN is 
trained iteratively and its output is used for runway assignment 
of each arrival aircraft in the simulation. In order to simulate 
various situations,  is randomly set with exponential 
distribution of scale parameter 600 s, and the runway 
assignment is randomly set with a probability of 0.05.  

The simulation parameters are given later in Sec. IV A. The 
data is obtained every minute for 3 hours, so a single 
simulation can generate 180 data sets. By running about 1700 
times of simulations, 300,000 data sets are created. 

Once the training data is obtained, NN is trained. The well-
known training algorithm Adam[19] is applied here. During a 
training process, the generalization capability is a big issue. 
Generalization refers to the ability of the NN to produce 
reasonable outputs for inputs that are not encountered during 
training. NN tries to minimize the loss function between model 
output and trained data output. Since both inputs and outputs 
data usually include noise, minimizing the error loses the 
generalization (called over-fitting). There are various ways to 
avoid over-fitting, but one method is to collect sufficient 
number of data.  

However, the possible number of data obtained is also 
limited if this process is implemented using real operational 
data. As for the airport operational data, it is assumed that each 
day consists of 16 operational hours, with data obtained every 
1 minute. For 1 year, 60*16*365=350,400 is the maximum 
possible number of data obtained. However, a good NN could 
not be made with 350,400 data sets according to the authors’ 
pre-calculation. Consequently, data augmentation technique is 
used. The data augmentation is the technique where the data is 
artificially made based on the obtained data. This technique is 
often used in the image processing field. In this field, the data 
augmentation is done by various ways such as rotating the 
image, reflecting the image, and changing the scaling.  

In this research, data augmentation is done by the following 
way. 1) copy the input/output from the original data. 2) pick up 
one aircraft from the input data. 3) the aircraft moves to the 
next time slot. This process is very easy, but it should work 
because ETOT/ELDT includes uncertainty, so similar output is 
expected even if the ETOT/ELDT is slightly changed. This 

time, it is assumed that 300,000 data are available in advance. 
First, the data is augmented by 9 times in each original data set, 
and the number of data becomes 3,000,000 (300,000*(9+1)). 
Second, the data is split into 70 % training data (2,100,000) and 
30% test data (900,000). The NN is trained with the training 
data, and the NN where loss function between model output 
and test data output is the minimum is used as the obtained NN.  

Also, batch training is applied, and the batch size is set to 
2048. As for the loss function, the mean squared error (MSE) is 
used. 

IV. SIMULATION RESULTS 

A. Simulation parameters 

Before conducting a simulation, several simulation 
parameters need to be set. First, the traffic volume is decided as 
shown in Table 3. There are three scenarios considered. 
Scenario 1 is low traffic, Scenario 2 is heavy traffic, and 
Scenario 3 covers various traffic. Without the optimization of 
runway re-assignment, there is an optimal ratio of runway 
balance for both departures and arrivals, and the nominal ratio 
should not be significantly different from the optimal ratio. 
Therefore, the nominal ratio of arrival/departure is also set in 
the scenario. As for the departure, 0.5 is the best ratio of 
departure, so it is randomly set between 0.4 and 0.6 in the 
simulation. As for the arrival, 0.85 is the best ratio of arrival for 
A Runway, and distributed between 0.75 and 0.95. Scenario 3 
is used for NN training as explained in Sec. III, and Scenarios 1 
and 2 are used to investigate the simulation results.  

In the simulation, first, PTOT/PLDT are randomly 
distributed for 3 hours, and the simulation is conducted until all 
departure and arrival aircraft take off or land. The optimization 
of runway assignment of each arrival aircraft is conducted 
every 10 minutes, and the runway decision is made 30 minutes 
before ELDT. Since the time window for the optimization is 
set for the next 60 minutes, the runway is optimized for arrival 
aircraft where ELDT is between t + 30 and t + 60. The runway 
actually assigned is the one obtained in the latest optimization 
process. 

TABLE III.  TRAFFIC VOLUMES IN EACH SCENARIO. 

 Traffic [aircraft/hour] 
Scenario 1 2 3 
Total arrival 20 32 15-34 
Total departure 20 32 15-34 
Nominal ratio of arrival for A 
Runway 

0.75-0.95 0.75-0.95 0.75-0.95 

Nominal ratio of departure for C 
Runway 

0.4-0.6 0.4-0.6 0.4-0.6 

Total number of aircraft 120 192 90-204 

Next, Table 4 shows the parameters of simulated annealing. 
If the number of possible combinations is less than the number 
of iterations, the objective functions of all possible 
combinations are calculated, and the best one is chosen, which 
is actually a deterministic method. 

 

 



TABLE IV.  PARAMETERS OF SIMULATED ANNEALING. 

Parameters Values 
Number of iterations 1024 
Initial temperature 15000 
Terminal temperature 7.5 

B. Calculation of objective function without considering 
uncertainty 

To proceed with the optimization process, the objective 
function must be calculated. In this research, the authors 
propose to calculate it by NN. However, the simulation method 
is also used here as a benchmark. To calculate the objective 
function, the simulation method developed in Sec. II A is used, 
but no uncertainty is considered, i.e. the simulation runs 
assuming that 

i iPLDT ELDT i A   , 
i iPTOT ETOT i D   , 

and 120ijS s  for given conditions. Since this simulation does 

not consider uncertainty, the objective function calculated by 
this simulation differs from that by the simulation including 
uncertainty. This discrepancy can cause the inappropriate 
assignment of arrival runway for each aircraft. In reality, the 
separation 120ijS s  is also sometimes difficult to be 

identified, but this time it is assumed that the “average” 
separation is already known in advance. From now, the case 
where the objective function is calculated by the simulation 
without considering uncertainty is denoted by SIM method. 

C. Comparison between SIM method and NN method 

To compare the results obtained by SIM method and NN 
method, 100 times simulations are conducted in each scenario 
(1 and 2). Since the same random seed is used between SIM 
method and NN method, completely the same initial values, the 
same randomized separations, and the same randomized 
ETOT/ELDT errors are used in both methods. The 
optimization calculation is conducted with various  in the 
objective function between 0 s and 2400 s, which models the 
cost of a single runway re-assignment.  

First, the accuracy of NN performed estimations are 
discussed. Fig. 4 shows the delay estimation result of both 
methods by arrival on Runway A (which corresponds to o1), 
while Fig. 5 shows the result by departure on Runway C 
(which corresponds to o3). The other two values (o2 and o4) 
also show a similar trend. The total delay in this result indicates 
the sum of the delay for next 60 minutes time windows, and is 
used to calculate the objective function. Also, this is the result 
of Scenario 2 where  is 60 s. The root mean square error 
(RMSE) values are also included in the result. As expected, the 
RMSE by NN is smaller than that by SIM for all cases, which 
means that the NN can estimate the total delay more accurately 
than SIM method. The delay of arrival is estimated better than 
that of departure, because the uncertainty of arrival is smaller 
than that of departure. The SIM method estimates the relatively 
smaller delay than the actual delay. This can be understood by 
the queueing theory. According to the queueing theory, the 
arrival process on Runway A can be described as M/G/1 
queue[20], and the average waiting time increases if there 
exists uncertainty of the service time (which corresponds to the  

 
Figure 4.  The estimated total delay by NN and SIM methods compared to 

the actual delay by arrivals on Runway A. (RMSE=809s by NN, 
RMSE=1122s by SIM) 

 
Figure 5.  The estimated total delay by NN and SIM methods compared to 

the actual delay by departures on Runway C. (RMSE=927s by NN, 
RMSE=1009s by SIM) 



landing separation here). SIM method does not consider the 
uncertainty, so its estimate of the waiting time tends to be 
lower than the actual one. On the other hand, the NN can 
estimate the delay better than the SIM method, because NN 
models the delay considering uncertainty. As for the departure, 
the delay is estimated less accurately than the departure, 
because the uncertainty of the departure is assumed to be much 
larger than that of the arrival. However, the NN can estimate 
the delay slightly better than SIM method when measured by 
RMSE. 

 
Figure 6.  RMSE in each total delay range by arrivals on Runway A. 

 
Figure 7.  RMSE in each total delay range by departures on Runway C. 

To analyze the estimation accuracy in more detail, Fig. 6 
shows the RMSE of each method in each range of actual total 
delay by arrivals on Runway A, while Fig. 7 shows the result 
by departures on Runway C. In general, the RMSE tends to 
increase with the actual total delay. As for arrivals, NN always 
estimates the delay better than SIM method. However, as for 
departures, SIM method sometimes estimates the delay better 
than NN when the actual total delay is large. This can also be 
understood by Figs. 4 and 5. As for arrivals, the number of 
plots becomes small as the actual total delay increases, but 

there are enough number of plots even when the actual total 
delay is large. However, as for departures, the number of plots 
gets significantly small when the actual total delay is larger 
than 5000 s. Since NN is trained by the data, the training 
process does not work well if there is not enough training data. 
According to Fig. 7, NN can always estimate the delay better 
than the SIM method where there seems to be sufficient data. 
However, NN can estimate the delay better than SIM method 
in most cases, and the difference of the delay accuracy between 
two methods (SIM and NN) can affect the solution of the 
runway balancing. 

Next, Fig. 8 shows the total delay after the optimization by 
both methods under scenario 1 (low traffic), while Fig. 9 shows 
the result under scenario 2 (heavy traffic). Here, the total delay 
means that the sum of delay for all aircraft for a single 
simulation. The dotted line indicates the “no optimization” 
result. Therefore, the results of both methods converge to “no 
optimization” when the number of runway re-assignment is 0. 
In each parameter of , the optimization is conducted in each 
method, and the following 12 values of  are used. [0, 60s, 
120s, 180s, 240s, 360s, 480s, 600s, 900s, 1200s, 1800s, 2400s].  

When traffic volume is small (Fig. 8), the average flight 
delay is also small compared to that in the heavy traffic case. 
Also, the possible reduction of delay is also limited. Since there 
are 20*2(dep/arr)*3(hours)=120 aircraft in a single simulation, 
1 s average flight delay corresponds to 2 minutes total delay. 
SIM method does not estimate the objective function very 
accurately, so the delay increases when  is small because 
unnecessary runway re-assignment can increase the delay due 
to the term 

1 2,r rw . However, that is not the case when using NN, 

and the minimum delay is observed when  is 0. While SIM 
method can reduce the waiting time by 8.7 s per aircraft via 
runway balancing, NN can reduce the waiting time by 11.8 s 
per aircraft, or additional 36% savings. On the other hand, 
when the number of runway re-assignment is small, the 
possible delay reduction is almost the same for both SIM and 
NN methods. That could be because “large benefit” runway re-
assignment strategy is the same regardless of the consideration 
of uncertainty. If the number of runway re-assignment is 
limited, the advantage of the proposed method may be limited. 

As for heavy traffic (Fig. 9), the delay per aircraft is large, 
and the possible delay reduction is also large. However, the 
difference between SIM and NN methods is not quite big. SIM 
method can reduce the delay by 64.0 s per aircraft, while the 
NN method can reduce the delay by 68.2 s per aircraft, about 
7 % larger. This could be because many departure aircraft exist 
anyway under heavy traffic, so even if one departure aircraft 
has large uncertainty, another departure aircraft can 
compensate it, and the uncertainty effect could be reduced. 
However, NN method still outperforms the SIM method. These 
results infer that the proposed method using NN is very 
promising.  

This time, simulation environment is developed in a simple 
manner, which is advantageous for SIM method. However, in 
reality, much more complicated airport operation is conducted, 



so the advantage of the proposed data-driven NN method will 
be significant in the real world.  

 
Figure 8.  Average additional flight time (flight delay) per aircraft on 

Scenario 1. 

 

Figure 9.  Average additional flight time (flight delay) per aircraft on 
Scenario 2. 

V. CONCLUSIONS 

This paper proposed a new scheme to optimize a runway 
balancing problem using NN. NN modeling approach does not 
require any explicit operational models and simulations, and 
relies on actual operational data only. This means that 
simulation parameters such as departure/arrival separations and 
its interactive effect are not required, because these 
characteristics are expected to be modeled by NN. This paper 
showed the effectiveness of the proposed method via 
simulations. The uncertainty effect was appropriately modeled 
by NN, and the solution of the runway balancing was improved. 
This time, relatively simplified airport operation was assumed, 
so it will be interesting to investigate how much NN can handle 
more complicated operation. Also, the proposed method will be 
applied using the actual operational data, and its ability will be 
investigated. These will be subjects of the future work. 
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