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Abstract—This paper presents a data-driven study of wait
time patterns for international arriving passengers across all 61
terminals from the 44 airports of entry of the United States. Each
airport is an independent entity which operates with various
airlines and handles demand volumes differently. This induces
seasonal variation in service quality from one airport to another.
Exploring six years worth of data, this paper investigates the cur-
rent and long-term performance trends - an increasing number
of flights versus a decreasing number of customs booths - of all
airports of entry from a passenger perspective. A performance
analysis is then conducted that compares average wait times
of incoming passengers, considering incoming traffic ratios and
allocated resources. Leveraging machine learning algorithms, six
regression algorithms are trained and tested to accurately predict
passenger wait times through customs at selected airports. An
analysis of the performance of these models shows that the
best approach - using a Gradient Boosting regressor for each
terminal of entry - can capture the daily and seasonal variations
of traffic patterns and immigration booth availabilities with a
mean absolute error of less or equal to 5 minutes for twenty-
eight terminals of entry and less than 10 minutes for all terminals.
Observations show significant disparities across airports that may
be explained by the foreign/US passenger ratio and the quality
of booth management.

Index Terms—big data, passenger-centric, wait time prediction

I. INTRODUCTION

The U.S. Department of Transportation’s Bureau of Trans-
portation Statistics (BTS) reported that U.S. airlines carried an
all-time high number of passengers in 2016 – 823.0 million
systemwide, 719.0 million domestic and 103.9 million interna-
tional [1]. Passengers are at the core of the Air Transportation
System and, yet, obtaining quantitative information about
passenger movements remains difficult, particularly on the
ground. NextGen [2] in the United States and SESAR [3] in
Europe have been advocating a shift from flight-centric metrics
to passenger-centric metrics to evaluate the performance of the
Air Transportation System. Both NextGen and SESAR intend
to not only improve the predictability and resilience of the
Air Transportation System, but also to reduce door-to-door
travel time for passengers. While passengers whereabouts are
known once they board an airplane, their behavior inside the

airport is less understood, and passenger-related information is
siloed between different stakeholders, such as airlines, airport
security, customs and border protection. Foreign international
air travelers arriving in the U.S. spend billions of dollars while
visiting. Torres et al. showed that consumption of goods and
services grows with the time spent by passengers in the leisure
areas. [4]. Thus less time spent queueing at various control
points may result in time and financial benefits for everyone.

Airports are known to be the main bottlenecks of the Air
Transportation System, yet passenger satisfaction is largely
affected by their experience at the airport [5]. Airport man-
agement is distributed across various stakeholders, including
airlines, federal agents, local airport authorities and third
parties, whose decisions may, unbeknownst to them, impact
each other’s performance [6]. Wait times at security and border
patrol play a big role in assessing passenger satisfaction :
capacity constraints and inefficiencies at airport entry roads,
parking, security, immigration, customs, gates, ramp areas,
runways are the primary causes of congestion and of the
ensuing delays. Since September 11, 2001, airport screening
procedures in the U.S. have been continuously evolving. For
example, the passenger screening process is now trying to
strike a balance between security and customer service (i.e.
minimizing wait times). Using data from 2002 and 2003,
Gkritza et al. [7] showed that, while wait times at security
screening points are significant determinants of passenger
satisfaction, many other factors come into play.

Moreover, delays on the ground have a disproportionate
impact for passengers who often experience lengthy delays
before being re-booked if they miss their connecting flights [8].
For international passengers arriving from overseas to the
United States, immigration checks are mandatory, whether
they are U.S. citizens or foreigners.

This paper focuses on the passenger experience while going
through U.S. customs and border protection. Roberts et al.
studied the evolution of wait times at airports over a few
years [9]. They showed that average passport inspection wait
time at 24 U.S. airports rose by 25% during 2010-2013. They
focused on JFK airport. At JFK, nearly 3 million passengers
(25 percent of total arrivals) experienced a delay of more



than 1 hour, putting them at risk of missing a connecting
flight, with the 11 percent who had a total delay of more
than 2 hours, possibly missing connections at a higher rate.
Extended passport inspection waits were the sole source of
missed connection risk for 13 percent of passengers and one
of the reasons behind missed connections for many more
passengers.

There has been little research in the systematic analysis
of passenger wait times at customs across airports. Sankara-
narayanan et al. [10] performed an exploratory analysis of air-
port wait times on customs, border protection data taken from
top 3 busiest airports (Atlanta, Chicago, and Los Angeles)
from the United States, highlighting the effects of seasonality.
Johnstone et al. presented a dynamic queue controller to gen-
erate realistic queue formation and behaviour within a discrete
event environment at airports in Australia [11]. Robertson et
al. [12] modeled passenger arrivals to estimate how many
passengers arrive at the airport per day and time of day. They
also estimated passenger arrival patterns at different processing
points (check-in, baggage security, security checkpoint, etc).
Nikoue et al. [6] focused on Sydney airport, where they studied
flight information, cell phone geolocations from MAC device
time stamps, and immigration records from the Australian
Department of Immigration and Indigenous Affairs. They
modeled arrivals of passengers at Sydney International airport,
simulated walk times to immigration and service at immi-
gration queues, to study the effects of a variation in staffing
levels at immigration on congestion. However, to the best of
the authors’ knowledge, no work is available on comparing
performance across airports or predicting performance at any
airport.

The present paper leverages publicly available data from
the United States Customs and Border Protection (CBP) [13].
As stated on their website, "CBP closely monitors the flight
processing times, commonly referred to as wait times, for
arriving flights at the busiest international airports." The data
provided in the online reports show the number of passengers
processed on flights arriving in each hour based on how long
it took for those passengers to clear Passport Control.

This paper tackles the following research questions:

• Which are the best airports to enter the U.S. for U.S.
citizens and foreigners, in terms of wait times?

• Which airports best manage their customs area?
• Can wait times per hour at airports be reliably predicted

from historical data?

The paper is organized as follows. Section II explores the
main trends at different scales visible in the CBP data, from
average wait times, to passenger volumes and flight volumes.
Section III compares the performances of the different airports
of arrival. Section IV proposes a machine learning approach
to predict passenger wait time per hour at any airport and
examines the performance of this approach. Section V details
the conclusion of the paper and offers future research perspec-
tives.

II. EXPLORATION

A. Dataset contents

The data from CBP [13] contains the following fields once
a time period of interest is selected:
• Airport Name,
• Terminal number,
• Date,
• Hour,
• Average wait time for U.S. citizens,
• Average wait time for non-U.S. citizens,
• Maximum wait time for U.S. citizens,
• Maximum wait time for non-U.S. citizens,
• Average wait time for all passengers,
• Maximum wait time for all passengers,
• Number of passengers who waited less than 15 minutes,
• Number of passengers who waited 16 to 30 minutes,
• Number of passengers who waited 31 to 45 minutes,
• Number of passengers who waited 46 to 60 minutes,
• Number of passengers who waited 61 to 90 minutes,
• Number of passengers who waited 91 to 120 minutes,
• Number of passengers who waited over 120 minutes,
• Total number of passengers, both U.S. citizens and non-

U.S. citizens,
• Number of flights,
• Number of open immigration booths.
Considering the data from 2013 to 2019, the dataset consists

of 1,201,181 entries corresponding to 61 terminals within 44
airports.

B. Long term evolution

Looking at the overall evolution from 2013 to 2019, some
clear trends appear as illustrated in Figures 1 & 2. Figure 1
shows the evolution of the total number of arriving interna-
tional flights per day versus the total number of open booths
per day. While the number of flights is steadily increasing over
the years, the number of open booths is slowly decreasing.

Figure 1: Comparison of the total number of open booths (red)
vs. the total number of arriving flights (blue) per day from
January 2013 to January 2019

Figure 2 depicts the daily average wait time per passenger
across airports. Wide variations can be noted, from a mini-
mum of 11 minutes to a maximum of 26 minutes. Seasonal



variations are present during the winter and summer holiday
season. However, starting from 2015, the amplitudes of these
yearly seasonal variations do not vary much over the years.

Figure 2: Average wait time for all passengers per day across
all airports from January 2013 to January 2019.

This observation is better visualized in Figure 3, which
shows a yearly comparison of the average hourly wait time
between 2013 and 2019. With the exception of 2013, this
overall average wait time follows the same seasonal variations
from one year to another. Longer wait times are observed
for the winter (end of December - beginning of January) and
summer (August) holidays as well as around April.

Figure 3: Yearly comparison of the average wait time for all
passengers per day across all airports

Figure 4 shows the box-and-whisker plot variations of the
average wait time across all terminals per month, i.e. for each
month it shows the median average wait time and the first and
third quartile along with whiskers for a better visualization
of the range of the data. This figure highlights the four-month
periodic variation discovered in Figure 3. There are three highs
during a year - around the winter holidays from December
to January, April and August - interlaced with periods with
shorter wait times. This four-month periodic behavior does
not seem to be induced by a similar behavior in the number
of arriving passengers, as shown in Figure 5.

Figure 6 shows the evolution of average wait time for
all passengers per hour of the day from 2013 to 2019. As
previously observed, the average time for 2013 is higher than
all the others, which are tightly packed. The average wait time
for 2019 is lower than the previous years since only data from
January are available at the time of this study.

Figure 4: Boxplots per month of the hourly average wait time
for all passengers across all terminals from 2013 to 2019

Figure 5: Boxplots per month of the number of hourly arriving
passenger across all terminals from 2013 to 2019

Figure 6: Yearly comparison of the average wait time for all
passengers per hour across all airports

Figure 7 shows how long passengers typically wait per day
of the week. No clear trend is distinguishable for a particular
day of the week.



Figure 7: Average wait time distribution per day of the week
from 2013 to 2019

C. Wait time differences

The trends presented so far were for any passenger. Yet, U.S.
citizens and foreigners enter the U.S. through separate lines,
and statistics on wait times are available for each category
specifically. For the same number of passengers, processing
foreigners at a booth typically takes longer, since it requires
checking more paperwork, such as supporting entrance docu-
ments and visas, whereas U.S. citizens only need to present
their passports. The average wait time for all passengers over
the year 2017 is 16.7 minutes and 16.2 minutes over the year
2018. Figure 8 shows the break down by U.S. passengers and
non-U.S. passengers for these two years. Non-U.S. passengers
on average spend twice as much time in line at immigration,
and experience higher volatility in wait times.

(a) On year 2017 (b) On year 2018

Figure 8: Average wait time distribution for passengers from
January to December for the years 2017 and 2018.

Figure 9 shows the different wait times distribution per year
for US citizens and non-US citizens from 2013 to 2019. The
average wait time for non-US citizens does not vary much
over these years, while being twice as more important as for
US citizens throughout these years. Though 2019 seems to be
better, observations from Section II-B indicates that the month
of January is not representative of the yearly distribution.

(a) US passengers (b) Non US passengers

Figure 9: Average wait time and standard deviation for pas-
sengers from 2013 to 2019 across all airports

III. AIRPORTS COMPARISON

A. Overall comparison

Figure 10a shows the yearly box-plots per airports of the
average wait time for all passengers for the year 2018. In-
terestingly both Orlando airports in Florida (SFB and MCO)
show particularly high wait times with high volatility. Second
in line for overall longest wait times is Hawai (SPN), before
airports from the San Francisco area (SMF and SFO). Ontario
International airport (ONT) is not considered in this top five
due to its low volatility compared to SFO.

This high wait time is not necessarily due to lack of means.
Figure 10b shows the distribution of the number of open booths
per airport for the year 2018. SFO has one of the highest
median of open booths, which contrasts with its wait time
performance.

Figure 10c shows the distribution of the number of arriving
passengers per airport for the year 2018. A first observation
is that airports with high passenger volume volatility have in
general a high flexibility regarding the number of open booths.

A comparison of the ratio of arriving passengers and open
booths will appear in a follow-up publication.

B. Worst and Best case scenarii

From Figure 4 & 5, one can infer that the worst month for
entering the United States is August: the highest median av-
erage wait time with high volatility combined with one of the
largest distribution of arriving passengers. Figure 11a shows
the distribution of the average wait times for all passengers
per airports in August over the last six years. Airports ONT
and CVG were removed since there is only two years of data
for these two airports. The same two airports from Orlando
Florida appear in the top five worst performing airports. On
the West coast, the previously spotted airports are joined by
OAK and FAT join Orlando in the top six worst performing
airports.

The performance of the first four airports are even worse
when considering the number of arriving passengers shown in
Figure 11b. They do not have the highest median number of
arriving passenger per hour nor the highest volatility.

On the other hand, from Figure 4 & 5, February appears like
the best month to enter the US: lowest average wait time and
volatility as well as the lowest volume of arriving passengers.



(a) Comparison of the average wait time per hour across airports
over the year 2018

(b) Comparison of the number of open booths per hour across
airports over the year 2018

(c) Comparison of the number of arriving passengers per hour
across airports over the year 2018

Figure 10: Airport comparison using boxplots over the year
2018

Figure 12a shows the distribution of the average wait times for
all passengers per airports in February over the last six years.
Palm Beach International airport (PBI) and Chicago Midwest
International airport (MDW) have the lowest hourly wait times
on average but with a comparatively high volatility. Second
best in line are Charlotte Douglas International airport (CLT)
and Baltimore/Washington International airport (BWI) with a
combination of low average and low volatility.

When combining these observations with the number of
arriving passengers distribution shown in Figure 12b, CLT has
more merit seeing how few passengers enter through PBI
during that month of the year.

(a) Comparison of the average wait time per hour across airports

(b) Comparison of the number of arriving passengers per hour
across airports

Figure 11: Airport comparison using boxplots for the month
of August from 2013 to 2019

C. US vs. non-US wait times

Figure 13a & 13b show the distribution of the average wait
times for US and non-US passengers per airports during the
year 2018. The median average wait time for US citizens is
reported in Figure 13b for a better comparison between the two
categories. A first observation is that airports with short wait
times for US citizens do not necessarily shorter wait times
for non-US citizens than airports with high wait times for US
citizens. For example, SPN has the second worst wait time for
non US passengers while having the third shortest wait time
for US passengers. Only two airports (STL and PBI) have a
lower median average wait time for non-US passengers than
for US passengers. Figure 13c, which shows the distribution
of the average wait time ratio of non-US citizens over US
citizens, indicates that only five airports have a median ratio
outside the range [1,2.5]: STL and PBI with a ratio lower
than one as noted previously, along with MCO, Guam airport
(GUM) and SPN with ratios greater than 2.5.

IV. HOURLY WAIT TIME PREDICTION ACROSS AIRPORTS

Typical modeling of queues at airports relies on queuing
theory studied in Operations Research to evaluate queue length
and service time [14]. In this paper, we choose to adopt a
different approach. Leveraging machine learning techniques,
our goal is to predict the average wait time per hour at any



(a) Comparison of the average wait time per hour across airports

(b) Comparison of the number of arriving passengers per hour
across airports

Figure 12: Airport comparison using boxplots for the month
of February from 2013 to 2019

airport. ONT and CVG having less data than the other airports,
they were not considered in the following study.

A. Features and regressors

The problem of interest falls in the category of regression
techniques [15], more specifically under time series forecast-
ing. The data set is partitioned into a train set and a test set.
Each row in the data set corresponds to a particular hour,
and the corresponding label is the average wait time for all
passengers for the next hour. The following base set of features
is created:
• Month of the year,
• Day of the month,
• Day of the week,
• Hour of the day,
• Number of passengers at this hour,
• Number of open booths at this hour,
• Number of flights at this hour.
• Ratio of passengers per open booth

Intuitively the waiting time at border security seems to depend
on the state of the border area in the previous hour as well,
e.g. if not all previously arrived passengers were processed,
therefore the following features can be added to the base set:
• Number of passengers at the previous hour,
• Number of open booths at the previous hour,
• Number of flights at the previous hour,

(a) Comparison of the average wait time for US citizens per hour
across airports

(b) Comparison of the average wait time for non-US citizens per
hour across airports. In red is indicated the median wait time for
US citizens from Figure 13a.

(c) Comparison of the ratio of average wait time for non-US
citizens over US citizens. In red is indicated the interval [1, 2.5]
for a better visualization.

Figure 13: US vs non-US wait times comparison using box-
plots over the year 2018

• Ratio of passengers per open booth at the previous hour.
To avoid data leakage from the train set to the test set, we
do not randomly assign data to either the train or test set, but
select a time period for the train set and only assign a later
time period to the test set. The models are trained on data
from 2013 to 2017 and tested on data from the year 2018.

The different regression models are implemented using
Python as the programming language and using the Scikit-
learn library [16].

To obtain the best possible performance, we experiment
with various algorithms, each having its specific advantages



and drawbacks. Below is a brief overview of each algorithm
tested:

1) Linear Regression assumes that the relationship be-
tween the input variables and the measured variable
is linear with some noise, and estimates the parameter
vector with ordinary least squares minimization. It is the
simplest regression method and is easily interpretable.

2) Ridge Regression, also known as Tikhonov regular-
ization, extends the ordinary linear regression with a
penalty term in the objective function proportional to
the error norm. This improves the conditioning of the
problem and reduces overfitting.

3) Lasso Regression performs a linear regression with
regularization as well as a variable selection.

4) Random Forest Regression is an ensemble technique
that fits a number of classifying decision trees on var-
ious sub-samples of the dataset and uses averaging to
improve the predictive accuracy and control over-fitting

5) Gradient Boosted Tree Regression is an ensemble
technique relying on decision trees as weak learners and
resampling the training samples while assigning weights
to the samples. It optimizes a cost function over function
space by iteratively choosing a function that points in the
negative gradient direction. It is typically more robust
than basis learners.

6) AdaBoost is also an ensemble of decision trees relying
on boosting. However, AdaBoost and Gradient Boosting
optimize different loss functions.

B. Performance measures

In order to measure the quality of the predictions, two
different performance measures were computed: the R2 score
and the mean absolute error (MAE).

The R2 score, also known as the coefficient of determina-
tion, is defined as the unity minus the ratio of the residual sum
of squares over the total sum of squares: R2 = 1−

∑
i(yi−fi)2∑
i(yi−ȳ)2 ,

where y is the value to be predicted, ȳ its mean and f is the
predicted value. It ranges from −∞ to 1, 1 being a perfect
prediction and 0 meaning that the prediction does as well as
constantly predicting the mean value for each occurence. In the
case of a negative R2, then the model has a worse prediction
than if it were predicting the mean value for each occurence
and therefore yields no useful predictions. The closer the R2

score is to 1, the more accurate the prediction is.
Regarding the mean absolute error, the smaller its value is,

the more accurate the prediction is. It is calculated using the
following formula: MAE = 1

n

∑
i |fi − yi| where n is the

number of values being predicted.

C. Simple prediction benchmarks

Four different simple prediction benchmarks were tested in
order to have a better understanding of the ease of prediction.
For the first three, the prediction consisted in taking the value
from the previous year, the previous day or the previous hour.
The last one consists in constantly predicting the mean value
of the the training set.

As a more elaborate comparison benchmark, Facebook’s
time-series forecasting tool Prophet [17] was trained on the
actual training set and its performance was measured on the
data from the year 2018. The Prophet tool is based on an
additive model where non-linear trends are fit with yearly,
weekly, and daily seasonality [18]. It is described as robust to
outliers and missing data with no parameter tuning necessary,
therefore the default parameters of the Prophet tool were used
for this forecasting benchmark.

D. Performance analysis

1) One-hot encoding analysis: A single model for all
terminals was created by adding one-hot encoding features for
the different terminals, i.e. 59 binary features were added, each
one indicating whether a specific terminal is considered or not.
This single model was trained on the data from 2013 to 2017
and tested on the data from 2018. 59 other models, one for
each terminal, were trained and tested on the same data fitlered
by terminal. Figure 14 plots the MAE per terminal for each
considered regressor. It shows that for each regressor the single
terminal method outperforms the one-hot encoding method
for a majority of terminals. For example, in the case of the
Gradient Boosting regressor, having a different regressor per
arriving terminal is better than the one-hot encoding method
for forty terminals out of fifty-nine.

Figure 14: Mean absolute error comparison between one-hot
encoding for airports and different regressors per airports

2) Benchmark comparison: The comparison with the cho-
sen benchmarks was done using the single-terminal models,
i.e. for each regressor type, one model was trained per arrival
terminal. The R2 score and mean absolute error of these
models are aggregated in boxplots presented in Figure 15
alongside the boxplot performance of the five benchmarks.

Figure 15a shows that he Gradient Boosting regressors have
the best R2 performance, its R2 scores being greater than 0
for 43 terminals out of 59, which is to be compared to 28
out of 59 for the first benchmark, the Prophet tool. Gradient
Boosting has also the smallest R2 performance deviation of
all tested models. Though Ada Boost has the highest R2 score
of all models for one terminal (SFB Terminal A), of the six



(a) R2 score

(b) Mean absolute error

Figure 15: Box plot comparison of the performance measures
for the five chosen benchmarks and for the six chosen regres-
sors when predicting the average wait time for all passengers

chosen regressors, it is the only model with a median R2 score
less than 0, along with the five benchmarks. The three linear
models (Linear, Lasso and Ridge) have similar performances
in this study, implying that the overfitting methods added
in Lasso and Ridge are not necessarily relevant here. The
maximum R2 difference between Lasso and Linear or Ridge
is about 0.64 while this distance is about 0.005 between Ridge
and Linear.

Figure 15b, showing the MAE distribution, has a differ-
ent ranking with respect to the linear regressors. With this
performance measure, Lasso yields better results than Linear
and Ridge. Otherwise the conclusions for this performance
measure are the same as for the R2 score. This performance
measure has however a more tangible interpretation: Of all the
models tested, only the Gradient Boosting regressors predict
the average waiting time with an average error of 10 minutes
or less for every terminal of entry. The Gradient Boosting
regressors have a MAE of 5 minutes or less for 28 terminals.

3) Training size analysis: In order to visualize the im-
pact of the training set’s size, the regressors were trained
using training sets of different lengths (i.e. different starting
dates) and their performance was tested on the data from
the year 2018. As shown in Figure 16, decreasing the size
of the training set does not have a major impact on the
performance of the Random Forest regressor and the Gradient

(a) Median mean squared error

(b) Average mean squared error

Figure 16: Evolution of the median and average regressors
performance with the beginning of the training set

Boosting regressor. For the remaining regressors, the average
and median performances improve when the training set size
decreases. Their performance is however still not better than
nor comparable with the Gradient Boosting regressor trained
on the full training set.

Figure 17: Comparison per terminal of entry of the regressors’
mean absolute error with the average wait time standard
deviation over the year 2018



4) Comparison with standard deviation: Figure 17 shows a
comparison per terminal of entry between four of the best
performing models’ mean absolute error and the standard
deviation of the average wait time over the test year 2018.
This plot shows that except for one exception (SNA Terminal
C), the Gradient Boosting models mean absolute errors are
significantly better than the standard deviation of the values
to predict.

V. CONCLUSION

This paper is a first step in a systematic analysis of pas-
senger wait times at customs across all airports of entry in
the United States using publicly available data. This analysis
makes it easier to uncover some long-term trends, i.e. an
increase in the number of arriving flights coupled with a
decrease in the number of open custom booths, while also
enabling a per airport comparison. This analysis also laid the
ground to implementing machine learning regression models
in order to predict the average wait time per airport of entry.
These models could be used to better anticipate the number
of required booths once the number of arriving passengers is
known.
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APPENDIX

Table I: Terminal of arrivals abbreviations
Abbreviation Airport (IATA) Terminal name

ATL - CE ATL Concourse E
ATL - CF ATL Concourse F
AUS - M AUS Main
BOS - TE BOS Terminal E
BWI - IA BWI International Arrivals
CLT - M CLT Main
DEN - I DEN International

DFW - TD DFW Terminal D
DTW - MT DTW McNamara Terminal
DTW - NT DTW North Terminal
EWR - TB EWR Terminal B
EWR - TC EWR Terminal C
FAT - M FAT Main
FLL - T1 FLL Terminal 1
FLL - T4 FLL Terminal 4

GUM - MT GUM Main Terminal
HNL - MOT HNL Main Overseas Terminal

IAD - IA IAD International A
IAH - I IAH IAB

JFK - T1 JFK Terminal 1
JFK - T4 JFK Terminal 4 (IAT)

JFK - T5B JFK Terminal 5 (Jet Blue)
JFK - T7 JFK Terminal 7 (British)
JFK - T8 JFK Terminal 8 (American)
LAS - T3 LAS Terminal 3
LAX - S2 LAX Satellite 2
LAX - S5 LAX Satellite 5
LAX - S7 LAX Satellite 7
LAX - T4 LAX Terminal 4

LAX - TBIT LAX Tom Bradley International Terminal
MCO - A1 MCO Airside 1
MCO - A4 MCO Airside 4

MDW - MT MDW Main Terminal
MIA - CT MIA Central Terminal
MIA - NT MIA North Terminal
MIA - ST MIA South Terminal

MSP - T1L MSP Terminal 1 Lindbergh
MSP - T2H MSP Terminal 2 Humphrey
OAK - M OAK Main
ORD - T5 ORD Terminal 5
PBI - M PBI Main
PDX - M PDX Main
PHL - TA PHL Terminal A
PHX - M PHX Main
RDU - T2 RDU Terminal 2
SAN - M SAN Main
SAT - M SAT Main
SEA - SS SEA South Satellite
SFB - TA SFB Terminal A
SFO - TA SFO Terminal A
SFO - TG SFO Terminal G
SJC - M SJC Main

SJU - SJA SJU San Juan AA
SLC - M SLC Main

SMF - MT SMF Main Terminal
SNA - TC SNA Terminal C
SPN - IA SPN International Arrivals
STL - M STL Main
TPA - M TPA Main


