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Abstract: This paper aims at investigating further the use of the social media Twitter as a real-time estimator
of the US Air Transportation system. Two different machine learning regressors have been trained on this 2017
passenger-centric dataset and tested on the first two months of 2018 for the estimation of air traffic delays at
departure and arrival at 34 different US airports. Using three different levels of content-related features created
from the flow of social media posts led to the extraction of useful information about the current state of the air
traffic system. The resulting methods yield higher estimation performances than traditional state-of-the-art and
off-the-shelf time-series forecasting techniques performed on flight-centric data for more than 28 airports. Moreover
the features extracted can also be used to start a passenger-centric analysis of the Air Transportation system. This
paper is the continuation of previous works focusing on estimating air traffic delays leveraging a real-time publicly
available passenger-centered data source. The results of this study suggest a method to use passenger-centric data-
sources as an estimator of the current state of the different actors of the air transportation system in real-time.

Keywords: delay estimation, ATM performance measurement, big data, machine learning

1. INTRODUCTION

The Air Transportation System is a complex inter-
connected system that carried more than 631 million
passengers on domestic flights in the United States in
2010 according to the Bureau of Transportation Statis-
tics (BTS) [1]. Flight delays are still a major issue both
in the United States with 27.0% of departing flights and
27.8% of arriving flights experiencing delays in 2017 [1].

Most previous studies aimed at predicting or classi-
fying flight delays were centered on flight-centric infor-
mation coming from a variety of sources with different
levels of public availability, and using only very little
passenger-centric data. Mueller and Chatterji [2] created
a probabilistic model of delays by fitting Poisson and
Normal distributions to the historic delay data from
10 airports. Rebollo and Balakrishnan [3] implemented
a network model to classify and predict future delays
on specific links or specific airports using two years of
flight-centric and weather-related data. Klein et al. [4]
and [5] focused on predicting short-term weather-related

delays using only past and current weather information.
Aljubairy et al. [6] used Internet of Things in order to
analyze flight-related sensors in real-time and classify the
delay of an upcoming flight.

Over the past few years, NextGen [7] in the United
States has been advocating a shift from flight-centric
metrics to passenger-centric metrics to evaluate the per-
formance of the Air Transportation System. The failures
and inefficiencies of the air transportation system not
only have a significant economic impact but they also
stress the importance of putting the passenger at the
core of the system [8] [9]. Several studies have highlighted
the disproportionate impact of airside disruptions on
passenger door-to-door journeys. Flight delays do not
accurately reflect the delays imposed upon passengers’
full multi-modal itinerary. Cook et al. [10] designed
propagation-centric and passenger-centric performance
metrics, and compare them with existing flight-centric
metrics. Wang [11] showed that high passenger trip de-
lays are disproportionately generated by canceled flights
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and missed connections. Nine of the busiest thirty-five
airports cause 50% of total passenger trip delays. Con-
gestion, flight delay, load factor, flight cancellation time
and airline cooperation policy are the most significant
factors affecting total passenger trip delay. NextGen
intends to not only improve the predictability and re-
silience of the US Air Transportation System, but also
to reduce door-to-door travel time for passengers.

Passengers are at the core of this system and, yet,
limited quantitative information about passenger move-
ments is publicly shared. Each aviation stakeholder only
has access to a partial view of the passenger-side of air
transportation operations making a system-wide data-
driven picture of passenger behavior difficult to imple-
ment. The BTS provides aggregated passenger data per
market but no granular information. Passenger surveys
conducted by airports or airlines, while very detailed,
remain limited to small samples of passengers and short
time periods, and may not be representative.

Precursor work was made by Marzuoli et al. in [12]
and [13] using mobile phone data in order to analyze
the performances of airports from the passengers’ per-
spective. These studies validated the use of passenger-
centric data to better assess the overall health of the Air
Transportation System. However mobile phone data is
proprietary data and is not often publicly available. In
order to operate in real-time, it is thus necessary to also
look into other sources of passenger data available on a
national scale.

Another popular source of data previously used for
studying large-scale behaviors with real time availability
is social media, in particular Twitter. With more than 68
millions active users in the United States [14], Twitter is
an important pool of user-created data that is still not
fully leveraged. Twitter has already been the main focus
of many studies focused on its real-time availability,
especially during natural disasters with multiple works
by Palen et al.[15], [16], [17]. Terpstra et al. also studied
how a real time Twitter analysis could have provided
valuable information for the operational response of a
natural disaster crisis management with the case of the
storm hitting a festival in Belgium [18]. Regarding the
air transportation field, most works mining Twitter data
focus on how airlines are perceived by passengers by
means of sentiment analysis [19] or sentiment classi-
fication [20]. Though these works give a good insight
on how passengers perceive the state of some specific
actors within the air transportation system, it does not
give a global idea of its health. Monmousseau et al. in
[21] used publicly available social media data created by
passengers to accurately estimate and predict the hourly
aggregated status of the US air transportation system.

This paper proposes to build on this previous work
in order to estimate the state of the air transportation

system to a finer level. Rather than predicting the num-
ber of delays across all the United States, the proposed
passenger-centric models are improved and tuned to
accurately estimate the state of delays for each of the
35 major airports within the United States. The created
models are based on three different levels of content-
related features created from the flow of social media
posts. First results indicate that these new models can
estimate the number of hourly delays with a mean abso-
lute error of less than 3 flights for 26 of the considered
airports, and of less than 6 flights for the 9 remaining
airports.

The rest of the paper is structured as follows: Section 2
describes the datasets and the feature extraction process.
The methodology and results of the training process are
shown in Section 3, before being analyzed and exploited
in Section 4. Section 5 concludes this study and discusses
possible future steps.

2. DATASET DESCRIPTION AND
FEATURE SELECTION

2.1 Dataset description

Following the initial work performed in [21], the goal
here is to use passengers behavior on social media - in
particular on Twitter - in order to analyze and estimate
the flight-centric health of the US air-transportation
system at an airport level. In this study, the flight-
centric health of an airport is described by delay related
information contained within BTS data. This data is
publicly available usually with a two to three month
delay and this study limits itself with the BTS data from
January 2017 to February 2018.

The Twitter dataset available for this study is the
same as in [21] and consists of all the tweets found using a
basic search for each handle of 7 major US airlines as well
as 34 major US airports (one of them having two Twitter
handles). The full list of handles can be found in Table 1.
Each entry consists of a timestamp, a user id, the content
of the tweet and the handle used to retrieve the tweet.
This dataset spans the entire period from January 1st
2017 to February 28th 2018. The extraction of features
from this dataset has been improved since the previous
study and is described in Section 2.2.

Figure 1 plots the total number of tweets related
to each handle over the year 2017 against the total
number of flights flown by each airline or to and from
each airport. Airlines tend to gather more tweets than
airports, and the number of tweets is not necessarily
correlated to the number of flights flown per airline. The
handle ”@Delta” gathered the most tweets over 2017
even though Southwest Airlines carried out the most
flights in 2017. Most airports are regrouped around a
cluster of 10k tweets and 200k flights over 2017, with
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Table 1: Twitter handles used for gathering tweets

Category Twitter handles
Airlines @united, @Delta, @AmericanAir, @SouthwestAir, @SpiritAirlines, @VirginAmerica, @JetBlue
Airports @JFKairport, @ATLairport, @flyLAXairport, @fly2ohare, @DFWAirport, @DENAirport,

@CLTAirport, @LASairport, @PHXSkyHarbor, @MiamiAirportMIA, @iah, @EWRairport,
@MCOAirport, @Official_MCO, @SeaTacAirport, @mspairport, @DTWeetin, @BostonLogan,

@PHLAirport, @LGAairport, @FLLFlyer, @BWI_Airport, @Dulles_Airport, @MidwayAirport,
@Reagan_Airport, @slcairport, @SanDiegoAirport, @flyTPA, @flypdx, @flystl,

@flySFO,@HobbyAirport, @flynashville, @AUStinAirport, @KCIAirport

Los Angeles International airport (LAX) and Hartsfield-
Jackson Atlanta International airport (ATL) being ex-
ceptions due to their higher number of tweets.

Figure 1: Number of tweets over the number of flights during the
year 2017 for the considered airlines and airports

In order to estimate the flight-centric health of each
considered airport, this information first needs to be
extracted from the BTS dataset for each airport. Only
two types of delayed flights are considered here from
a passenger’s perspective: Flights departing with any
amount of delay, and flights arriving with a delay greater
than 15 minutes. Once all the flights departing an airport
and all the flights arriving at the same airport are
selected, the following values can be aggregated per hour:

• NumDepDelay: Number of flights departing with a
delay

• NumArrDelay15: Number of flights arriving with a
delay greater than 15 minutes

The aim of this study is to accurately estimate these
two values for each airport at every hour using a single
passenger-centric dataset.

2.2 Feature selection on Twitter data
2.2.1 Volume features
Features were extracted identically for all search han-

dles presented in Table 1, for the exception of @Miami-
AirportMIA, which does not gather enough tweets. In
addition to the raw number of tweets per hour per search
handle, keyword related information is also extracted

from the Twitter dataset. In order to keep all the relevant
tweets without having to decline all the possible forms of
the chosen keywords (e.g. ”delay”, ”delayed”, ”delays”,
etc.), simple regular expression filters were created for
each keyword: Any tweet containing a word starting with
the related keyword is kept and the resulting tweets are
then aggregated per hour. Five keywords were chosen for
this study: ’delay’, ’wait’, ’cancel’, ’hours’, ’refund’.

2.2.2 Topic features
Another way of exploiting information from the con-

tent of these tweets is to perform a topic analysis of
the tweet database using Latent Dirichlet Allocation [22]
(LDA). A first step in topic analysis is to clean the doc-
uments analyzed, here the tweets. This cleaning process
was already performed in [13] and [21] and consists of the
following steps: Any reference to websites or pictures was
replaced by a corresponding keyword. Every mention
to another Twitter user within a tweet (@someone)
as well as most emojis were similarly replaced. Since
this database contains many replies from airlines to
their customers, individual signatures of each agent were
also replaced by a keyword. Dates and times were also
generically replaced by keywords (e.g. ”3rd Jan 2017”
becomes ”DATE” and ”4pm” becomes ”TIME”). The
resulting text was then filtered from common stop-words
and from words occurring only once in the whole year
of 2017. A list of 100 topics was then created using the
Gensim [23] library. The topic distribution of each tweet
was then calculated before averaging these distributions
per hour and per search handle. The hourly standard
deviation of the distributions was also extracted.

This cleaning process introduces two additional key-
words that enables a quick filtering of tweets, and there-
fore two additional features to add per search handle:
tweets containing a picture and those containing a web-
site link. Thus seven keywords are actually considered
for feature extraction: ’delay’, ’wait’, ’cancel’, ’hours’,
’refund’, ’PICTURE’, ’WEBSITE’.

2.2.3 Sentiment features
Sentiment analysis is also used here to enhance the fea-

ture set considered. Two different datasets and cleaning
method were used to train three different regressors each.
The first dataset used was the labelled dataset used in a
Kaggle competition [24] and was cleaned using the same
process as for the previous LDA learning. The generic
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keywords from the cleaning process (e.g. ’WEBSITE’,
’DATE’) were removed before creating the associated
dictionary, as well as words appearing in less than 20
tweets or in more than 75% of the full dataset. A second
dataset and cleaning process was generated based on the
work of Read [25]. Emoji filters were used to extract
tweets from the initial dataset and automatically label
them with a positive or negative sentiment according
to Table 2. The text cleaning process is improved by
merging negation words (”no”, ”not” and ”never”) with
the word that follows it. The tokens used for the creation
of the dictionary are the resulting bigrams, i.e. combina-
tions of two words that follow each other in a tweet, with
the same frequency filter as the first method described.

Table 2: Emoji sentiment association

Category Emojis
Positive ”:)”, ”=)”, ”:-)”, ”;)”, ”;-)”, ”:-D”, ”:D”, ”=D”
Negative ”:(”, ”:-(”, ”=(”, ”:-@”, ”:’(”, ”:-|”

For both methods, three classifiers are trained (a
random forest classifier, a naive Bayesian classifier and
a logistic regressor) using the scikit-learn library [26].
A sentiment score is then calculated for each tweet
by averaging the output of these classifiers, 0 meaning
a unanimous negative sentiment and 1 a unanimous
positive sentiment. The hourly average of these scores
are added to the Twitter feature set.

2.2.4 Summary
Given the temporal nature of the data analyzed, the

following features were chosen to keep track of the date:
month of the year, day of the month, day of the week and
hour in the day. In summary the following 8,484 features
are considered:

• Hourly volume of tweets for each search handle
(7 airlines and 33 airports giving 40 features):
Num_tweets_handle

• Hourly volume of keyword-related tweets for each
search handle (40x7 features): Num_tweets_key-
word_handle

• Hourly average of tweets’ sentiment (40x2 features):
Mean_sent_method_handle

• Hourly average of topic distribution for each search
handle (40x100 features): Mean_topic_handle

• Hourly standard deviation of topic distribu-
tion for each search handle (40x100 features):
Std_topic_handle

• Month of the year, Day of the month, Day of the
week and Hour in the day (4 features)

3. ESTIMATING DELAYS
The aim of this section is to see how well it is possible

to estimate per airport the number of flights departing
with a delay and the number of flights arriving with

a delay greater than 15 minutes using the features
extracted from the Twitter dataset. The dataset was
split into a training set consisting of the data from the
year 2017, and a testing set with the data from January
and February 2018.

3.1 Methodology
For each BTS value, two different machine learning

regressors were trained on the training data set: a Ran-
dom Forest regressor and a Gradient Boosting regressor.
These regressors were implemented from scikit-learn [26]
with identical hyper-parameters. The maximum depth of
each regressor was limited to ten, the minimum number
of samples for a split was fixed to two and the maximum
number of trees was fixed at ten.

As a comparison benchmark, we used Facebook’s
time-series forecasting tool Prophet [27] on the 2017
BTS data to forecast the full two first months of 2018.
The Prophet tool is based on an additive model where
non-linear trends are fit with yearly, weekly, and daily
seasonality [28]. It is described as robust to outliers
and missing data with no parameter tuning necessary,
therefore the default parameters of the Prophet tool was
used for this forecasting benchmark.

Lastly, the standard deviation of the BTS values in the
training set were calculated to illustrate the added value
of the trained regressors. The performance measures
used to compare the different regressors are presented
in the upcoming section 3.2.

3.2 Estimation performance measures
In order to measure the performance of the different

models, two different indicators were used: the R2 score
and the mean-absolute error (MAE).

The R2 score, also known as the coefficient of deter-
mination, is defined as the unity minus the ratio of the
residual sum of squares over the total sum of squares:

R2 = 1−
∑

i(yi − fi)
2∑

i(yi − ȳ)2
(1)

where y is the value to be predicted, ȳ its mean and f
is the predicted value. It ranges from −∞ to 1, 1 being
a perfect prediction and 0 meaning that the prediction
does as well as constantly predicting the mean value for
each occurence. In the case of a negative R2, then the
model has a worse prediction than if it were predicting
the mean value for each occurence and therefore yields
no useful predictions.

Regarding the mean-absolute error, the smaller its
value is, the more accurate the prediction is. It is cal-
culated using the following formula:

MAE =
1

n

∑
i

|fi − yi| (2)

where n is the number of values being predicted.
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3.3 Estimation results
Fig. 2 shows a comparison per airport of the mean-

absolute error of the two trained regressors along with
the chosen benchmark for the estimation of the number
of flights departing with a delay. The standard deviation
of the number of delayed departing flights at each airport
during the year 2017 is also included for comparison. The
Random Forest models have the best results in this case:
they outperform the Gradient Boosting models at all-
but-one airports (LAX) and the Facebook Prophet tool
on 31 airports out of 34. For 26 airports, the Random
Forest models are able to estimate the hourly number of
delayed departing flights with a mean-absolute error of
three flights or less, and with an error of less than six
flights for the remaining airports.

Figure 2: Comparison of the mean absolute errors per airport for
the trained regressors for the estimation of the number of delayed
departing flights. The standard deviation of the BTS value on the
training set is included for comparison.

Fig. 3 shows a comparison per airport of the mean-
absolute error of the two trained regressors along with
the chosen benchmark for the estimation of the number
of flights arriving with a delay greater than 15 minutes.
The standard deviation of the number of delayed arriving
flights at each airport during the year 2017 is also
included for comparison. The Random Forest models
also have the best results in this case though their
relative performance are not as important as for delayed
departing flights : they outperform the Gradient Boost-
ing models at 27 airports out of 34 and the Facebook
Prophet tool on 28 airports out of 34. The absolute
performance is however better than for estimating the
number of delayed departing flights. For 28 airports,
the Random Forest models are able to estimate the
hourly number of delayed departing flights with a mean-
absolute error of less than three flights, and with an error
of less than five flights for the remaining airports.

Fig. 4 shows a comparison per airport of the R2 score
of the two trained regressors along with the chosen
benchmark for the estimation of the number of flights

Figure 3: Comparison of the mean absolute errors per airport
for the trained regressors for the estimation of the number of
flights arriving with a delay greater than 15 minutes. The standard
deviation of the BTS value on the training set is included for
comparison.

departing with a delay. The Random Forest models still
have the best results in this case, but the model asso-
ciated with LAX airport also shows the only negative
score. They outperform the Gradient Boosting models
at 27 airports out of 34 and the Facebook Prophet tool
on 28 airports out of 34.

Figure 4: Comparison of the R2 scores per airport for the trained
regressors for the estimation of the number of delayed departing
flights

4. ANALYSIS AND APPLICATIONS
The aim of this section is to analyze the differences

between the chosen models as well as explore possible
applications resulting from the extracted features.

4.1 Model analysis
Figure 5 shows the hourly prediction of the number

of delayed departing flights at Atlanta airport (ATL)
over the period January 12th-16th for the two trained
regressors along with the benchmark and the actual
values. This airport was chosen since it has the high-
est BTS standard deviation for the number of delayed
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departing and arriving flights, and the period was chosen
to illustrate the high variability of the number of delays
from a day to another. In this example, January 12 has
more than twice as many delayed flights than any other
day, as well as important hourly variations.

Figure 5: Predicted number of delayed departing flights at ATL
by the trained regressor over the period January 12th, 2018 to
January 16th, 2018. The actual number of delayed departing flights
is indicated for comparison.

Figure 5 illustrates the main differences between the
different models: The Prophet tool predicts for each
day a similar daily variation with three peaks during
the day yet with amplitudes varying depending on the
month and the day of the week. It also predicts negative
values, which underlines some limitations of the model
in this case. The added value from passenger-centric
data-sources is better seen on January 12 and 13, where
only the Random Forest regressor is able to estimate the
higher number of delays on January 12 before correctly
estimating the more usual levels of January 13. The
Gradient Boosting regressor doesn’t estimate outliers as
well as the Random Forest regressor due to the difference
in their loss functions. That difference is also illustrated
by the non-zero minimum of the Gradient Boosting
estimation during night time.
4.2 Other applications

4.2.1 Real-time sentiment analysis
The extracted features can be fed to the trained

models for accurately estimating the number of delayed
flights, but they can also be used directly in order to
sense the overall passenger mood. Once the sentiment
analyses are conducted on the tweets, it is possible to
merge them into one score per airline and monitor their
evolution.

Figure 6 shows the hourly average mood for three
major airlines during the Northeastern bomb cyclone

Figure 6: Average passenger sentiment with respect to three major
airlines over the period January 2nd, 2018 to January 6th, 2018,
corresponding to a bomb cyclone hitting in the North-East of the
US.

studied in [13]. These three airlines have a similar pas-
senger mood evolution at the beginning and the end of
the period, yet United Airlines shows a drop in passenger
mood on January 4th, the day when the bomb cyclone
actually hit the East coast. Though all three airlines have
hubs in New York, United Airlines is the only airline
with a hub at Newark International Airport (EWR)
and not John F. Kennedy International Airport (JFK)
nor LaGuardia Airport (LGA), which were both closed
during the bomb cyclone, meaning that United Airlines
probably had more dissatisfied passengers to handle on
site during these extreme weather conditions.

4.2.2 Airports passenger map
After training the Random Forest models, it is possible

to search for the most important features within the
8,484 initial features for each airport. This is achieved
by using the Mean Decrease Impurity measure defined
by Breiman in [29] and normalizing the obtained feature
importances so that the sum of all feature importances
is equal to one. Table 3 shows the ten features with the
highest feature importances for predicting the number
of delayed departing flights in ATL. Besides date related
features, four of the top ten features are related to the
volume of tweets containing delay keywords.

Table 3: Top ten features for predicting the number of delayed
departing flights at ATL

Rank Feature Rank Feature
1 Hour 6 DayOfMonth
2 Month 7 delay_@SouthwestAir
3 DayOfWeek 8 num_ATL
4 delay_@Delta 9 delay_JFK
5 delay_ATL 10 mean_63_BWI
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Once the features gathering 99% of the total im-
portance for estimating the number of delayed flights
are extracted, it is possible to group these features per
origin in order to gain some insight on how airports
are related from a passenger perspective. For example,
once the most important features for estimating the
number of delays at ATL are extracted, it is possible
to count how many of these features are issued from
tweets gathered using the handle of John F. Kennedy
International Airport (JFK).

Figure 7: Map of feature links between Atlanta airport (ATL) and
the other airports for estimating the number of delayed departing
flights. The larger the link, the more features were kept among the
features gathering 99% of the total importance for estimating the
number of departing delayed flights at ATL.

Figure 8: Map of delay links between Atlanta airport (ATL) and the
other airports. The larger the link, the more flights departed with a
delay during 2017 from ATL towards the connecting airport. Only
links with more than 1000 delayed flights in 2017 were considered.

Figure 7 shows how ATL is connected to the other
airports from this perspective. The larger the link be-
tween ATL and another airport, the more features were
kept among the features gathering 99% of the total
importance for estimating the number of departing de-
layed flights at ATL. Interestingly, this airport graph
is different from the graph built from the actual BTS
values. Figure 8 shows how ATL is connected to the
other airports using the number of delayed departing
flights from ATL. For example, although there are many
delayed flights departing to Florida, few features from
Floridan airports are kept. The opposite observation
can be made regarding Portland (PDX): there were less
than a thousand delayed flights from ATL to PDX, yet
features from PDX were kept.

This example illustrates the possibility of creating a
yearly review of airport relationship from a passenger
point of view. Future studies should investigate more
thoroughly the possible correlation and relation between
the passenger connection map and the delay connection
map.

5. CONCLUSION

This paper aimed at investigating further the use of
the social media Twitter as an estimator of the US
Air Transportation system. Exploiting both raw volume
information as well as different levels of content infor-
mation within the Twitter stream enables to accurately
estimate for each airport the number of flights departing
with a delay and the number of flights arriving with a
delay greater than fifteen minutes. This passenger-based
estimation yields a better estimation performance for a
majority of airports compared to using a state-of-the-
art and off-the-shelf forecasting tool on the flight-centric
data alone. Moreover, the methods used to extract rel-
evant features from this passenger-centric data-source
can be used to gain additional real-time insight on how
passengers relate to the Air Transportation system.

This study confirmed that information contained in
passenger-centric datasets are useful for a better un-
derstanding of the different stakeholders within the air
transportation system, and have the added benefit of be-
ing more readily and publicly available than flight centric
datasets. Future studies should focus on analyzing cases
when the estimation is less accurate, implying differences
between the handling of passengers and that of planes.
Another direction of study considered is to validate this
method to other countries or regions (e.g. the European
Union) where sufficient flight-centric data is available.
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