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Abstract—Global Navigation Satellite System (GNSS)
signals are subject to different kinds of events causing
significant errors in positioning. This work explores
the application of Machine Learning (ML) methods of
anomaly detection applied to GNSS receiver signals. More
specifically, our study focuses on multipath contamination,
using samples of the correlator output signal. The GPS
L1 C/A signal data is used and sourced directly from the
correlator output. To extract the important features and
patterns from such data, we use deep convolutional neural
networks (CNN), which have proven to be efficient in
image analysis in particular. To take advantage of CNN,
the correlator output signal is mapped as a 2D input
image and fed to the convolutional layers of a neural
network. The network automatically extracts the relevant
features from the input samples and proceeds with the
multipath detection. We train the CNN using synthetic
signals. To optimize the model architecture with respect
to the GNSS correlator complexity, the evaluation of the
CNN performance is done as a function of the number of
correlator output points.

Index Terms—GNSS, Machine Learning, Multipath De-
tection, Correlator output, Convolutional Neural Network.

I. INTRODUCTION

The main motivation behind the present work is to
apply machine learning techniques to predict the errors
caused by the multipath effect in the Global Navigation
Satellite System (GNSS) using the information extracted
from the correlator output of the tracking loops of a
GNSS receiver.

As mentioned in [1], the multipath effect can be
the source of strong deterioration of GNSS positioning
performance and may be considered as the major cause
of errors in urban environment [2]. It disturbs the useful
signal and provides negative effect on final precision of

Figure 1: An example of multipath reflected by the
ground which distorts the direct signal transmitted by
the satellite.

the position delivered to user. This is the main motivation
for its detection and mitigation. Multipath is defined as
one or more indirect replicas of signals from satellites
arriving at a receiver’s antenna from a satellite as shown
for example in Figure 1 for the case of an aircraft.

To address the problem of multipath detection, we
propose a solution using raw data from the correlator
output represented as a tensor of images from doppler
and code delay offsets. We then use a CNN to automati-
cally extract the features and a binary multipath classifier
at the last layers of the network.

To assess the performance of our detector we run
comparison experiments with another machine learning
based method using a predefined feature construction
procedure and a Support Vector Machine (SVM) clas-
sifier [3].

The article is structured as follows. First, we review
the related research done on the subject. Then we

978-1-7281-5380-3/20/$31.00 c©2020 IEEE



describe the GNSS correlation process and the CNN
concept. Thereafter, the data generation pipeline is de-
tailed. The experiment setup is subsequently described
and finally the results are discussed.

II. RELATED RESEARCH
A. GNSS multipath detection and mitigation

Two main approaches have been proposed in the
literature, frequency-domain or time domain processing
[4]. Among frequency-based approaches we can refer for
example to the ones using the Fast Fourier Transform
(FFT) [5], or the wavelet decomposition [6], [7]. How-
ever, according to [4], these methods can unintentionally
rule out other coexisting signals of interest. In the time-
domain methods we can cite the Carrier Smoothing Filter
(CSF) [8], [9] and the stacking technique in the case of
static receiver [10]. These methods also tend to remove
coexisting useful signals and their performance depends
on the rate of the data flow.

The multipath mitigation can be done at the hardware
level as well as the software level. At the hardware level,
the use of high quality antenna arrays can be efficient for
detecting and mitigating multipath [11]. They can also
be used for estimating parameters of multipath. Alter-
natively, the multipath can be mitigated at the software
level of the receiver either in acquisition or in tracking
loops. As the GNSS receiver has to track the direct signal
contaminated by delayed reflections, several multipath
mitigation methods based on the narrow correlator Delay
Lock Loop (DLL) were listed in [12]. They include
the strobe correlator [13], the early-late-slope technique
[14], the double-delta correlator [15] and the multipath
intensive delay lock loop [16]. On the other hand, a
statistical approach based on the maximum likelihood
principle [17] or the Bayesian technique [18] can be
used.

In the case of Non-Line-of-Sight (NLOS) effect, mul-
tipath can be hardly mitigated by these approaches. To
overcome these limits, [12] proposes to use a Gener-
alized Likelihood Ratio Test (GLRT) [19] and also a
Marginalized Likelihood Ratio Test (MLRT) [20], for
fault detection and diagnosis.

To avoid the limitations of these classical signal pro-
cessing methods we consider the application of Machine
Learning techniques [21], [22] to this multipath issue in
GNSS.

B. Machine learning application in GNSS
The use of machine learning to facilitate the error

mitigation and localization started from the early 2000s.
In [1], the authors proposed method for multipath effect
mitigation using a hybrid neural network architecture

based on multilayer perceptron for Law Earth Orbit
(LEO) satellites. Otherwise, [4] treats the case of multi-
path mitigation using a Support Vector Regression (SVR)
model. Here, the author integrates kernel support vector
regressor with geometrical features to deal with the code
multipath error prediction on ground fixed GPS stations.
Subsequent works were dedicated to the selection of
different types of the relevant features to detect and
mitigate multipath in their application. Examples of such
work can be seen in [3] and [23] for NLOS multipath
detection where the features are directly extracted from
correlator output. In [24], the authors give the detailed
description of CNNs and their application in the problem
of carrier-phase multipath detection. In this work, the
feature map was extracted from multivariable time series
from the end of signal processing stage using a 1D
convolutional layers.

Deep learning models in GNSS systems were also
used for the problem of spoofing attack detection in
GNSS receiver [25]. In this work, early-late phase, delta
and signal level are the three main features extracted
from the correlation output of the tracking loop. Using
these features, spoofing detection is carried out using
Deep Neural Networks (DNN) with fully-connected lay-
ers within short detection time.

CNN have been used also for GNSS integration with
misalignement detection of Inertial Navigation System
(INS) [26]. The CNN was trained to detect the optical
flow from smartphone camera to estimate the angle
difference from moving direction to the inertial sensor.
It allows to represent the distribution of objects moving
on different images for misalignement calculation.

Our proposed method also uses a CNN to automat-
ically extract relevant feature maps from the GNSS
correlator output. Input data are represented in the form
of 3D tensors in time-frequency domain. We discuss in
details this idea in the next sections.

III. METHODOLOGY
A. GNSS receiver architecture and signal processing

In this section we will briefly present the model of
GNSS correlator output. In this work, we consider the
simplified model of signal at the antenna port, as can be
seen in Figure 2, which can be represented as:

r(t) = s(t) + b(t)

The desired signal s(t) is modeled as follows [27]:

s(t) =
√

2CD(t− τ)c(t− τ) cos(2π(fc + ∆f)t+ θr)

where
• C is the power of received signal;



• D(t) is the navigation message;
• τ is the propagation delay;
• c(t) is the Pseudo-Random Noise (PRN) code se-

quence, corresponding to a specific satellite;
• fc is the carrier frequency;
• ∆f is the doppler offset
• θr is the carrier phase.

In this simplified model, we have taken the following
hypothesis:
• The D(t) and c(t) terms are not distorted by

propagation;
• The propagation delay τ and Doppler offset ∆f are

constant;
• The propagation delay τ and carrier phase θr are

supposed to be independent.
The model of noise is considered to be the Additive
White Gaussian Noise (AWGN), limited in frequency by
the bandwidth of RF front-end. Indeed, it is the model of
the noise as seen at the input of the RF front-end stage
transfered to the antenna output. The noise term b(t) can
be replaced by its Rice representation [28] as follows:

b(t) = ni(t)cos(2πflot+ θr)− nq(t)sin(2πflot+ θr)

where
• b(t) ∼ N (0,N0Brf ), AWGN, white at least on the

band of RF front-end;
• nq(t) ∼ N (0,N0Brf ) and nq(t) ∼ N (0,N0Brf )

are AWGN on the bandwidth Bbb =
Brf

2 ;
• N0

2 is the double sided noise Power Spectral Den-
sity (PSD);

• Brf is the RF front-end bandwidth.
The aim of the receiver is to estimate the propagation
delay τ for each satellite in view so as to calculate
the user position according to a trilateration principle.
∆f and θr are nuisance parameters which have to be
estimated too.

The first step in the signal processing chain is the mul-
tiplication of the incoming signal by two local replicas
in quadrature of the carrier signal. This operation splits
the signal into two channels: in-phase (I) and quadrature
(Q) as follows:

pcos(t) = r(t) · cos(2π(fc + ∆̃f)t+ θ̃r)

psin(t) = −r(t) · sin(2π(fc + ∆̃f)t+ θ̃r)

where ∆̃f is the local estimate of the doppler offset ∆f
and θ̃r is the local estimate of the initial phase θr of the
carrier signal. The two components pcos(t) and psin(t)
are then low-pass filtered to remove the high-frequency
terms in 2fc.

Then, the two channels are correlated with a locally
generated PRN code sequence. This correlation opera-
tion is performed by the means of a multiplier followed
by the Integrate-and-Dump (I&D) stage. The latter is
parametrized by the coherent integration time Ti.

Finally, a model of the signal available at the output
of the I&D stage, which is the correlator output, is [29]:

I = M cos(π(∆f − ∆̃f)Ti + (θr − θ̃r))

× sinc(π(∆f − ∆̃f)Ti) + nI (1)

Q = −M sin(π(∆f − ∆̃f)Ti + (θr − θ̃r))

× sinc(π(∆f − ∆̃f)Ti) + nQ (2)

where
• M = DTi

2

√
C
2 K(τ̃ − τ)

• D is the value of the bit of the navigation message,
which remains constant over the coherent integra-
tion time Ti;

• K(τ̃−τ) is the auto-correlation function of the PRN
code in τ̃ − τ ;

• τ̃ is the local estimate of the propagation delay τ ,
hence τ̃ − τ is the propagation delay estimation
error;

• ∆f − ∆̃f is the doppler estimation error;
• θr − θ̃r is the phase estimation error;
• nI(t) ∼ N (0, N0Ti

16 ) and nQ(t) ∼ N (0, N0Ti

16 ) are
two independent and identically distributed white
noise components;

It is worth noting that the I and Q components of the
correlator output are being produced each Ti.

B. CNN general description
In this part, we will describe the motivation behind

the application of CNN in the GNSS correlation output
data processing. We try to take advantage of the fact that
in the case of structured and hierarchical data CNNs are
capable to efficiently extract feature maps. The correlator
output signal can be seen as a structured and hierarchical
data.

Indeed, the correlator output double-channel data can
be easily represented in the form of a 3D tensor like
multi-channel "image" and correlator output values can
be translated to the predictive model as the intensity of
pixels in both I and Q channels.

The definition and principles of CNN are described
in details in [30], [31]. According to [31], convolution
leverages three important ideas that can help improve a
machine learning system: sparse interactions, parameter
sharing and equivariant representations. Unlike the clas-
sical DNN where every output unit interacts with every



Figure 2: Typical model of the signal correlation chain of a GNSS receiver

input unit, through matrix multiplication of parameters,
CNN typically promotes sparse interactions. This also
means that fewer parameters need to be stored, which
reduces the memory requirements of the model and im-
proves its statistical efficiency and decreases its operation
complexity.

The data used with CNNs usually consists of several
channels, each channel being the observation of a dif-
ferent quantity in different axis scales. One of such data
type is a color image data where each channel contains
the color of pixels. The convolution kernel moves over
both the horizontal and the vertical axes of the image,
conferring translation equivariance in both directions.

A typical CNN architecture is composed of the fol-
lowing basic elements as it can be seen in Figure 3.
• Convolutional layer: A convolutional filter (kernel)

within convolutional layers provides a compressed
representation of input data. With convolutional
filters computed using CNN, convolutional layers
can extract features from input data. Each filter is
composed of weights that can be either predefined
or trained during learning process, which is the case
in our study.

• Pooling layer: The convolved features are subsam-
pled by a specific factor in the subsampling layer.
The role of a subsampling layer is to reduce the
variance of convolved data so that the value of a
particular feature over a region of an input layer
can be computed and merged together.

• Activation function: Following several convolu-
tional and pooling layers, the high-level reasoning
in the neural network is performed via fully con-
nected layers. Neurons in a fully connected layer
have full connections to all activation in the previ-
ous layer. Fully connected layers eventually convert
the 2D feature maps into a 1D feature vector. The
derived vector either could be fed forward into

a certain number of categories for classification
or could be considered as a feature for further
processing.

The specific architecture and setup of our CNN model
dedicated to the multipath detection at the correlator
output will be described in the Section V.

IV. GNSS DATA GENERATION AND LABELLING
A. Main signal generation

In order to test our prediction models, an artificial
signal generator was developed. The data is generated in
the form of two matrices, one for each of the I and Q
channels, according to equations (1) and (2). As a GNSS
receiver is built to estimate the doppler and propagation
delay, the axes of these matrices were defined in doppler
estimation error ∆f − ∆̃f and code delay estimation
error τ − τ̃ . Phase estimation is represented implicitly
by I and Q components of the correlator output. The
output data corresponding to this main signal can be
parametrized as follows:
• Coherent integration time Ti in ms;
• Carrier-to-noise ratio C/N0 in dBHz.

An illustration of the output of our generator in terms
of I(t)2 + Q(t)2 is given in Figure 4 for two different
integration times.

B. Multipath generation
If a multipath signal is received in addition to the main

signal, as the signal processing chain is linear, we can
then consider that the correlator output is the sum of the
correlator output of the main signal plus the one due to
the multipath:

I ′ = I + IMP (αMP ,∆τMP ,∆fMP ,∆θMP )

Q′ = Q+QMP (αMP ,∆τMP ,∆fMP ,∆θMP )

Where



Figure 3: CNN structure and main elements example [32]

Figure 4: Synthetic correlator output visualization for
Tint = 1 ms (left) and Tint = 20 ms (left)

• ∆τMP > 0 is the code delay in excess to the main
signal delay τ ;

• ∆fMP is the difference between the doppler offset
of the main signal and the multipath;

• ∆θMP is the difference between the phase of the
main signal and the multipath;

• αMP is the multipath attenuation coefficient in
comparison to the main path.

The generation range for the code delay estimation error
is set to [0, 2] chips, where one chip is the duration of
one bit of the PRN code sequence. This is because out-
side of this interval the correlation value is negligible, so
the multipath effect is annihilated. Regarding the doppler
offset estimation error range, it is defined as ± 1

Ti
, the

width of the main lobe of the sinc function in (1) and
(2). We have considered that outside of this interval
the side lobes of the sinc function attenuate enough
the multipath component. With no a priori information,
the phase estimation error range was set to [0, 2π]. The
multipath attenuation was ranged in [0.5, 0.9] so as to
consider the most powerful, hence harmful, multipath.

C. Training Dataset construction
Also it needs to be noticed that to be represented

in the form of 3D tensors, the processed signal needs
to be discretized by a predefined number of correlator
outputs depending on the given GNSS receiver con-
figuration. So to cover all such possible configurations
we have used the following set of discretization levels:
N ∈ {4, 6, 8, 10, 20, 30, 40} points in each range τ − τ̃
and ∆f − ∆̃f . That is to say the number of correlator
outputs is N2.

As the multipath effect cannot be considered as a rare
event (for example in urban environment), the simulated
dataset was generated so that it is well balanced between
two classes:

• Category A: represents normal signal with no reflec-
tions (data from Category A is labelled as direct-
signal only data).

• Category B: simulates signals with a single multi-
path effect which can include doppler, code delay
or phase offsets (data from Category B is labelled
as multipath event).

See [33] for a public release of our generator code.

V. EXPERIMENT

A. Selected CNN architecture
The architecture and training parameters of the de-

signed CNN are shown in Table I.
The feature extraction part of the CNN consists of 4

convolutional blocks with 2 convolutional layers in each
block and pooling layers at the end of each block. For
example, consider a correlator output image cropped up
to discretization size N = 40 × 40 × 2 that is passed
through the network. The first convolutional layer from
the first block (conv1-1) is a feature map with a size
40 × 40 × 16, where the dimensions indicates height,
width and number of channels. This layer is generated



Figure 5: Synthetic correlator output visualization for I-channel for different values of carrier-to-noise ratio

Table I: CNN hyperparameters

Nb Layers 4 Blocks of 2 Conv layers
Loss LogLoss

Optimizer Adam
Learning rate 10−3...10−4

Batch size 32
Nb epochs 30

by the convolutional operation of 16 filters. Each filter
corresponds to a channel of the feature map, respectively.
By using maxpooling operation of pooling size 2×2 and
stride size 2× 2, the dimensions feature of the map are
reduced to 20×20×16 in the second convolutional layer
of the first block (conv1-2).

The decision to use the convolutional layers assembled
in blocks was made to avoid the use of large-sized
kernels (for example 7× 7 or 5× 5) with multiple 3× 3
kernel-sized filters one after another. It is especially true
for the case of scalable image discretization size which
can vary in wide range from 40 to 300 pixels. This
kind of architecture was succesfully applied in the VGG
family of convolutional neural networks [34] on the
ImageNet dataset of over 14 million images belonging
to 1000 classes.Thus VGGNet-like architectures can be
considered as a baseline feature extractors.

The classifier part of the CNN consists of two fully-
connected layers of size 1152× 1 and 256× 1 with the
sigmoid output activation function.

B. Benchmark model
The performance of the proposed method is compared

to those described in [3]. The method is based on
the Support Vector Mashine (SVM) approach. Reported
results show that 87% of the signals were correctly dis-
criminated (results depend on the number of correlation
data points used). Since the method also collects data
from the output of the correlator block, it follows the

Table II: SVM hyperparameters

Kernel 4 RBF (Gaussian)
Cross Val 3 Folds

Normalization Standard Scale

same process as our technique.
We have implemented the same feature extraction

pipeline and used the same SVM classifier hyperparam-
eters [35], [36] on our synthetic dataset to compare the
efficiency of the proposed CNN algorithm (referred as
MultipathCNN in the following). To obtain the correla-
tion shape we also use 13 correlator outputs.

As in [3], the following features were extracted:
• Number of local maxima of the correlation outputs

per period F2 = Nlocal−maxima

∆t ; where ∆t is the
correlation interval taken equal to coherent integra-
tion period.

• Distribution of the delay of the maximum corre-
lation output F3 = 1

M

∑M
i=1(ti−max − t̄)2 where

ti−max is the code delay of the maximum correla-
tion output, t̄ is the mean of the code delay, and M
is the number of correlator output samples.

In [3], the authors have also used a signal strength vs.
elevation angle feature (referred as F1) that is not taken
into account here as we have not introduced the physical
context of experiments (receiver’s speed, satellite con-
stellation) since the generated dataset is synthetic. Thus,
we have made the choice to not use the feature F1 as
opposed to [3].

Table II reports the SVM hyperparameters that were
used during the experiment.

C. Experimental setup
The strategy of experiments was designed for the cases

of coherent integration time of Ti ∈ {1, 20}ms. The
lower value corresponds to the receiver operation prior to



synchronisation with the navigation message, the largest
one being used after synchronisation. For each of two
values of integration time we have conducted two types
of tests:
• Tests on various discretization levels N ;
• Tests on models benchmark comparison.

It is worth noting that for both types of test above, we
make comparisons for several values of the following
parameters:
• ∆θMP = {0, 45, 90, 180}◦;
• C/N0 ∈ {20, 30, 40, 50, 60}dBHz;
• αMP ∼ U([0.5, 0.9]).

A variation of the I component with respect to C/N0 is
illustrated in Figure 5.

1) Type 1. Tests on various discretization levels
During this stage we have conducted tests of our

MultipathCNN algorithm on discretization levels N ∈
{4, 6, 8, 10, 20, 30, 40} to estimate the optimal value
of discretization. To model the multipath effect we
have picked randomly the doppler offset uniformly as
∆fMP ∼ U([0, 1000]) Hz and the code delay offset
as ∆τMP ∼ U([0.1...0.8]) chips separately for each
discretization level.

2) Type 2. Test on models benchmarks comparison
In this stage, we have performed the test to compare

the performance of our MultipathCNN model with the
reference SVM model. We have chosen fixed discretiza-
tion level of 10 correlator outputs to be closer to the
case of SVM (with its 13 correlator outputs). We have
also picked randomly and uniformly the doppler and
the code delay offsets in the same range as in the first
type of experiments with simultaneous variation of these
parameter.

D. Results tables and figures description
In order to evaluate the performance of multipath

detectors, the two models were applied directly to the
synthetic dataset which was varying in different con-
figurations listed above. We compare our results with
state-of-the-art method using an accuracy metric.

In Figure 6 we provide the barplots which represent
the accuracies of the model MultipathCNN on prediction
of multipath. These results are averaged over 20 runs
of the test of type 1 described earlier. Here the results
are represented as function of different C/N0 values and
multipath phase offsets ∆θMP . For each of these param-
eters the results are also grouped by the discretization
level N .

In tables III and IV we provide also the values of
accuracy averaged over 20 runs for different levels of
C/N0 and ∆θMP . These results correspond to the tests

Table III: Average model performance on benchmark test
as the function of phase offset

Ti = 1 ms
∆θMP SVM, % MultipathCNN, %

0, ◦ 69.9± 20.8 99± 0.1
45, ◦ 69.5± 20.5 99.9± 0.1
90, ◦ 69.5± 21 99.8± 0.2

180, ◦ 69.9± 21.3 99.9± 0.2

Ti = 20 ms
∆θMP SVM, % MultipathCNN, %

0, ◦ 93.6± 13.2 94.7± 1.2
45, ◦ 93.5± 13.5 94.7± 1.2
90, ◦ 93.1± 14 94.6± 1.3

180, ◦ 93.5± 13.2 94.7± 1.2

Table IV: Average model performance on benchmark test
as the function of C/N0

Ti = 1 ms
C/N0 , dBHz SVM, % MultipathCNN, %

20 62.2± 14.1 99.8± 0.2
30 73.8± 23.9 99.9± 0.1
40 71.1± 21.3 99.9± 0.2
50 70.7± 21 99.8± 0.2
60 70.8± 21.1 99.8± 0.2

Ti = 20 ms
C/N0 , dBHz SVM, % MultipathCNN, %

20 67.5± 7.7 94.3± 1.2
30 99.6± 1 94.4± 1.1
40 100± 1.1 94.8± 1.2
50 100± 1.1 94.8± 1.1
60 100± 1 95± 1.2

of type 2 described above.

E. Discussion on results
1) Tests on various discretization level
As it can be seen in Figure 6, the reduction of

discretization level up to 4, 6 discretization levels leads
in average to the reduction of model accuracy by 8% and
degrades slightly the variance of other MultipathCNN
model accuracy. It can also be seen that for the case
of integration time of 20 ms, the models with 4 and 6
correlator outputs become sensitive to the C/N0 vari-
ation. However, for the case of integration time of 1
ms, C/N0 variation has almost no significant influence
on the models performance. Regarding the influence of
the phase offset, the sole case of ∆θ = 90◦ shows the
degradation in the model metrics by at most 0.5%.

As our final objective in the future is to integrate
the multipath detector in the GNSS receiver, we need
to find the minimum number of correlator outputs N
keeping an accuracy high enough to detect the multipath
effect. Taking into account the test results, N ∈ {8, 10}
seems a reasonable value which is insensitive to the



Figure 6: Accuracy in % averaged over 20 runs of MultipathCNN for various levels of discretization for two
integration times: 1 ms (up) and 20ms (bottom)

level of noise in the signal. A discretization level of
N = 8 gives us 64 correlator outputs which seems to be
feasible in comparison to [37] approach which proposes
48 correlator outputs.

2) Tests on models benchmark comparison
The results shows that our proposed method outper-

forms the SVM on the synthetic GNSS dataset. De-
pending on the coherent integration time, the results are
represented as follows:

• For the case of integration time of Ti = 1 ms,
our model outperforms the SVM on every value
of C/N0 and phase offset.

• For the case of integration time of Ti = 20 ms and
the values of C/N0 ∈ [30, 60] dBHz our model
shows 5% less accuracy than the benchmark, but
outperforms it for low C/N0 value.

We believe that these performance results of the Mul-
tipathCNN are due to the fact that the CNN is able
to catch the geometrical dependencies in the data. To
demonstrate this property, we have used the visualized
heatmaps of class activation at the last convolutional
layer. In the example on Figure 3 it corresponds to
the output of the third convolutional layer (C3). This
can help to understand which part of an image led a
CNN to its final classification decision. It can be seen
on Figures 7 and 8, where the activation map of the
last convolutional layer of MultipathCNN shows the
distortion of the central zone of correlation peak for the
cases without multipath and with multipath respectively.
Thus, we see that MultipathCNN is capable to build a
discriminant for multipath that human could not conceive
a priori. Concerning the computational cost, we expect



the run-time to be tractable with an optimal architecture,
also considering that in prediction mode there is only a
forward pass and that computation can be distributed on
several CPU/GPUs.

VI. CONCLUSION AND FURTHER WORK

In this study a CNN based multipath detection method
has been proposed to detect multipath in the GPS
L1 C/A correlator output stage. The proposed method
has been validated with synthetic GPS data generator.
The performance of the detector has been compared to
SVM based multipath detector. The results have shown
that MultipathCNN performs better than the compared
method especially when the C/N0 degrades.

The proposed algorithm should now be validated
against ground truth, that is real physical signal.

ACKNOWLEDGEMENTS

This project has been partly funded by the SESAR
Joint Undertaking under the European Union’s Horizon
2020 research and innovation programme under grant
agreement No 783287. The opinions expressed herein
reflect the authors’ view only. Under no circumstances
shall the SESAR Joint Undertaking be responsible for
any use that may be made of the information contained
herein.

REFERENCES
[1] W. Vigneau, O. Nouvel, M. Manzano-Jurado, C. Sanz, H. Ab-

dulkader, D. Roviras, J. M. Juan, and P. Holsters, “Neural
networks algorithms prototyping to mitigate GNSS multipath
for LEO positioning applications,” in Proceedings of the 19th
International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS 2006), Sep. 2006, pp. 1752–
1762.

[2] P. D. Groves, Z. Jiang, L. Wang, and M. Ziebart, “Intelligent
urban positioning, shadow matching and non-line-of-sight signal
detection,” in 2012 6th ESA Workshop on Satellite Navigation
Technologies (Navitec 2012) European Workshop on GNSS Sig-
nals and Signal Processing, Dec 2012, pp. 1–8.

[3] T. Suzuki, Y. Nakano, and Y. Aman, “NLOS multipath detection
by using machine learning in urban environments,” in 30th
International Technical Meeting of the Satellite Division of the
Institute of Navigation, ION GNSS 2017, vol. 6. Institute of
Navigation, Jan. 2017, pp. 3958–3967.

[4] Q.-H. Phan, S.-L. Tan, I. V. McLoughlin, and D.-L. Vu, “A
unified framework for GPS code and carrier-phase multipath
mitigation using support vector regression,” Adv. Artificial Neural
Systems, vol. 2013, pp. 240 564:1–240 564:14, 2013.

[5] Yujie Zhang and C. Bartone, “Multipath mitigation in the fre-
quency domain,” in PLANS 2004. Position Location and Navi-
gation Symposium (IEEE Cat. No.04CH37556), April 2004, pp.
486–495.

[6] M. Elhabiby, A. El-Ghazouly, and N. El-Sheimy, “A new wavelet-
based multipath mitigation technique,” in Proceedings of the 21st
International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS 2008), vol. 2, Sep. 2008, pp.
625–631.

[7] Y. Zhang and C. Bartone, “Real-time multipath mitigation with
WaveSmoothTM technique using wavelets,” in Proceedings of the

17th International Technical Meeting of the Satellite Division of
The Institute of Navigation (ION GNSS 2004), Sep. 2004, pp.
1181–1194.

[8] P. Y. Hwang, G. A. Mcgraw, and J. R. Bader, “Enhanced
differential GPS carrier-smoothed code processing using dual-
frequency measurements,” Navigation, vol. 46, no. 2, pp.
127–137, jun 1999. [Online]. Available: https://doi.org/10.
1002%2Fj.2161-4296.1999.tb02401.x

[9] P. Misra and P. Enge, Global Positioning System: Signals,
Measurements, and Performance. Ganga-Jamuna Press,
2011. [Online]. Available: https://books.google.fr/books?id=
5WJOywAACAAJ

[10] P. Axelrad, K. M. Larson, and B. A. Jones, “Use of the correct
satellite repeat period to characterize and reduce site-specific
multipath errors,” in Proceedings of the 18th International
Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS 2005), Sep. 2005, pp. 2638–2648.

[11] Z. Jiang and P. D. Groves, “NLOS GPS signal detection using
a dual-polarisation antenna,” GPS Solutions, vol. 18, pp. 15–26,
2012.

[12] C. Cheng, J.-Y. Tourneret, Q. Pan, and V. Calmettes, “Detecting,
estimating and correcting multipath biases affecting GNSS sig-
nals using a marginalized likelihood ratio-based method,” Signal
Processing, vol. 118, Jul. 2015.

[13] L. J. Garin, F. van Diggelen, and J.-M. Rousseau, “Strobe &
edge correlator multipath mitigation for code,” in Proceedings of
the 9th International Technical Meeting of the Satellite Division
of The Institute of Navigation (ION GPS 1996), Sep. 1996, pp.
657–664.

[14] B. Townsend and P. Fenton, “A practical approach to the reduc-
tion of pseudorange multipath errors in a L1 GPS receiver,” in
Proceedings of ION GPS-94, 1994, pp. 143–148.

[15] G. A. Mcgraw and M. S. Braasch, “GNSS multipath mitigation
using gated and high resolution correlator concepts,” in Proceed-
ings of the 1999 National Technical Meeting of The Institute of
Navigation, Jan. 1999, pp. 333–342.

[16] N. Jardak, A. Vervisch-Picois, and N. Samama, “Multipath in-
sensitive delay lock loop in GNSS receivers,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 47, pp. 2590–2609,
2011.

[17] R. D. J. van Nee, J. Siereveld, P. C. Fenton, and B. R. Townsend,
“The multipath estimating delay lock loop: approaching theo-
retical accuracy limits,” in Proceedings of 1994 IEEE Position,
Location and Navigation Symposium - PLANS’94, April 1994,
pp. 246–251.

[18] S. M. F. S. Dardin, V. Calmettes, B. Priot, and J.-Y. Tourneret,
“Design of an adaptive vector-tracking loop for reliable po-
sitioning in harsh environment,” in Proceedings of the 26th
International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS+ 2013), Sep. 2013, pp. 3548–
3559.

[19] A. Willsky and H. Jones, “A generalized likelihood ratio approach
to the detection and estimation of jumps in linear systems,” IEEE
Transactions on Automatic Control, vol. 21, no. 1, pp. 108–112,
February 1976.

[20] F. Gustafsson, “The marginalized likelihood ratio test for detect-
ing abrupt changes,” IEEE Transactions on Automatic Control,
vol. 41, no. 1, pp. 66–78, Jan 1996.

[21] A. Mueller and S. Guido, Machine learning avec Python.
O’Reilly Media, Inc., 2018. [Online]. Available: https://books.
google.fr/books?id=7TBvDwAAQBAJ

[22] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, ser. Springer Series in Statistics. New York,
NY, USA: Springer New York Inc., 2001.

[23] L. Hsu, “GNSS multipath detection using a machine learning
approach,” in 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), Oct 2017, pp. 1–6.



Figure 7: Activation map from the last convolutional layer of the MultipathCNN for the case without multipath in
the tensor with discretization 40× 40 for integration time Ti = 1 ms

Figure 8: Activation map from the last convolutional layer of the MultipathCNN for the case with multipath in the
tensor with discretization 40× 40 for integration time Ti = 1 ms

[24] Y. Quan, L. Lau, G. W. Roberts, X. Meng, and C. Zhang,
“Convolutional neural network based multipath detection method
for static and kinematic GPS high precision positioning,” Remote
Sensing, vol. 10, p. 2052, 2018.

[25] E. Shafiee, M. Mosavi, and M. Moazedi, “Detection of spoofing
attack using machine learning based on multi-layer neural net-
work in single-frequency GPS receivers,” Journal of Navigation,
vol. 71, pp. 1–20, 08 2017.

[26] T. Su and H.-W. Chang, “Computer vision combined with convo-
lutional neural network aid GNSS/INS integration for misalign-
ment estimation of portable navigation,” in 30th International
Technical Meeting of the Satellite Division of the Institute of
Navigation, ION GNSS 2017, vol. 1. United States: Institute of
Navigation, 1 2017, pp. 611–621.

[27] E. Kaplan and C. Hegarty, Understanding GPS: Principles
and Applications, ser. Artech House mobile communications
series. Artech House, 2005. [Online]. Available: https:
//books.google.fr/books?id=-sPXPuOW7ggC

[28] S. O. Rice, “Envelopes of narrow-band signals,” Proceedings of
the IEEE, vol. 70, no. 7, pp. 692–699, July 1982.

[29] J.-H. Won and T. Pany, Springer Handbook of Global Navigation
Satellite Systems, 1st ed. Springer International Publishing,
2017, ch. Signal Processing, pp. 401–442.

[30] F. Chollet, Deep Learning with Python. Manning, Nov. 2017.
[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.

MIT Press, 2016, book in preparation for MIT Press. [Online].
Available: http://www.deeplearningbook.org

[32] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopa-
padakis, “Deep learning for computer vision: A brief review,”
Computational Intelligence and Neuroscience, vol. 2018, pp. 1–
13, 02 2018.

[33] E. Munin, A. Blais, and N. Couellan, “Convolutional
neural network for multipath detection in GNSS receivers,”
https://github.com/EvgeniiMunin/gnss_signal_generator. [On-
line]. Available: https://github.com/EvgeniiMunin/gnss_signal_
generator

[34] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2014. [Online]. Available: http://arxiv.org/abs/
1409.1556

[35] V. N. Vapnik, Statistical Learning Theory. Wiley-Interscience,
1998.

[36] B. Scholkopf and A. J. Smola, Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond.
Cambridge, MA, USA: MIT Press, 2001.

[37] A. M. Mitelman, R. E. Phelts, D. Akos, S. Pullen, and P. Enge, “A
real-time signal quality monitor for GPS augmentation systems,”
in Proceedings of the 13th International Technical Meeting of
the Satellite Division of The Institute of Navigation (ION GPS
2000), Sep. 2000, pp. 862–871.


