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Abstract

A split-step wavelet method for simulating the long-range wave propagation is introduced. It is based on
the fast wavelet transform. Compared to the split-step Fourier method, this method improves the computation
efficiency while keeping a good accuracy. The propagation is performed iteratively by means of a pre-computed
matrix containing the individual propagations of the wavelets. A fast computation method of this matrix is also
presented. For the radiowave propagation in the low troposphere, a local image method is proposed to account for
an impedance ground. Inhomogeneous atmospheres and irregular grounds are also considered. Finally, numerical
tests of long-range propagations are performed to show the accuracy and time efficiency of this method.

1 Introduction

Modeling of the long-range wave propagation is a major issue for numerous applications. The parabolic equation
method (PE), introduced by Feit and Fock [1], is considered as one of the most reliable numerical method. It is based
on an approximation of the wave equation valid along a paraxial direction and neglecting backward propagation.
This method has been widely studied to model the propagation of acoustic waves under the sea, electromagnetic
waves in the low atmosphere, or to solve the Schrödinger equation, e.g., [2, 3, 4, 5, 6].

The two mostly-used methods for applying PE are based on either finite-differences (FD) [7] or the split-step
Fourier method (SSF) [8]. The FD has the advantage of a straightforward implementation of complex boundary
conditions. SSF is more numerically efficient because it permits larger grid increments. Consequently, SSF is widely
used for long-range wave propagation. The computation is done marching on in distances. At each step, the wave is
transformed from the spatial domain to the spectral domain by means of a fast Fourier transform (FFT) along the
vertical coordinate.

For electromagnetic propagation in the low troposphere, refractivity, ground boundary condition, and irregular
relief can be considered in SSF. The phase-screens method is applied to take into account refractivity in the spatial
domain [7]. The discrete mixed Fourier transform [9] includes the reflection over an impedance ground in the spectral
transform. Finally, the relief can be considered by different algorithms [7, 10, 11, 12].

Propagation methods in 3D have also been developed with FD and SSF for underwater acoustics [13, 14, 15, 16].
These 3D methods model the lateral couplings. For electromagnetic propagation, 3D extensions of SSF have also
been developed [17, 18, 19]. The 3D method has a high accuracy and the capability to model lateral effects. However,
if a large computation domain is considered, the computation burden in time and memory becomes the main concern.

Lately, Zhou et al. have developed the discrete SSF method (DSSF) in both 2D [20, 21] and 3D [22, 21]. This
improvement of SSF brings self-consistency as defined by [23, 24]. Therefore numerical spurious solutions due to the
a-posteriori discretization are avoided. The 2D DSSF is used as the reference in this paper.

Gabor bases/frames [25, 26] decompositions have also been proposed for propagation modeling. They have been
combined with analytic formulations of the beam propagation. Gabor-based beam algorithms and frame-based beam
summation methods are utilized in various applications involving radiation and scattering in complex environments
[26, 27, 28, 29].

Wavelets are widely used for signal processing, numerical analysis and data compression [30]. As a Gabor atom, a
wavelet is a short length oscillation function that has a space-frequency localization property. In the past twenty years,
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several applications of wavelets in the wave propagation domain have been studied. Wavelets applied to integral
equations [31, 32] and time-domain methods [33, 34, 35, 32] have been proposed to improve their computational
efficiency. In integral equations in electromagnetics, wavelets are notably used to transform a full-matrix linear
system into a sparse one. This latter can be solved efficiently by means of Krylov iterative techniques. However, for
simulating the long-range propagation, large computer resources and computation time are still required. Efforts to
used wavelets for solving PE [36, 37] have yielded a method as accurate as SSF. However, the computation complexity
is the same as SSF since Fourier transforms are used.

In this paper, the split-step wavelet (SSW) method is proposed and applied to electromagnetic waves propagation
in the low troposphere. Compared to DSSF, the major difference is that the fast wavelet transform (FWT) [38, 30]
is used in place of the FFT, our main purpose being to reduce the computation time. This method is based on a
wavelet transform with respect to the vertical coordinate, which has a lower complexity than FFT. Moreover, after
a compression step, the wavelet decomposition efficiently yields a sparse representation of a signal. The propagation
is performed by a linear combination of the wavelets individually propagated, these individual propagations being
stored in a pre-computed matrix. An efficient method for filling the propagation matrix is presented. The atmosphere
and relief are accounted in the space domain. In addition, for considering an impedance ground, a local image method
is proposed. This method reduces the computational complexity compared to the classical image method.

The article is organized as follows. In section 2, the configuration of the problem is presented. In section 3, the
discrete wavelet transform (DWT) and FWT methods for decomposition and compression are briefly introduced.
The choice of the wavelet basis is discussed and an example of wavelet transform and compression is presented. In
section 4, the proposed SSW method is comprehensively introduced. Domain truncation, ground condition, irregular
atmosphere, and relief are also considered. Then, the computational complexities of SSW and DSSF are compared.
Section 5 is devoted to numerical tests demonstrating the accuracy and computational efficiency of SSW.

2 Configuration and discretization

In this work, we assume an ejωt time-dependence of the fields, where ω is the angular frequency. The aim is to
simulate the propagation in a vertical plane (x, z) with y the direction of invariance. The source is located at x < 0
and the field u(x, z) is known at x = 0. The propagation is computed in the region x > 0, z ≥ 0. Any field can be
decomposed in a transverse electric (TE) and a transverse magnetic (TM) components with respect to z. For the
sake of simplicity, only the TE component is presented. The study of the TM component would be similar.

For numerical reasons, the computation domain is discretized and of finite size. The vertical domain is limited
to z ∈ [0, zmax[ and the range is limited to x ∈ [0, xmax[. The discretization steps are ∆x and ∆z. The number of
points along the 2 directions are Nz = zmax/∆z and Nx = xmax/∆x. The following uniform grid is used:

x = px∆x for px = {0, . . . , Nx − 1},
z = pz∆z for pz = {0, . . . , Nz − 1}.

(1)

Finally, u[pz] denotes u(pz∆z). In the following parts, calculations are performed in this discrete domain.

3 Introduction to the discrete wavelet transform

In this section, DWT and FWT are briefly introduced. These methods are thoroughly described by Mallat [30]. The
choice of the wavelet basis for electromagnetic propagation is justified. Furthermore, a data compression criterion is
introduced. Finally, decomposition and compression are applied on an example.

3.1 Discrete wavelet transform

The DWT leads to a representation of a discrete function as a linear combination of elementary functions. They are
obtained by dilations and translations of a scaling function φ and a wavelet function ψ [39]. For a scale l ∈ Z and a
spatial index p ∈ Z, the scaling and wavelet functions are

φl,p[pz] = 2−l/2φ[2−lpz − p] and ψl,p[pz] = 2−l/2ψ[2−lpz − p], (2)

respectively.
As proven by Mallat [39], for any L ∈ Z, (φL,p)p∈Z and (ψl,p)p∈Z,l∈[1,L] form an orthonormal basis of the space of

the finite-energy discrete functions. A discrete function u can thus be represented as the sum of an approximation
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component associated with the scaling function and multiresolution detail components associated with the dilated
wavelets functions. The L-level multiresolution representation is given by

u[pz] =
∑
p∈Z

aL[p]φL,p[pz] +

L∑
l=1

∑
p∈Z

dl[p]ψl,p[pz], (3)

where aL[p] and dl[p] are the approximation and detail coefficients, respectively.
Due to the finite size of the domain along z, for each level l, the p-indices are limited to [0, Np(l) − 1] with

Np(l) = Nz/2
l. The total number of coefficients is Nz. For the sake of clarity, in the following, the coefficients are

represented by a vector U of dimension Nz. The double index (l, p) is used to represent the elements of U , such that

U(l,p) =

{
aL[p] for l = 0, p ∈ [0, Np(L)− 1],

dl[p] for l ∈ [1, L], p ∈ [0, Np(l)− 1].
(4)

Besides, for the sake of conciseness, scaling functions and wavelets are both designated as wavelets hereafter. Thus,
the representation is expressed by

u[pz] =

L∑
l=0

∑
p

U(l,p)χl,p[pz], (5)

with

χl,p[pz] =

{
φL,p[pz] for l = 0,

ψl,p[pz] for l ∈ [1, L].
(6)

Because of the orthogonality of the basis, these coefficients can be calculated as the inner products of u and the basis
elements.

However, to calculate these coefficients in practice, the FWT has been developed by Mallat [39]. This operation
has a O(Nz) complexity [39], to be compared to the complexity of FFT in O(Nz log2(Nz)) [40]. The inverse FWT,
which is based on the same principle as the FWT, presents the same complexity.

Finally, a data compression is applied on the wavelet representation of the signal, taking advantage of the
orthonormality of the basis. By forcing to 0 the coefficients that are weaker than a threshold Vs, a regular signal can
be approximated by a sparse set of coefficients within a chosen accuracy. After compression, the number of non-zero
coefficients is usually much smaller than the original size of the signal Nz. The vector U obtained after compression,
denoted as Ũ , is a sparse vector with a maximal root mean square error (RMSE) of 20 log Vs.

Note that the choice of the wavelet basis is important for the efficiency of the method. We choose the wavelet
family ”symlets” of order 6. These wavelets can be used for FWT. Furthermore, they have a compact support, a
good regularity, and are almost symmetric [30]. Therefore, they are good candidates for the SSW algorithm.

3.2 Wavelet decomposition and compression of an electromagnetic field

An example of FWT and compression applied to a field is shown in this section. A 2D complex source point (CSP)
[41] with a frequency f0 = 300 MHz is considered at xs = (xw0+jkW 2

0 /2), ys = 0 m, zs = 1000 m, with xw0 = −50 m
and W0 = 5 m. This field is sampled on Nz = 2048 points with ∆z = 1 m. Its amplitude is plotted in Figure 1 in
blue.

The compression rate (CR) is defined as

CR =
Number of zeros

Total number of coefficients
. (7)

For L = 3, Vs = 10−3, the comparison of the coefficients before and after compression is shown in Figure 2. The
number of non-zero compressed coefficients is 22, which is much smaller than Nz. Furthermore, we see that the
detail coefficients at level 1 are all set to zero. The signal is only represented by the coefficients of level 2 and 3. The
signal is automatically described by the wavelets at appropriate dilations.

The signal reconstructed from the wavelet coefficients is given in Figure 1. The RMSE between the two signals
(original and reconstructed from the wavelets after compression) is −61.6 dB.

The next section presents how to efficiently propagate this sparse field representation in complex environments.
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Figure 1: Amplitude of the signal radiated by the CSP.

Figure 2: Coefficients of the wavelet decomposition: non-zero coefficients are in red, null coefficients in blue.
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4 Split-step wavelet method

Based on the wavelet transform and compression introduced in the previous sections, the SSW method is derived in
the present section. The overview of the method is exposed. Then, specific points are addressed: the construction of
the propagation matrix, the apodisation, the local image method, the accounting of the relief and atmosphere, and
the computational complexity.

4.1 Overview of the split-step wavelet method

SSW is performed going back and forth from a spatial to a wavelet representation of the wave so as to model the
propagation iteratively at increasing distances. The field is supposed to be known at x = 0. Then, the propagation
from x to x+ ∆x, with x = px∆x, is simulated step by step as follows:

1. The field u(x, z) is represented as a sparse wavelet vector Ũ(x) after applying FWT (denoted as W ) and a
compression with threshold Vs (denoted as C) as introduced in Section III.D, such that

Ũ(x) = CWu(x, z). (8)

2. The free-space propagation step is considered in the wavelet domain. The coefficients vector Ufs(x+ ∆x) after
free-space propagation on a distance ∆x is given by

Ufs(x+ ∆x) = MŨ(x), (9)

where M is the pre-computed free-space propagation matrix, detailed in section 4.2, that models the wavelet-
to-wavelet propagations. This matrix is compressed with a threshold VM . The elements of M , i.e. M(l,p),(l′,p′),
satisfy

Ufs(l,p)(x+ ∆x) =
∑
l′,p′

M(l,p),(l′,p′)Ũ(l′,p′)(x). (10)

3. The field ufs(x + ∆x, z) propagated in free space is recomposed by an inverse FWT (denoted as W−1) from
the propagated wavelets.

ufs(x+ ∆x, z) = W−1Ufs(x+ ∆x). (11)

4. Apodization, atmosphere, and relief can be applied in the spatial domain as in the classical SSF algorithm [9],
here represented by the operator D.

As a conclusion, the propagation from x to x+ ∆x is simulated step by step as

u(x+ ∆x, z) = DW−1MCWu(x, z). (12)

4.2 Pre-computation of the free-space propagation matrix

In this section, we present the pre-computation of the matrix M . We take into account the translation and dilation
properties of the wavelet basis so as to reduce its computation cost. The aim is to obtain M(l,p)(l′,p′) for all l, l′, p,
and p′. The indices l′ and l correspond to the wavelet levels before and after propagation, respectively. The indices
p′ and p correspond to the positions along the vertical axis before and after propagation, respectively.

The computation of the matrix comprises two steps:

• Wavelet propagation on a distance ∆x: For the first step, only one wavelet χl′,0 on level l′ is considered. It
is then propagated on ∆x using DSSF. (Any other propagation method can be used here.) As illustrated
in Figure 3, for any p′, the propagated wavelets χl′,p′(∆x, z) can be deduced from χl′,0(∆x, z) by means of
translations of p′.

• Calculation of the matrix coefficients: The coefficients M(l,p)(l′,0) are obtained by inverse FWT and compression.
The other ones exploit the translation properties of M given here.

For l = l′, the number of wavelets on the levels l and l′ are the same, so a translation of 1 on p′ results in a
translation of 1 on p. Thus, M satisfies

M(l,p+1)(l′,p′+1) = M(l,p)(l′,p′) for l = l′. (13)
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Figure 3: Wavelets at level l′ propagated on ∆x on positions 0 and p′.

Secondly, for l = l′ + 1, they are twice as many wavelets on level l′ than on level l. Thus, a translation of 2 on
p′ results in a translation of 1 on p. Thus, we have

M(l,p+1)(l′,p′+2) = M(l,p)(l′,p′) for l = l′ + 1. (14)

Finally, for l = l′− 1, they are half as many wavelets on level l′ than on level l. In other words, a translation of
1 on p′ results in a translation of 2 on p. All the even coefficients p are obtained this way. The odd coefficients
are obtained from translations of the inverse FWT of χl′,1. (An additional inverse FWT is required.)

The rule can be generalised for any l and l′ by

if l ≤ l′, M(l,p+2l′−l)(l′,p′+1) = M(l,p)(l′,p′), (15)

if l > l′, M(l,p+1)(l′,p′+2l−l′ ) = M(l,p)(l′,p′). (16)

These properties are used to efficiently fill the matrix M . The complete procedure is given in algorithm 1.

Algorithm 1 Creation of the propagation matrix M .

Input: Maximum level of decomposition L, wavelet type
for l′ ∈ [1, L] do

χl′,0(0, z) ← inverse FWT on the wavelet coefficient (l′, 0) set to 1, others set to 0.
χl′,0(∆x, z) ← propagation of χl′,0(0, z) on ∆x by DSSF.
M(l,p)(l′,0) ← FWT and compression applied to χl′,0(∆x, z).
for l ∈ [1, L] do

if l ≤ l′ then
for ql ∈ [0, Np(l)] do

M(l,p)(l′,ql) ← duplication and translation of M(l,p)(l′,0) following (15).

if l > l′ then
for q ∈ [0, 2l−l

′
[ do

χl′,ql(∆x, z) ← translation of χl′,0(∆x, 0) on q coefficients.
M(l,p)(l′,q) ← FWT and compression applied to χl′,q(∆x, z).

for ql ∈ [0, Np(l)] and ql = q mod (2l−l
′
) do

M(l,p)(l′,ql) ← duplication and translation of M(l,p)(l′,q) following (16).

return M

The cases l = 0 and l′ = 0 corresponding to the scaling functions have not been included for the sake on
conciseness. They must be treated as additional levels L in both loops. The threshold used for the compressions
during the creation of the matrix M is denoted as VM .

Finally, only L+ 1 DSSF propagations and 2L FWT are necessary to calculate the entire matrix M .

4.3 Domain truncation

In order to remove spurious reflections over the top boundary and reduce the amount of computation, many methods
could be used such as apodization layers, perfectly matched layers, or non-local boundary conditions. In this paper,
we use an apodization layer. A Hanning window [7] is applied to the field at the upper half part.
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Figure 4: Local perfect electric conductor ground condition for SSW.

4.4 Ground boundary condition: the local image method

In DSSF, if an impedance condition is applied at the ground boundary, the Fourier transform is replaced by the
discrete mixed Fourier transform [9]. We cannot reproduce this strategy here because the wavelet transform is used.

To consider a perfectly conducting or an impedance ground in SSW, we introduce a local image algorithm. The
key idea is to add the symmetric field affected by its reflection coefficient in a thin image layer under the ground
level. This field is reset at each propagation step. The local image algorithm is illustrated in Figure 4. The method
follows these three steps:

1. At range index px, we know the field u described on Nz points. Then it is extended to ut by adding a local
image layer under u on Ni points. The choice of Ni is discussed later. In this layer, the field is the image of
the upper part. The whole field ut is defined by

ut[px, pz] =


u[px, pz] for pz ∈ [1, Nz − 1],

(1 + Γ)u[px, 0] for pz = 0,

Γu[px,−pz] for pz ∈ [−Ni,−1],

(17)

with Γ the Fresnel coefficient of the impedance ground, considered as constant at each step. Note here, the
ground wave is not considered in this method. Besides, in the case of a PEC ground, Γ = −1.

2. ut is propagated in free space from x to x+ ∆x by using the SSW propagation strategy.

3. The propagated field up[px + 1, pz] is obtained as

up[px + 1, pz] = ut[px + 1, pz], for pz ∈ [0, Nz − 1]. (18)

The previous algorithm is repeated at each step. As only the image of the field in the close vicinity of the ground
is used, we call this algorithm the local image method.

At the bottom of the image layer, no apodization is applied. Therefore, an error appears at the bottom of the
domain due to the boundary. However, Ni is chosen so that this error does not reach the domain of interest (i.e.,
pz ≥ 0). At each step, the field in the image layer is updated using (17). Thus, the error in the image layer is cleared
up at each step and never reaches the domain pz ≥ 0.

Ni is chosen large enough so that the spurious reflections at the bottom of the image domain do not reach the
domain pz ≥ 0 after one computation step. If only propagated waves are accounted (∆z > λ/2), the chosen criterion
is the maximum width of the wavelets after propagation on ∆x. As the widening of one wavelet on one step ∆x is
much smaller than the total computation domain, Ni � Nz. This makes the local image method computationally
efficient.
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Table 1: Computational complexity of SSW and DSSF on one step ∆x.

SSW DSSF
wavelet dec. / DFT O (Nz) O(Nz logNz)

propagation O(Ne) O(Nz)
wavelet rec. / IDFT O (Nz) O(Nz logNz)

4.5 Atmosphere and relief

To consider a slowly varying atmosphere, the phase screen method [9] is applied to the field. Irregular relief is
considered by using a staircase model [7] exactly as for SSF. More precise algorithms [10, 11, 12] could also be
applied.

4.6 Complexity comparison

Compared to the classical DSSF method, the Fourier transform is replaced by the wavelet decomposition and recom-
position. At each range step, the complexity of FFT is O(Nz logNz), and the complexity of FWT is O(Nz +Ni) ≈
O(Nz) because in practice Ni � Nz.

The computation complexity of the propagation step in DSSF is O(Nz). The propagation in SSW follows (9).
Since M and Ũ are sparse. The effective multiplication cost Ne is

Ne =
∑

(l,p)∈Inz(Ũ)

Nnz

(
M(l,p),(l′,p′)

)
≤ max

(l,p)

(
Nnz

(
M(l,p),(l′,p′)

))
︸ ︷︷ ︸

NM

Nnz(Ũ)︸ ︷︷ ︸
Ns

, (19)

where Inz and Nnz give the indices and the number of non-zero coefficients in a vector, respectively. NM is the
maximum number of non-zero coefficients in one column of M . Ns is the number of non-zero coefficients in Ũ . The
complexity of this step in SSW is O(Ne) with Ne ≤ NMNs. In practice, NM and Ns are much smaller than Nz due
to the high compression rate of the wavelet decomposition. The larger the signal and matrix thresholds Vs and VM ,
the smaller NM and Ns.

The comparison of the computational complexities of SSW and DSSF is given in Table 1. With a high CR,
SSW is faster than DSSF. As the complexities of the algorithms are linear with Nx, the total complexities are
obtained by multiplying by Nx. Note here, for the creation of the propagation matrix M , the complexity of the
DSSF propagations is O(LNz logNz), and the complexity of the wavelet decompositions is O(2LNz). They are also
negligible for large values of Nx.

5 Numerical tests

In this section, several numerical tests are performed to validate the SSW method. A propagation without reflection
validates the matrix propagation strategy. Then a simulation with a ground reflection validates the local image
method. Finally, a complex case with varying atmosphere and relief is presented. A parametric study to discuss the
computation time on this scenario concludes this section. All the simulations are performed on a 1.8 GHz core i7
CPU.

5.1 Propagation without reflection

The propagation of a CSP without gound reflection is studied. The aim is to test the accuracy of SSW with different
threshold values. The accuracy of SSW is given by comparison to DSSF.

The parameters of the CSP are: frequency f = 300 MHz, xs = xw0 + jkW 2
0 /2, ys = 0 m, zs = 2000 m, with

xw0 = −50 m and W0 = 5 m. The computation grid is xmax = 1 km, ∆x = 10 m, zmax = 4096 m, and ∆z = 1 m.
Thus, Nx = 100 and Nz = 4096. The chosen wavelets are symlets 6, with the maximum level L = 3.

In order to test the compression thresholds on the matrix M and on the signal, three cases are considered: no
compression (VM = Vs = 0), only matrix compression (VM = 2 × 10−3 and Vs = 0), and only signal compression
(VM = 0 and Vs = 2× 10−3).
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(a) Normalised electric fields (dB) at the maximum
range obtained by DSSF (doted line) and SSW (full
lines) with different compressions.

(b) Differences of SSW to DSSF for matrix and signal
compressions.

(c) RMS difference (dB) of SSW fields with DSSF
at each step in range.

Figure 5: Propagation of a CSP in free-space.

For all cases, the fields at the maximum range and the differences to DSSF are plotted with respect to altitude in
Figure 5a and Figure 5b, respectively. The fields at the maximum range show a very good agreement. The differences
with DSSF are only due to the compression. Without compression, the RMS difference of SSW to DSSF (not visible
on Figure 5b) is −165.4 dB.

The evaluation of the RMS difference normalised at each step in range is plotted in Figure 5c in logarithmic scale.
For VM 6= 0 and Vs = 0 (green line), the error accumulates in range. The error yielded by the compression on M
is of order of VMNx (red dashed line). In the cases VM = 0 and Vs 6= 0 (black line), the error increases in range.
However, it is much lower than VsNx (about −23 dB smaller at the maximum range). A least squares fit yields to
an error proportional to VsN

α
x , with α ≈ 0.3. Consequently, Vs can be chosen much larger than VM in practice.

Note that this specific value for α only stands for simple scenarios, when no ground is accounted. Many simulations
with different configurations have led to a coefficient α always lower than 0.5. Therefore, the error due to the signal
compression is considered of the order of VsN

0.5
x . A demonstration of this empirical result has not been obtained yet.

5.2 Propagation over a planar impedance ground in a homogeneous atmosphere

The aim of this section is to test SSW with the local image method described in Section 4.4 and to confirm the range
dependency of the compression error.

The same source as the previous test is chosen with a height of zs = 30 m. The simulation parameters are
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(a) Normalised electric field (dB) in the vertical plane ob-
tained with SSW.

(b) RMS difference (dB) of SSW fields with DSSF at each step in
range.

Figure 6: Propagation of a CSP with reflections over an impedance ground.

xmax = 100 km, ∆x = 200 m, zmax = 4096 m, and ∆z = 1 m. Thus, Nx = 500 and Nz = 4096. A planar impedance
ground with εr = 20 and σ = 0.02 S/m is considered. A thin image layer Ni = 200 is added to the computation
domain for applying the local image method.

SSW with compressions on both M and the signal is tested. The expected error VE on the field at the final
range corresponds to the sum of both the compressions, such that VE = VMNx + VsN

α
x . The chosen thresholds are

VM = 2×10−5 and Vs = 4.47×10−4 for the errors due to both compressions to be the same, equal to −40 dB. Thus,
the total expected error is of the order of −34.0 dB.

The propagated field along range and altitude is shown in Figure 6a, where the interference pattern due to the
ground reflection is visible. During the simulation, the CR of the propagation matrix is 86.4 % and the average
CR of the signal is 74.2 %. The RMS difference to DSSF on the last vertical is −47.3 dB. This RMS difference is
−13.3 dB better than the expected value.

To explain this difference, the error to DSSF with respect to distance is plotted in Figure 6b with compression
on the matrix only (in green) and with compression on the signal only (in black). For both cases, the expected final
error is −40 dB. When some energy goes out of the computation domain, after 100 iterations corresponding to a
distance of 20 km, the error increase is slower. This may be explained by the fact that some error is removed in the
apodization layer. Thus, the actual error due to compression on the last vertical is usually less than the expected
error VE.

Finally, the computation time of SSW is 3.2 s whereas the DSSF simulation lasts 8.6 s. Therefore, SSW is faster
than DSSF. Besides, the computation time for creating M is 1.2 s. As a conclusion, SSW with an impedance ground
is successfully tested in terms of accuracy and shows its advantage concerning the computation time.

5.3 Long-range propagation over an impedance irregular relief in an inhomogeneous
atmosphere

In this section, we test a long-range propagation over an irregular relief in an inhomogeneous atmosphere.
In the vertical direction, a surface-based duct is considered. It is modelled by a trilinear modified refractivity

profile, as illustrated in Figure 7a. The duct parameters are: M0 = 330 M-units, zb = 100 m, zt = 200 m,
zmax = 4096 m, with gradients c0 = 0.118 M-units/m, c2 = −0.1 M-units/m.

The relief is chosen as 2 small triangular hills of height 100 m and 200 m. The relief is displayed in Figure 7b.
The characteristics of the impedance ground are chosen as εr = 20 and σ = 0.02 S/m.

In this test, the propagation range is xmax = 100 km. The range step is 200 m, giving Nx = 500. We choose the
same compression thresholds VM = 2 × 10−5 and Vs = 4.47 × 10−4. That yields an expected error of the order of
−34.0 dB.

The normalised field propagated using SSW in the vertical plane is shown in Figure 7c. The refractive effects
of the surface-based duct and the reflection over the irregular ground are properly simulated. The fields at the
maximum range and the difference to DSSF are plotted in Figure 7d. The RMSE of the final field of SSW to DSSF
is −42.0 dB, 8 dB below the expected error. Therefore, SSW works well for a long range simulation over an irregular
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(a) Trilinear model of
refractivity.

(b) A relief with 2 small triangular hills of
heights 100 m and 200 m.

(c) Normalised electric field (dB) obtained by SSW. (d) Normalised electric fields (dB) at the maximum range ob-
tained by DSSF and SSW and the difference SSW-DSSF.

Figure 7: Propagation over a planar impedance ground in an inhomogeneous atmosphere and over an irregular relief.

relief in an inhomogeneous atmosphere. As for the previous vase, the computation time is 3.2 s for SSW and is 8.6 s
for DSSF. SSW has a better computation efficiency than DSSF, even on complex scenarios.

5.4 Discussion about the computation time

As stated in Section 4.6, the complexity of SSW depends on the number of vertical points and on the compression
rates applied to both the propagation matrix and the signal at each distance step. In this section, this complexity
is illustrated. We use the simulation setup of Section 5.3. All else being equal, the vertical number of points Nz or
the compression rates are varied.

The chosen values and the corresponding computation times obtained with DSSF and SSW are summarized in
Table 2. If no compression is applied (VM = 0 and Vs = 0), SSW is much slower than DSSF. Indeed, even if the
wavelet transform is faster than the Fourier transform, the propagation step requires a full matrix mutliplication in
the absence of compression.

If smaller compression thresholds are chosen with SSW, some computation time can be saved. Following Section
5.1, the choices VM = 2 × 10−4 and Vs = 4.47 × 10−3 lead to an acceptable expected error of −16 dB. The actual
simulation gives a computation time shortened by a factor of 2 compared with the previous section and a final RMSE
with respect to DSSF of −22.2 dB.

When Nz is greater, the computation time increases less with SSW than with DSSF, which is consistent with the
complexities of Table 1. More optimised codes would certainly match better the theoretical complexities. Finally,
note that the multiplication cost O(Ne) in SSW could still be reduced because the sparse matrix-vector multiplication
we use does not take advantage of the sparsity of the vector yet.
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Table 2: Computation times for varying Nz and compression thresholds.

VM Vs Nz

comp. time
DSSF (s)

comp. time
SSW (s)

0 0 4096 8.6 21.1
2× 10−4 4.47× 10−3 s 4096 8.6 2.0
2× 10−5 4.47× 10−4 s 1024 2.2 0.9
2× 10−5 4.47× 10−4 s 8192 34.6 8.0

6 Conclusion

The split-step wavelet method (SSW) for the simulation of long-range electromagnetic wave propagation has been
introduced. This method is based on the discrete wavelet transform and the discrete electromagnetic theory.

First, the discrete wavelet transform (DWT) and the fast wavelet transform (FWT) methods have been briefly
introduced, and the choice of the wavelet family has been discussed.

Then, the proposed SSW method has been comprehensively introduced. The field is represented as a sparse set
of coefficients after applying FWT and thresholding. It is then propagated in free-space by means of a pre-computed
propagation matrix. The propagated field is recomposed by inverse FWT from the propagated wavelets. Relief,
atmosphere, and apodisation are treated in the same way as in split-step Fourier (SSF) techniques. The total field
is obtained iteratively.

The strategy to efficiently create the pre-computed propagation matrix has been introduced. Finally, to consider
a perfectly conducting or an impedance ground condition, a local image method has been proposed. It is based on
the localisation property of the wavelets and does not significantly increases the computation burden.

The computation complexity of SSW has been compared to the discrete SSF (DSSF). SSW is shown to be more
efficient than DSSF due to the high compression rate of the wavelet decomposition and the low complexity of the
fast wavelet transform.

Finally, numerical tests of wave propagation have been presented to show the accuracy and efficiency of this
method. First, propagation in free-space with different thresholds have been tested and compared. Tests of propa-
gation over an impedance ground with both matrix and signal compressions have been performed. We have shown
that the error due to compression can be anticipated. Finally, a long-range propagation over an irregular relief in an
inhomogeneous atmosphere has been performed. The result of SSW shows a very good match with DSSF, and the
simulation parameters are varied to illustrate the complexity of SSW. In conclusion, SSW works well for a long-range
simulation with reduced computation time.

Even if the choice of the symlets 6 wavelets has been carefully thought, an exhaustive comparison of the wavelets
could lead to a more efficient choice. Moreover, the computation time could be shortened by reducing the size of the
pre-computed data and improving the top boundary condition. A theoretical study to obtain an upper bound of the
compression error is also necessary. Finally, the method will be extended to 3D configurations in future works.
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