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ABSTRACT 

 

Previous investigation on the measurement temporal correlation effect on Probability of Hazardously Misleading Information 

(PHMI) [1] has proposed how to map the operational integrity risk to that for a single sample. However, a well-known assumption 

that the stochastic components of position error and the test statistic are independent was taken to evaluate the actual risk over a 

given time interval. This paper examines the level of cross-correlation present between the estimated states and the fault detection 

statistics for (Advanced) Receiver Autonomous Integrity Monitoring (RAIM) and determines its impact on the PHMI to generalize 

the proposed approach. In this study, we take several experimental and simulation methods. Dual-frequency GPS and Galileo 

measurements were collected and processed to measure the correlation between the position error and monitor test statistic. We also 

evaluate actual integrity risk when they are correlated through using simple satellite geometries and error models as well as those for 

H-ARAIM applications. It was found that the cross-correlation between the position and test domains is present when the 

measurement error inflation model, e.g., commonly used Gaussian overbounding method, is applied to the weighted least-squares 

estimation. Also, the numerical results of the integrity risk evaluation showed that the assumption taken in the previous assessment 

is valid with respect to correlation resulting from sigma inflation even though the additional risk of up to 60% is observed due to the 

correlation effect. 

 

 

INTRODUCTION  

 

Receiver Autonomous Integrity Monitoring (RAIM) was developed in the 1980s as a means to support horizontal guidance for en-

route operations. RAIM is based on two primary functions; fault detection and integrity assessment using protection levels. A third 

function, fault exclusion, may also be used to improve continuity performance [2]. RAIM fault detection methods were developed 

primarily using a snapshot approach, employing measurements from the current epoch alone. The most commonly presented 

techniques are least-squares residuals based [3], parity vector based [4] and solution separation based [5]. In terms of fault detection, 

there is some equivalence between methods as shown in [6]. They may be nominally, if not exhaustively, classified by those which 

employ a single chi-squared test for all fault modes and those which employ individual Gaussian tests for each fault mode [7]. The 

(weighted) norm of the residuals vector may be used in the former manner or alternatively the normalized residuals vector elements 

in the latter [6], [8]. Similarly the norm of the parity vector equates to the residuals norm but also the parity vector may be projected 

on to the characteristic satellite fault lines by taking the inner product and forming scalar Gaussian statistics [6]. Finally, the solution 

separation approach forms Gaussian statistics which were used to test single satellite faults [5] and relate to the parity projections 

[7]. 

 

It should be noted that the validity of Gaussian and Chi-Squared here is subject to the underlying measurement error model and will 

be discussed in greater detail below. In addition to the hypothesis tests for fault detection (and exclusion) RAIM computes a 

protection level to be compared to the alert limit in order to determine if the integrity requirements are met. Two methods are 

commonly used, a slope based approach which maps a minimum detectable bias from the test statistic domain to the position domain 

before applying an additional safety buffer [9], and the solution separation protection level employing the triangle inequality [10]. 

 

Recently, the Advanced Receiver Autonomous Integrity Monitoring (ARAIM) concept has been proposed as a means to guarantee 

Required Navigation Performance (RNP) with 0.1NM bounds and then, to support Localizer Performance with Vertical guidance 

(LPV) down to 200ft with global coverage. ARAIM employs a Multiple Hypothesis Solution Separation (MHSS) approach [11] [12] 

[13]. Recent work on ARAIM has investigated the means to map integrity risk over an operation (exposure time) to the integrity risk 

for a sample at algorithmic level [1]. This work employed the result given in [14], that the stochastic components of the estimated 

state vector and the test metrics are independent. However, it is noted that this only remains valid when the assumed Gaussian 

measurement model exactly characterizes the true errors. In reality a Gaussian overbound is used which as well as employing the 

simple form of the Gaussian, also inflates the standard deviation to ensure a margin of conservatism. This inflation effectively means 

that the weighted least squares solution is sub-optimal and leading to a correlation. 

 

Note that the solution separation protection level does not require independence of the test and state vector since the integrity 

bounding is based on the properties of the single subset position error not on the pair of processes [15]. However, slope based RAIM 

and the assessment performed in [1] to support ARAIM developments with regards to temporal correlation are reliant on this 

relationship. Therefore, this paper addresses the level of correlation between the estimated states and the test statistic that may occur 

due to error model inflation. Four different techniques are used to make this assessment as given in the paper outline below. 



The paper is organized as follows. Firstly, the relevant (A)RAIM fundamentals are presented. The paper then treats some canonical 

examples to confirm the presence of position error to test matric correlation resulting from model inflation and get a handle on the 

magnitude of its impact. Secondly, real data is analyzed to measure the correlation as a result of the real error model inflation using 

the IIT ARAIM prototype. Finally, real geometries are employed with simulated measurement errors employing inflated models in 

order to compare to the real data. 

 

 

AUTONOMOUS INTEGRITY 

 

Linear Model 

 

The paper assumes the following linearized measurement model after resolution of the iterative weighted least squares estimation 

(WLSE): 

 

  𝐳 = 𝐇𝐱 + 𝛆 (1) 

 

where 

 

𝐳 is the observed 𝑛 × 1  linearized measurement vector obtained from ionosphere-free carrier smoothed code and 

subtracted the predicted measurement based on the final estimated solution 

𝑯 is the known 𝑛 × 𝑚 observation matrix representing the satellite-user geometry. It is formed from the Jacobian of the 

non-linear model [3] and is purely a function of  the satellite azimuths and elevations 
𝒙 is the unknown 𝑚 × 1 state vector comprising of east-north-up position states in the local frame and constellation-

receiver clock offset states 
𝜺 is the observed 𝑛 × 1 linearized measurement error vector 

 

The error vector is assumed under Weighted RAIM and ARAIM to be composed of a fault vector component, a nominal bias with 

maximal magnitude and a stochastic (noise) component. 

 

  𝜺 = 𝝁 + 𝒃𝒏𝒐𝒎 + 𝝊 (2) 

where: 

 
𝝁  is the 𝑛 × 1 linearized measurement fault vector 
𝒃𝒏𝒐𝒎  is the measurement error nominal bias vector 
𝝊  is the zero-mean measurement error noise vector 
 
Both 𝝁 and 𝒃𝒏𝒐𝒎 are assumed to be deterministic quantities whilst the noise components are assumed to be conservatively bounded 

by a zero-mean Gaussian. 

 

  𝝊~𝑁(𝟎, 𝚺𝜺) (3) 

where 

 

  𝚺𝜺 = (
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛

2
) (4) 

 

The variances are constructed for the ARAIM as: 

 

  𝜎𝑖
2 = 𝜎𝑈𝑅𝐴,𝑖

2 + 𝜎𝑡𝑟𝑜𝑝𝑜,𝑖
2 + 𝜎𝑢𝑠𝑒𝑟,𝑖

2  (5) 

 

Or for the more realistic accuracy and continuity purposes: 



 

  𝜎𝑖
2 = 𝜎𝑈𝑅𝐸,𝑖

2 + 𝜎𝑡𝑟𝑜𝑝𝑜,𝑖
2 + 𝜎𝑢𝑠𝑒𝑟,𝑖

2  (6) 

 

where typically [16]: 

 
𝜎𝑈𝑅𝐸,𝑖

𝜎𝑈𝑅𝐴,𝑖

≈
2

3
(7) 

 

For the traditional single-frequency based RAIM, an ionospheric overbounding term, 𝜎𝑖𝑜𝑛𝑜, should be considered in addition to error 

variances in Equation (5) to construct the measurement error model. 

 

  𝜎𝑖
2 = 𝜎𝑈𝑅𝐴,𝑖

2 + 𝜎𝑖𝑜𝑛𝑜,𝑖
2 + 𝜎𝑡𝑟𝑜𝑝𝑜,𝑖

2 + 𝜎𝑢𝑠𝑒𝑟,𝑖
2  (8) 

 

Current assumptions regarding the magnitude of the nominal bias under ARAIM are that it is bounded by 75cm while it is set to zero 

under the RAIM. Employing WLSE, the estimated states are obtained as follows: 

 

  𝒙𝟎 = (𝑯𝑇𝑾𝑯)−1𝑯𝑇𝑾𝒛 = 𝑺0𝒛 (9) 

 

where 

 

  𝐖 = 𝚺𝜺
−1 (10) 

 

 

Fault Detection Tests 

 

In this paper, the solution separation and parity tests will be used. The solution separation tests are defined as: 

   

𝑞𝑐𝑖 =
𝜶𝑇𝚫𝒙𝑖

𝜎𝑠𝑠,𝑐𝑖

=
𝜶𝑇(𝑺𝑖 − 𝑺0)𝒛

𝜎𝑠𝑠,𝑐𝑖

(11) 

 

where  

 

𝑺𝑖 = (𝑯𝑇𝑾𝒊𝑯)−1𝑯𝑇𝑾𝒊 
𝜶𝑇   is the coordinate selection vector i.e. [1 …  0] would select the first state vector element 

𝑐 is the index for the coordinate such as East, North and Up direction 
𝜎𝑠𝑠,𝑐𝑖   is the standard deviation of the numerator, the un-normalized test 
 

A threshold for detection is determined using the following relation. 

 

  𝑘 = 𝑄−1(𝑃𝑓𝑎,𝑐𝑖) (12) 

 

where 𝑄 is the right-tail probability of a zero mean unit normal distribution, defined as 

 

 𝑄(𝑘) =
1

√2𝜋
∫ 𝑒−

𝑧2

2 𝑑𝑧
∞

𝑘

 (13) 

 

The parity vector may be used as an equivalent test. 

 

  𝒑 = 𝑷𝒛 (14) 

 

where 



  𝑷 = 𝑼2
𝑇   , 𝑯 = 𝑼𝑫𝑽𝑇 = [𝑼𝟏 𝑼𝟐] [

𝑫1

𝟎
] 𝑽𝑇 = 𝑼𝟏𝑫𝟏𝑽𝑇  (15) 

 

The method of Single Value Decomposition provides an upper triangular matrix 𝑫𝟏𝑽𝑇 and an orthogonal matrix 𝑼. 

 

 𝑞 =
𝒑𝑇𝑷𝑖

‖𝑷𝑖‖
 (16) 

 

where: 

𝑷𝑖  is column relating to a single satellite 

 

 

Independence Under Optimal Model 

 

In reference [14], a normalized linear model is employed, which will be the case when addressing the canonical examples in the later 

section. In this section, the model is assumed to have been pre-normalized such that 

 

  𝒛∗ = 𝑯∗𝒙 + 𝜺∗ (17) 

 

where 

 

𝒛∗ = 𝒘𝟏/𝟐𝒛 is the normalized measurement vector 

𝑯∗ = 𝒘𝟏/𝟐𝑯 is the normalized observation matrix 

𝜺∗ = 𝒘𝟏/𝟐𝜺  is the normalized measurement error vector 

𝒘𝟏/𝟐 = [1/𝜎1 ⋯ 1/𝜎𝑛] 
 

With this transformation in place the error covariance is the identity. 

 

  𝐸[𝜺∗𝜺∗𝑻] = 𝑰𝑛 (18) 

 

The test is then naturally defined to be formed on the basis of a linear combination of the measurements (i.e. residuals vector for the 

LSR method). 

 

  𝒒 = 𝑸𝒛 (19) 

 

Since 𝑸𝒛 is providing a direct observation of the fault vector 𝒇 it is argued that: 

 

  𝑸𝑯 = 𝟎 (20) 

 

which is equivalent to 𝑸 mapping to the null space of 𝑯𝑇 . The correlation between test vector (i.e. parity vector) and the estimated 

state vector is given as: 

 

  𝐸[𝑸𝒛𝒆𝑇] = 𝐸[𝑸𝜺𝜺𝑻𝒔] = 𝑸𝒔 = 𝑸𝑯𝑷𝜶 = 𝟎 (21) 

 

where the property of Equation (20) has been used. However, this is only true if the weights used to populate 𝒘𝟏/𝟐 truly reflect the 

standard deviations of the errors 𝜺. If the errors are non-Gaussian or have truly different standard deviations the above relation is not 

sure to be zero and as is seen below will be non-zero if the scaling of assumed values to reality is not identical for all measurements. 

 

 

Correlation and its Impact 

 

Ultimately, the ratio of the inflated but uncorrelated risk, and the uninflated yet correlated risk, is the key metric of the impact of 

inflation on correlation. 



 

𝑟(𝑘, 𝑙) =
𝑃(𝑒 > 𝑙  &  𝑞 < 𝑘|𝚺𝜺

′, 𝑯, 𝑾 = 𝚺𝜺
−1)

𝑃(𝑒 > 𝑙  &  𝑞 < 𝑘|𝚺𝜺, 𝑯, 𝑾 = 𝚺𝜺
−1)

(22) 

 

Here 𝑒 denotes the position error and 𝑘 and 𝑙 respectively indicate detection threshold and the protection level or alert limit. Note 

that in both the numerator and denominator the same geometry matrix and assumed weighting is employed but the first conditional 

parameter differs, relating to the assumed error performance. Elements of 𝚺𝜺
′ will be no larger than elements of 𝚺𝜺 and as a result of 

inflation may be smaller. This expression 𝑟(𝑘, 𝑙) is a function of the threshold (𝑘) and the protection bound or alert limit (𝑙). With 

Equation (22) in place, the following sections will present methods to determine the level of correlation and the impact on the risk 

ratio. 

 

 

CANONICAL EXAMPLES 

 

In the following examples the linear models are assumed to have been pre-normalized and as such the inflated covariance matrices 

are given by the identity matrix in each case. Uneven variances are treated in the real data and simulated data techniques which 

follows. 

 

Example 1 

 

In this first example, the simplest possible observation matrix is used: 

 

  𝑯 = [
1
1

] (23) 

 

With assumed measurement covariance matrix: 

 

  𝚺𝜺 = (
1 0
0 1

) (24) 

 

The pseudoinverse is then: 

 

  𝑺 = [1/2 1/2] (25) 

 

The parity domain is 1D such that only a single test may be defined using the parity matrix (obtained through Single Value 

Decomposition) as [7]: 

 

  𝑷 = [−1/√2 1/√2] (26) 

 

Note that 𝑷𝑯 = 𝟎 as expected from [14]. The state estimation error and the test are then obtained as: 

 

  𝑒 = 𝑺𝜺 = [1/2 1/2] [
𝜀1

𝜀2
] =

𝜀1+𝜀2

2
 (27) 

 

  𝑞 = 𝑷𝜺 = [−1/√2 1/√2] [
𝜀1

𝜀2
] =

𝜀2−𝜀1

√2
 (28) 

 

We consider the impact of a ranging fault bias which introduces a bias 𝜇𝑞 on 𝑞 and 𝜇𝑒 on 𝑒 and define two normalized variables: 

 

   

𝑧𝑒 =
𝑒 − 𝜇𝑒

𝜎𝑒

(29) 

 



𝑧𝑞 =
𝑞 − 𝜇𝑞

𝜎𝑞

(30) 

 

The standard deviations are obtained as follows: 

 

  𝜎𝑒 = √(𝑯𝑻𝑯)−1 = √𝑺𝑺𝑻 =
1

√2
 (31) 

 

  𝜎𝑞 = √𝑷𝑷𝑻 = 1 (32) 

 

We allow 𝑒, 𝑞, 𝜇𝑒, 𝜇𝑞, 𝜎𝑒 and 𝜎𝑞 to take any values such that 𝑧𝑒 and 𝑧𝑞 lie between -6 and 6. Since it is assumed that 𝑒 and 𝑞 are 

Gaussian variables, the alternative occurs with a negligible probability (< 10−9). The risk ratio given in Equation (22) may then be 

restated as: 

 

𝑟(𝑘, 𝑙) =
𝑃(𝑧𝑞

′ > 𝑘𝑞 & 𝑧𝑒
′ > 𝑘𝑒|𝚺𝜺

′, 𝑯, 𝑾 = 𝚺𝜺
−1)

𝑃(𝑧𝑞 > 𝑘𝑞 & 𝑧𝑒 > 𝑘𝑒|𝚺𝜺, 𝑯, 𝑾 = 𝚺𝜺
−1)

(33) 

 

For two thresholds 𝑘𝑒 and 𝑘𝑞 between -6 and 6, the following quantities are computed. Note that the without loss of generality, the 

reverse inequality condition is used for 𝑞. Results relating to the test being below the threshold are obtained by simply reflecting the 

x-axis of Figure 1 below. 

 

Firstly, the inflated but uncorrelated probability. 

 

  𝑃(𝑧𝑞 > 𝑘𝑞 & 𝑧𝑒 > 𝑘𝑒|𝚺𝜺) = 𝑄(𝑘𝑞)𝑄(𝑘𝑒) (34) 

 

Secondly, the uninflated yet correlated risk. 

 

  𝑃(𝑧𝑞′ > 𝑘𝑞 & 𝑧𝑒 ′ > 𝑘𝑒|𝚺𝜺
′) = 𝑄𝑏𝑖(𝑘𝑞 , 𝑘𝑒; 𝜌) (35) 

 

is the bivariate normalized Gaussian distribution with correlation 𝜌. Note that here, the Gaussian variables 𝑧𝑞′ and 𝑧𝑒′ are normalized 

using the standard deviations 𝜎𝑞′ and 𝜎𝑒′ obtained from the uninflated measurement model with covariance 𝚺𝜺
′. This covariance 

matrix is obtained by inverting the error model inflation process. With inflation factors 𝜶 = [𝛼1 𝛼2], 
 

  𝚺𝜺
′ = 𝚺𝜺 × 𝒅𝒊𝒂𝒈(𝜶)−𝟏 (36) 

 

The correlation factor, as well as the covariances of estimated states and parity matrix are then given as: 

 

  𝚺𝒆′ = 𝑺𝚺𝜺
′𝑺𝑻 

  

  𝚺𝒒′ = 𝑷𝚺𝜺
′𝑷𝑻 

  

  𝚺𝒒𝒆′ = 𝑷𝚺𝜺
′𝑺𝑻 

   (37) 

  𝜎𝑒
′ = √𝚺𝒆

′  
 

  𝜎𝑞
′ = √𝚺𝒒

′  
 

  𝜌 = 𝚺𝒒𝒆
′  

 

Only the relative inflation is relevant, since equal inflation factors simply factor out of the WLSE expressions. In this example 𝛼1 =
1 without loss of generality. With 𝛼2 = 1.5 which relates roughly to the GNSS case of the URA to URE (or SISA to SISE) ratio, the 



correlation 𝜌 is approximately -0.2.  In Figure 1, the computed probabilities in logarithm base ten scale using Equation (34) are 

shown over the 2D range from -6 to 6. 

 

 
Figure 1. log10(P) over (𝑘𝑞 , 𝑘𝑒) ∈ [−6, 6]2 

 

In Figure 2 below the ratio in probabilities is given between expressions (33) and (37). Note that in Figure 2 the ratio does not exceed 

unity, and as such the use of inflated sigmas does lead to an underestimated probability of crossing both thresholds when failing to 

account for the correlation.  

 

 
Figure 2. Risk ratio over (𝑘𝑞 , 𝑘𝑒) ∈ [−6, 6]2 for 𝜎2 inflation of 1.5 

 

However, if  𝛼2 = 4 which represents an extreme case of inflation, where 𝜌 = −0.33, Figure 3 now shows the resulting ratios which 

exceed unity. In this example, α2 of 4 is determined based on the previous observations from [17] where the maximum inflation 

between the minimum overbounding URA and the broadcast URA for the GPS satellite is up to around 4. It is important to note, 

however, that this high ratio is for situations where the probability of occurrence is high (greater than 10−2). Since the validity of 

RAIM and ARAIM protection levels is assessed with the dominant fault modes at probabilities in the range from 10−3 down to 10−8 

it might be argued that this result is of no relevance and the inflation does not introduce additional risk when assuming independence 

between the two variables 𝑞 and 𝑒. 

 



 
Figure 3. Risk ratio over (𝑘𝑞 , 𝑘𝑒) ∈ [−6, 6]2 for 𝜎2 inflation of 4.0 

 

Next, to assess the worst case a method based on convex optimization is used to conclude on a maximum inflation factor of the 

integrity risk as a result of the correlation. Since the uninflated covariance (𝚺𝜺
′ ) is a function of the inflation vector, 𝛂, the worst-case 

inflation can be identified such that the risk ratio is maximized at the corresponding inflation. Thus, we can cast the simple example 

up to an extreme-inflation factor of 4, to the linear inequality constrained optimization problem as follows. 

  

𝑟(𝑘, 𝑙; 𝛼) = max
𝜶

𝑃(𝑧𝑞
′ > 𝑘𝑞  & 𝑧𝑒

′ > 𝑘𝑒|𝚺𝜺
′ (𝜶), 𝑯, 𝑾 = 𝚺𝜺

−1)

𝑃(𝑧𝑞 > 𝑘𝑞 & 𝑧𝑒 > 𝑘𝑒|𝚺𝜺, 𝑯, 𝑾 = 𝚺𝜺
−1)

(38) 

 

  subject to 𝜶 = [1, 𝛼2] where 1 < 𝛼2 ≤ 4 

 

In this case, the same upper bound for α2 in the constraint on the inflation factor is determined for the comparison with the last 

example. 

 

 
Figure 4. Maximum risk ratio over (𝑘𝑞 , 𝑘𝑒) ∈ [−6, 6]2 for the worst case 𝜎2 inflation (left) and example ratio curve over the 

inflation factor from 1.1 to 4. 

 



The left in Figure 4 represents the maximum risk ratio values recomputed when the worst inflation is applied to the risk ratio 

calculation for different combinations of the thresholds, 𝑘𝑞 and 𝑘𝑒. The right figure shows the risk ratio over the inflation factor α2 

from 1.1 to 4 for three different combinations of the thresholds corresponding to the yellow area in the risk ratio space. From the 

right figure, the risk ratio defined as the objective function in the problem is shown to be concave graphically. Also, it is well-known 

that the feasible region derived by the linear inequality constraint is convex. Thus, the global maximizer α2 and the corresponding 

maximum should exist for the given constraint. 

 

As shown in the right figure, the inflation factor of up to 4 is determined for the three most critical cases where the risk ratio is higher 

than one, which is in line with observations from [17] for GPS satellites. On the other hand, we observed that ratio curves for other 

green and blue regions reach their peak at different inflations that are below 4, resulting in higher risk ratio values than the result in 

Figure 3. Thus, the left figure shows that the risk ratio increases in most regions when the worst inflation method is applied. However, 

as described in the previous example, the risk increase due to the error inflation might not affect (A)RAIM applications dramatically, 

even with the worst error inflation. Although a straightforward example was addressed in this paper, continuing research work will 

examine more general cases to determine the most significant increase of risk due to the correlation effect along with the theoretical 

proof of the convexity (or concavity) of the risk ratio over all possible variations of the inflation factor. 

 

 

Example 2 

 

In the second example, the number of measurements is increased to three. 

 

  𝑯 = [
1
1
1

] (39) 

 

With assumed measurement covariance matrix: 

 

  𝚺𝜺 = (
1 0 0
0 1 0
0 0 1

) (40) 

 
The pseudoinverse is then: 

 

  𝑺 = [1/3 1/3 1/3] (41) 

 
The parity domain is now 2D. The parity matrix is [7]: 

 

  𝑷 = √
2

3
[
1 −𝑐𝑜𝑠 (

𝜋

3
) −𝑐𝑜𝑠 (

𝜋

3
)

0 𝑠𝑖𝑛 (
𝜋

3
) −𝑠𝑖𝑛 (

𝜋

3
)

] (42) 

 

Three correlated tests may be defined either using the solution separation derivation or projection onto the columns of 𝑷. 

 

𝑞𝑖 =
𝑷𝑖

𝑇𝑷𝒛

‖𝑷𝑖‖
(43) 

 

where 𝑷𝑖 is the 𝑖𝑡ℎ column of 𝑷. The presence of inflation factors introduces correlation between the position error and test but also 

within the parity domain itself. Figure 5 shows this effect with 𝜶 = [1 1.5 1]. The parity vector covariance is scaled in the 

direction of the un-inflated satellite 2 leading to: 

 

  𝚺𝒒′ = [
0.9074 0.1604
0.1604 0.7222

] (44) 

 



 
Figure 5. Skewed covariance in parity space 

 

Figure 6 and Figure 7 show the risk ratio of Equation (33) over the normalized position error and test metric space for the case of 𝑞2 

(note the measurement with inflated variance) whilst Figure 8 and 9 shows the ratio for the two remaining metrics 𝑞1 and 𝑞3. 

 

 
Figure 6. Risk ratio for 𝑞2 for 𝜎2 inflation of 1.5 (left) and 3.0 (right) 

 
Figure 7. Ratio for 𝑞2 and 𝑞3 for 𝜎2 and 𝜎3 inflation of 1.5 (left) and 3.0 (right) 



 
Figure 8. Risk ratio for 𝑞1 and 𝑞3 for 𝜎2 inflation of 1.5 (left) and 3.0 (right) 

 

 
Figure 9. Ratio for 𝑞1 for 𝜎2 and 𝜎3 inflation of 1.5 (left) and 3.0 (right) 

 

These results show some increase in risk in the central region. However, firstly this inflation is minor and secondly as seen below, is 

not in the critical region where integrity bounding is achieved.  

 

 

CROSS-CORRELATION OBSERVATIONS 

 

Now that the impact of cross-correlation between position and test domains due to the measurement error model different from true 

error characteristic has been discussed through some canonical examples in previous sections, this section addresses some correlation 

observations through real GPS and Galileo measurement collection. We used dual-frequency GPS and Galileo observables from an 

ARAIM prototype designed by the Illinois Institute of Technology [18]. A total of 10 dates from August 08, 2019, to August 18, 

2019, were investigated by assuming ARAIM implementation [15]. The position error and the solution separation test for ARAIM 

are respectively computed, and they are then normalized by the corresponding standard deviation of position error and that of the 

solution separation. The normalized position error, here represented as 𝑃𝐸, can be computed as Equation (45). 

 

𝑃𝐸 =
𝒙𝟎 − 𝒙𝒓𝒆𝒇

𝑺𝟎𝚺𝜺𝑺𝟎
𝑻

(45) 

 



Here the covariance, Σ𝜀, is determined based on measurement noise variance for the continuity purpose in Equation (6). Also, the 

normalized solution separation test statistic is computed based on Equation (11). 

 

 

Figure 10. Distribution of normalized position error and solution separation test statistic under a single GPS satellite (PRN 10) 

fault. Position errors and test statistics are respectively normalized by corresponding standard deviations based on broadcast URA 

values. 

 

 

Figure 11. Normalized position error vs. normalized solution separation test statistic under a single Galileo satellite (PRN 130) 

fault 

 

 

Figure 12. Population of normalized position error and solution separation test statistic under GPS constellation fault mode 



 

Figure 13. Normalized position error vs. normalized solution separation test statistic under Galileo constellation fault mode 

 

Figure 10 and Figure 11 respectively show the population of the normalized position error and normalized solution separation test 

for a single GPS satellite fault and a single Galileo satellite fault for East, North and Up coordinates. Both GPS and Galileo 

measurements are used for the position estimation and test statistic computation, and broadcast URA values are used in the 

normalization. Each color bar indicates the URAs, and those URAs are approximately two meters for GPS satellites and about six 

meters for Galileo satellites in all coordinates. Similarly, distributions of the two normalized quantities for GPS and Galileo 

constellation fault modes are respectively shown in Figure 12 and Figure 13. Also, Table 1 summarizes the Pearson correlation 

coefficient [19] obtained from the scatter plot for each coordinate for the four different fault cases. 

 

Table 1. Correlation coefficients for different four fault hypotheses 

Case Fault mode East North Up 

1 Single GPS fault -0.39 -0.12 -0.07 

2 Single Galileo fault -0.37 -0.34 -0.30 

3 GPS constellation fault +0.59 +0.63 +0.60 

4 Galileo constellation fault -0.58 -0.61 -0.59 

 

In the table, non-zero correlation coefficients are observed for all fault modes examined. As described, since the modeled error 

standard deviations are different from true ones, the correlation between the position error and test statistic can be caused in the 

weighted least squares estimation process. In Figure 10 and the table, a higher correlation is present in the east direction compared 

to the other coordinates in the case of the GPS satellite fault. For the Galileo single satellite fault case (Figure 11 and Case 2 in Table 

1), higher correlation coefficients are observed in all different directions than the GPS satellite fault case. In this case, the normalized 

distributions are tighter due to the higher URA (or SISA) values for Galileo which reduces the sensitivity of the position solution to 

Galileo measurements. This could explain the higher correlation after normalization if the Galileo URAs are overbounding with a 

greater margin. In addition, the strongest correlation effects are observed in the constellation fault mode tests (Figure 12 and 13, and 

Case 3 and 4 in Table 1). The different signs of the correlation between GPS and Galileo constellation faults are likely due to the 

higher Galileo SISA than the GPS URA. This has the result of the position solution being influenced more by the GPS measurements. 

 

 

REALISTIC GEOMETRIES AND GAUSSIAN INFLATION MODELS 

 

In this section, we further investigate the impact of the correlation due to the error model inflation on the integrity evaluation by 

taking into account 24 GPS/Galileo baseline constellation geometries for H-ARAIM applications [16] under which different 

combinations of sigma inflation are assumed. The correlation and risk ratios, defined in Equation (33), have been determined over 

different thresholds, 𝑘𝑒and 𝑘𝑞  (See Section Canonical examples), for each satellite geometry by generating more realistic error 



inflation factors than previous canonical examples. For this purpose, GPS URA of 2.4 m is used for the overbounding error model, 

and URE values for different GPS satellites [17] and Galileo satellites [20] are considered for actual error model. More specifically, 

covariance matrices used in Equation (33) for the evaluation of the risk ratio are determined as follows. The original baseline ARAIM 

algorithm [15] determines the standard deviation of the position error using the error model for integrity purpose (See Equation (5)) 

and that of the solution separation test statistic with the error model for the accuracy and continuity purpose (See Equation (6)). 

However, for the simulation purpose, we use the URA value to compute the standard deviation for test statistic (𝜎𝑆𝑆,𝑈𝑅𝐴) for the 

inflated case, and the corresponding covariance matrix (Σ𝜀) is shown in Equation (46). 

 

  𝚺𝜺 = (
𝜎𝑆𝑆,𝑈𝑅𝐴

2 0

0 𝜎𝑜
2

) (46) 

 

Similarly, we compute the standard deviation for position error (𝜎𝑜,𝑈𝑅𝐸) for the uninflated case by applying actual URE values 

obtained from previous investigations to different types of satellites, and the corresponding covariance matrix (Σ𝜀
′ ) is shown in 

Equation (47). Here the covariance term in the equation is derived using both URA and URE values, and 𝜌𝑐𝑜𝑟𝑟  denotes the correlation 

coefficient. 

 

  𝚺𝜺
′ = (

𝜎𝑠𝑠
2 𝜌𝑐𝑜𝑟𝑟𝜎𝑠𝑠𝜎0,𝑈𝑅𝐸

𝜌𝑐𝑜𝑟𝑟𝜎0,𝑈𝑅𝐸𝜎𝑠𝑠 𝜎𝑜,𝑈𝑅𝐸
2 ) (47) 

 

Next, as performed in previous canonical examples (See Section Canonical examples), the multivariate normal cumulative density 

function with zero mean and covariances given by Equation (34) and (35) is evaluated for a set of 𝑘𝑒 and 𝑘𝑞  thresholds, ranging from 

-6 to 6 in steps of 0.1 units, in order to compute the risk ratio. An example result of the risk ratio for a satellite geometry is shown in 

Figure 14. 

 

 
Figure 14. Risk ratio obtained when GPS and Galileo constellations and actual URA and UREs are applied and the population of 

normalized thresholds 𝑘𝑒 and 𝑘𝑞 simulated for H-ARAIM (red dots) 

 

In this figure, the red dots show the distribution of the normalized thresholds, i.e., 𝑘𝑒 and 𝑘𝑞, that are computed based on 24 GPS 

and 24 Galileo constellations and error models for H-ARAIM applications. H-ARAIM availability simulation for 24 hours was 

carried out with formal parameters outlined in [16] to obtain the set of thresholds. As shown in the canonical examples, the risk ratio 

is less than one for all of the satellite geometries and fault modes generated through the H-ARAIM simulation. For the simulation, 

we used the Stanford Matlab Algorithm Availability Simulation Tool (MAAST) for ARAIM [21] with some modifications. Table 2 

shows some key simulation parameters used in this section. In particular, the yellow circle indicates the Galileo constellation fault 

case, which is the dominant mode because its prior probability is currently set as 10−4 and corresponding all epoch risk estimation 

reaches up to approximately 10−3 from Figure 1. 

 



Table 2 Key parameters for H-ARAIM simulation 

Parameter Description Parameter Description 

Constellation 24 GPS + 24 GAL 𝑏𝑛𝑜𝑚 0.75 m 

𝜎𝑈𝑅𝐸  GPS [17] / GAL [20] 𝜎𝑈𝑅𝐴 2.4 m for GPS / GAL 

Psat 10-5 Pconst GPS: 10-8 / GAL: 10-4 

Mask Angle 5 deg. User grid formation 10 deg. by 10 deg. 

Simulation Time Step 10 mins Simulation Duration 24 hours 

 

Therefore, we also examine how much impact the cross-correlation due to the conservative approximation of error model on the 

actual integrity risk evaluation by comparing the risk ratio distribution based on real GPS and Galileo measurements from the H-

ARAIM prototype (See Section Cross-correlation observations) with the population of the simulated normalized thresholds, i.e., the 

red dots. The comparison is carried out for constellation fault cases. Figure 15 shows the results of the risk ratio obtained based on 

the experimental variance-covariance structure, i.e., variances and correlation coefficients, for the GPS and Galileo constellation 

fault conditions in Section Cross-correlation observations. The left one corresponds to the ratio for the Galileo constellation fault 

condition and the right one for the GPS constellation fault case. The figures show that even though the risk increases by up to 60% 

due to the correlation effect, such increase is only limited to some cases which are not critical for actual ARAIM geometries. Thus, 

the evidence suggests that for the assessment of the temporal correlation effect on integrity risk, the assumption of the independence 

between the position error and the test statistic would be acceptable. 

 

 
Figure 15. Risk ratio obtained based on real GPS and Galileo observables under constellation fault conditions and the distribution 

of normalized thresholds for H-ARAIM (red dots) 

 

 

 

CONCLUSION 

 

In this paper, we have taken a number of approaches to evaluate the level of correlation between the position errors and the fault 

detection statistics for ARAIM and also to determine its impact on the integrity risk. Additional integrity risk was observed: maximum 

10% increase for some canonical examples, up to 40% increase for simulated H-ARAIM geometries and error models, and the 

maximum 60% increase for H-ARAIM prototype observations. However, it appears that the impact of cross-correlation observed is 

only present for high probabilities of missed detection which are not those employed by the previously proposed algorithm assessing 



the number of effective samples in paired process case [1]. We conclude therefore that the assumption taken in that assessment is 

valid with respect to correlation resulting from sigma inflation. 

 

Our findings on the correlation effect might be extended to wider scientific applications such as recent developments in innovation 

monitoring in Kalman Filter [22] where the independence of the position and test statistic domains is often assumed. Correlation can 

also be introduced by using alternative optimized methods for the position solution [23]. Thus, work on the correlation impact in that 

case has been ongoing, where initial tests showed a stronger correlation effect. Further work in this regard is needed.  
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