

Piecewise Polynomial Model of the Aerodynamic Coefficients of the Cumulus One Unmanned Aircraft

Torbjørn Cunis, Anders La Cour-Harbo

▶ To cite this version:

Torbjørn Cunis, Anders La Cour-Harbo. Piecewise Polynomial Model of the Aerodynamic Coefficients of the Cumulus One Unmanned Aircraft. [Technical Report] SkyWatch A/S, Støvring, DK. 2019. hal-02280789

HAL Id: hal-02280789 https://enac.hal.science/hal-02280789

Submitted on 6 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Piecewise Polynomial Model of the Aerodynamic Coefficients of the *Cumulus One* Unmanned Aircraft

Torbjørn Cunis¹ and Anders La Cour-Harbo²

Abstract

This document illustrates a piecewise polynomial model for Cumulus One, based on continuous fluid dynamics simulation, derived using the pwpfit toolbox. The model has been developed in a joint project of Sky-Watch and the University of Aalborg.

Preliminaries

If not stated otherwise, all variables are in SI units. We will refer to the following axis systems of ISO 1151-1: the *body axis system* (x_f, y_f, z_f) aligned with the aircraft's fuselage; the *air-path axis system* (x_a, y_a, z_a) defined by the velocity vector \mathbf{V}_A ; and the *normal earth-fixed axis system* (x_g, y_g, z_g) . The orientation of the body axes with respect to the normal earth-fixed system is given by the attitude angles Φ, Θ, Ψ and to the air-path system by angle of attack α and side-slip β ; the orientation of the air-path axes to the normal earth-fixed system is given by azimuth χ_A , inclination γ_A , and bank-angle μ_A . (Fig. ??.)

(a) Longitudinal axes ($\beta = \mu_A = 0$).

(b) Horizontal axes ($\gamma_{\rm A} = 0$).

Fig. 1: Axis systems with angles and vectors. Projections into the plane are marked by '.

I. Aerodynamic Coefficients

The piece-wise polynomial models of the aerodynamic coefficients are given

$$C_{\odot}(\alpha,\beta,\xi,\eta,\zeta) = \begin{cases} C_{\odot}^{pre}(\alpha,\beta,\dots) & \text{if } \alpha \le \alpha_0, \\ C_{\odot}^{post}(\alpha,\beta,\dots) & \text{else,} \end{cases}$$
(1)

where $C_{\odot} \in \{C_X, C_Y, C_Z, C_l, C_m, C_n\}$ are polynomials in angle of attack, side-slip, and surface deflections; and the boundary is found at

$$\alpha_0 = 17.949^{\circ}.$$
 (2)

The polynomials in low and high angle of attack, C_{\odot}^{pre} , C_{\odot}^{post} , are sums

$$C_{\odot}^{pre} = C_{\odot\alpha}^{pre}(\alpha) + C_{\odot\xi}(\beta,\xi) + C_{\odot\eta}^{pre}(\alpha,\eta) + C_{\odot\zeta}(\beta,\zeta);$$
(3)

$$C_{\odot}^{post} = C_{\odot\alpha}^{post}(\alpha) + C_{\odot\xi}(\beta,\xi) + C_{\odot\eta}^{post}(\alpha,\eta) + C_{\odot\zeta}(\beta,\zeta).$$

$$\tag{4}$$

In the following subsections, we present the polynomial terms obtained using the pwpfit toolbox. Coefficients of absolute value lower than 10^{-2} have been omitted for readability.

¹ONERA – The French Aerospace Lab, Department of Information Processing and Systems, Centre Midi-Pyrénées, Toulouse, 31055, France, e-mail: torbjoern.cunis@onera.fr; and ENAC, Université de Toulouse, Drones Research Group, Toulouse, 31055, France. ²Aalborg University, Department of Electronic Systems, Aalborg East, 9220, Denmark, e-mail: alc@es.aau.dk.

A. Domain of low angle of attack

Polynomials in angle of attack:

$$C_{X\alpha}^{pre} = -2.566 \times 10^{-2} + 5.722 \times 10^{-1} \alpha + 1.496 \alpha^2 - 1.148 \times 10^1 \alpha^3;$$
(5)

$$C_{Y\alpha}^{pre} = 5.402 \times 10^{-2} - 2.345 \times 10^{-1} \alpha - 2.001 \alpha^2 + 7.054 \alpha^3;$$
(6)

$$C_{Z\alpha}^{pre} = -3.475 \times 10^{-1} - 5.467\alpha + 1.853\alpha^2 + 2.663 \times 10^1 \alpha^3;$$
⁽⁷⁾

$$C_{1\alpha}^{pre} = 4.875 \times 10^{-2} - 2.190 \times 10^{-1} \alpha - 2.004 \alpha^2 + 7.146 \alpha^3;$$
(8)

(9)

$$C_{\rm m\alpha}^{pre} = 6.214 \times 10^{-2} - 1.755\alpha - 3.427\alpha^2 + 1.256 \times 10^1\alpha^3;$$

$$C_{n\alpha}^{pre} = 4.748 \times 10^{-2} - 2.097 \times 10^{-1} \alpha - 2.016 \alpha^2 + 7.171 \alpha^3;$$
⁽¹⁰⁾

Polynomials in angle of attack and elevator deflections:

$$C_{X\eta}^{pre} = 4.327 \times 10^{-2} \eta - 4.458 \times 10^{-1} \alpha \eta + 3.370 \times 10^{-1} \alpha^2 \eta - 4.567 \times 10^{-1} \alpha \eta^2 + 7.331 \times 10^{-2} \eta^3;$$
(11)
$$C_{X\eta}^{pre} = 1.822 \times 10^{-2} \pi + 7.484 \times 10^{-2} \alpha \pi - 4.284 \times 10^{-1} \alpha^2 \pi - 4.567 \times 10^{-1} \alpha \eta^2 + 7.331 \times 10^{-2} \eta^3;$$
(11)

$$C_{Y\eta}^{pre} = 1.832 \times 10^{-2} \eta + 7.484 \times 10^{-2} \alpha \eta - 4.384 \times 10^{-1} \alpha^2 \eta;$$

$$C_{Z\pi}^{pre} =$$
(12)

$$C_{Z\eta}^{pre} =$$

$$-2.567 \times 10^{-1} \eta + 3.085 \times 10^{-1} \alpha \eta - 5.105 \times 10^{-2} \eta^2 - 7.394 \times 10^{-1} \alpha^2 \eta + 6.936 \times 10^{-1} \alpha \eta^2 + 1.337 \times 10^{-1} \eta^3;$$
(13)
$$C_{l\eta}^{pre} = 1.699 \times 10^{-2} \eta + 8.936 \times 10^{-2} \alpha \eta - 4.564 \times 10^{-1} \alpha^2 \eta + 1.571 \times 10^{-2} \alpha \eta^2;$$
(14)

$$C_{m\eta}^{pre} = -9.028 \times 10^{-1} \eta + 7.437 \times 10^{-1} \alpha \eta - 4.924 \times 10^{-2} \eta^2 - 8.415 \times 10^{-1} \alpha^2 \eta + 2.210 \alpha \eta^2 + 5.251 \times 10^{-1} \eta^3;$$
(15)

$$C_{n\eta}^{pre} = 1.532 \times 10^{-2} \eta + 8.758 \times 10^{-2} \alpha \eta - 4.513 \times 10^{-1} \alpha^2 \eta + 1.487 \times 10^{-2} \alpha \eta^2.$$
⁽¹⁶⁾

B. Domain of high angle of attack

Polynomials in angle of attack:

$$C_{X\alpha}^{post} = 1.266 \times 10^{-2} - 3.159 \times 10^{-1} \alpha + 3.832 \times 10^{-1} \alpha^2 - 1.226 \times 10^{-1} \alpha^3;$$
(17)

$$C_{Y\alpha}^{post} = -2.297 \times 10^{-2} \alpha^2 + 1.337 \times 10^{-2} \alpha^3; \tag{18}$$

$$C_{Z\alpha}^{post} = -4.179 \times 10^{-1} - 2.345\alpha + 9.586 \times 10^{-1}\alpha^2 - 3.665 \times 10^{-2}\alpha^3;$$
⁽¹⁹⁾

$$C_{l\alpha}^{post} = 2.006 \times 10^{-2} - 8.200 \times 10^{-2} \alpha + 1.012 \times 10^{-1} \alpha^2 - 3.515 \times 10^{-2} \alpha^3;$$
⁽²⁰⁾

$$C_{m\alpha}^{post} = -2.552 \times 10^{-1} - 5.131 \times 10^{-1} \alpha - 2.677 \times 10^{-1} \alpha^2 + 1.332 \times 10^{-1} \alpha^3;$$
⁽²¹⁾

$$C_{n\alpha}^{post} = 1.159 \times 10^{-2} - 3.062 \times 10^{-2} \alpha + 2.727 \times 10^{-2} \alpha^2;$$
(22)

Polynomials in angle of attack and elevator deflections:

$$C_{X\eta}^{post} = -1.342 \times 10^{-2} \eta - 1.663 \times 10^{-1} \alpha \eta - 1.796 \times 10^{-1} \eta^2 + 2.254 \times 10^{-2} \alpha^2 \eta + 9.274 \times 10^{-2} \alpha \eta^2 + 7.331 \times 10^{-2} \eta^3;$$
(23)

$$C_{Z\eta}^{post} = -2.922 \times 10^{-1} \eta + 1.829 \times 10^{-1} \alpha \eta + 1.277 \times 10^{-1} \eta^2 + 2.284 \times 10^{-2} \alpha^2 \eta + 1.229 \times 10^{-1} \alpha \eta^2 + 1.337 \times 10^{-1} \eta^3;$$
(24)

$$C_{m\eta}^{post} = -9.498 \times 10^{-1} \eta + 6.099 \times 10^{-1} \alpha \eta + 5.093 \times 10^{-1} \eta^2 + 6.456 \times 10^{-2} \alpha^2 \eta + 4.264 \times 10^{-1} \alpha \eta^2 + 5.251 \times 10^{-1} \eta^3;$$
(25)

$$C_{Y\eta}^{post}, C_{l\eta}^{post}, C_{n\eta}^{post} \text{ are approximately zero.}$$
(26)

C. Full-envelope polynomials

Polynomials in side-slip and aileron deflections:

$$\begin{split} C_{X\xi} &= \\ 6.557 \times 10^{-2}\beta^{2} + 4.214 \times 10^{-2}\beta\xi - 1.493\xi^{2} + 4.264 \times 10^{-2}\xi^{3} - 1.647 \times 10^{-2}\beta^{4} - 2.321 \times 10^{-2}\beta^{3}\xi + 9.649 \times 10^{-2}\beta^{2}\xi^{2} + 2.859 \times 10^{-2}\beta\xi^{3} + 3.084 \times 10^{1}\xi^{4}, \\ (27) \\ C_{Y\xi} &= \\ -3.697 \times 10^{-1}\beta - 1.570 \times 10^{-1}\xi - 3.231 \times 10^{-2}\beta^{2} - 6.137\xi^{2} + 7.416 \times 10^{-2}\beta^{3} + 1.611 \times 10^{-2}\beta\xi^{2} + 2.214\xi^{3} + 6.487 \times 10^{-1}\beta^{2}\xi^{2} + 5.323 \times 10^{-2}\beta\xi^{3} + 1.456 \times 10^{2}\xi^{4}, \\ (28) \\ C_{Z\xi} &= \\ 3.411 \times 10^{-1}\beta^{2} + 4.141 \times 10^{-1}\beta\xi - 3.717\xi^{2} + 4.234 \times 10^{-2}\xi^{3} - 9.915 \times 10^{-2}\beta^{4} - 1.922 \times 10^{-1}\beta^{3}\xi + 1.945 \times 10^{-1}\beta^{2}\xi^{2} + 9.909 \times 10^{-1}\beta\xi^{3} + 9.856 \times 10^{1}\xi^{4}, \\ (29) \\ C_{I\xi} &= \\ -5.798 \times 10^{-2}\beta - 3.929 \times 10^{-1}\xi - 2.906 \times 10^{-2}\beta^{2} - 5.551\xi^{2} + 1.763 \times 10^{-2}\beta^{3} + 1.722 \times 10^{-1}\beta^{2}\xi + 4.557 \times 10^{-1}\xi^{3} + 5.835 \times 10^{-1}\beta^{2}\xi^{2} + 5.332 \times 10^{-2}\beta\xi^{3} + 1.319 \times 10^{2}\xi^{4}, \\ (30) \\ C_{m\xi} &= \\ -3.978 \times 10^{-2}\beta^{2} + 5.554 \times 10^{-1}\beta\xi - 4.689\xi^{2} + 4.229 \times 10^{-2}\xi^{3} + 2.585 \times 10^{-2}\beta^{4} - 2.309 \times 10^{-1}\beta^{3}\xi + 4.077 \times 10^{-1}\beta^{2}\xi^{2} - 5.068 \times 10^{-1}\beta\xi^{3} + 1.160 \times 10^{2}\xi^{4}, \\ (31) \\ C_{n\xi} &= \\ \end{array}$$

$$3.686 \times 10^{-2}\beta + 1.392 \times 10^{-2}\xi - 2.828 \times 10^{-2}\beta^2 - 5.410\xi^2 - 1.160 \times 10^{-1}\xi^3 + 5.678 \times 10^{-1}\beta^2\xi^2 + 5.334 \times 10^{-2}\beta\xi^3 + 1.286 \times 10^{2}\xi^4.$$
(32)

Polynomials in side-slip and rudder deflections:

$$C_{X\zeta} = -1.031 \times 10^{-2} \beta \zeta - 7.986 \times 10^{-2} \zeta^2 + 1.086 \times 10^{-2} \beta \zeta^3 + 9.739 \times 10^{-2} \zeta^4;$$

$$C_{Y\zeta} =$$
(33)

 $-8.526 \times 10^{-2} \zeta - 2.128 \times 10^{-2} \beta^2 - 3.569 \times 10^{-1} \zeta^2 + 1.049 \times 10^{-2} \beta^2 \zeta + 1.924 \times 10^{-2} \beta \zeta^2 + 7.679 \times 10^{-2} \zeta^3 + 5.663 \times 10^{-2} \beta^2 \zeta^2 + 5.247 \times 10^{-1} \zeta^4;$ (34)

$$C_{Z\zeta} = -2.036 \times 10^{-2} \beta^2 - 1.332 \times 10^{-2} \beta \zeta - 1.743 \times 10^{-1} \zeta^2 + 1.834 \times 10^{-2} \beta^2 \zeta^2 + 3.683 \times 10^{-2} \beta \zeta^3 + 2.631 \times 10^{-1} \zeta^4;$$
(35)

$$C_{l\zeta} = -1.930 \times 10^{-2} \beta^2 - 3.221 \times 10^{-1} \zeta^2 + 5.111 \times 10^{-2} \beta^2 \zeta^2 + 4.735 \times 10^{-1} \zeta^4;$$

$$C_{m\zeta} =$$
(36)

$$-3.231 \times 10^{-2}\beta^{2} - 1.436 \times 10^{-2}\beta\zeta - 2.672 \times 10^{-1}\zeta^{2} + 1.241 \times 10^{-2}\beta^{3}\zeta + 1.472 \times 10^{-2}\beta^{2}\zeta^{2} + 1.051 \times 10^{-2}\beta\zeta^{3} + 4.193 \times 10^{-1}\zeta^{4};$$
(37)
$$C_{n\zeta} = 2.158 \times 10^{-2}\zeta - 1.882 \times 10^{-2}\beta^{2} - 3.137 \times 10^{-1}\zeta^{2} - 1.338 \times 10^{-2}\zeta^{3} + 4.978 \times 10^{-2}\beta^{2}\zeta^{2} + 4.611 \times 10^{-1}\zeta^{4}.$$
(38)

II. Equations of Motion

We have the aerodynamic forces and moments in body axis system

$$\begin{bmatrix} X^{A} \\ Y^{A} \\ Z^{A} \end{bmatrix}_{f} = \frac{1}{2} \rho S V^{2}_{A} \begin{bmatrix} C_{X} \\ C_{Y} \\ C_{Z} \end{bmatrix}; \qquad \begin{bmatrix} L^{A} \\ M^{A} \\ N^{A} \end{bmatrix}_{f} = \frac{1}{2} \rho S V^{2}_{A} \begin{bmatrix} b C_{1} \\ c_{A} C_{m} \\ b C_{n} \end{bmatrix} + \begin{bmatrix} X^{A} \\ Y^{A} \\ Z^{A} \end{bmatrix}_{f} \times \left(\mathbf{x}_{cg} - \mathbf{x}_{cg}^{ref} \right); \qquad (39)$$

and the weight force by rotation into the body axis system

$$X_{\rm g}^{\rm G} = -g\sin\Theta; \tag{40}$$

$$Y_{\rm g}^{\rm G} = -g\sin\Phi\cos\Theta; \tag{41}$$

$$Z_{\rm g}^{\rm G} = -g\cos\Phi\cos\Theta; \tag{42}$$

The resulting forces lead to changes in the velocity vector, in body axis system, by

$$\dot{\mathbf{V}}_{\mathrm{Af}} = \frac{1}{m} \begin{bmatrix} X^{\mathrm{A}} + X^{\mathrm{G}} + X^{\mathrm{F}} \\ Y^{\mathrm{A}} + Y^{\mathrm{G}} \\ Z^{\mathrm{A}} + Z^{\mathrm{G}} \end{bmatrix}_{\mathrm{f}} + \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times \mathbf{V}_{\mathrm{Af}}.$$
(43)

with the thrust $X_{\rm f}^{\rm F} = F$ (engines aligned with the $x_{\rm f}$ -axis). For a symmetric plane $(I_{xy} = I_{yz} = 0)$, the resulting moments in body axis are given as

$$L_{\rm f} = L_{\rm f}^{\rm A} - q \, r \, (I_z - I_y) + p \, q \, I_{zx}; \tag{44}$$

$$M_{\rm f} = M_{\rm f}^{\rm A} - p \, r \left(I_x - I_z \right) - \left(p^2 - r^2 \right) I_{zx}; \tag{45}$$

$$N_{\rm f} = N_{\rm f}^{\rm A} - p \, q \, (I_y - I_x) - q \, r \, I_{zx}; \tag{46}$$

with the inertias I_x, I_y, I_z, I_{zx} . The changes of angular body rates are then given as

$$\dot{p} = \frac{1}{I_x I_z - I_{zx}^2} \left(I_z L_f + I_{zx} N_f \right); \tag{47}$$

$$\dot{q} = \frac{1}{I_y} M_{\rm f};\tag{48}$$

$$\dot{r} = \frac{1}{I_x I_z - I_{zx}^2} \left(I_{zx} L_{\rm f} + I_x N_{\rm f} \right). \tag{49}$$

Here, the normalized body rates have been used with

$$\begin{bmatrix} \hat{p} \\ \hat{q} \\ \hat{r} \end{bmatrix} = \frac{1}{2V_{\mathrm{A}}} \begin{bmatrix} b \ p \\ c_{\mathrm{A}} \ q \\ b \ r \end{bmatrix} \Longleftrightarrow \begin{bmatrix} p \\ q \\ r \end{bmatrix} = 2V_{\mathrm{A}} \begin{bmatrix} b^{-1} \ \hat{p} \\ c_{\mathrm{A}}^{-1} \ \hat{q} \\ b^{-1} \ \hat{r} \end{bmatrix}$$
(50)

and

$$\begin{bmatrix} \dot{\hat{p}} \\ \dot{\hat{q}} \\ \dot{\hat{r}} \end{bmatrix} = \frac{1}{V_{\rm A}} \left(\frac{1}{2} \begin{bmatrix} b \, \dot{p} \\ c_{\rm A} \, \dot{q} \\ b \, \dot{r} \end{bmatrix} - \dot{V}_{\rm A} \begin{bmatrix} \hat{p} \\ \hat{q} \\ \hat{r} \end{bmatrix} \right). \tag{51}$$

The change of attitude is finally obtained by rotation into normal earth-fixed axis system:

$$\Phi = p + q \sin \Phi \tan \Theta + r \cos \Phi \tan \Theta; \tag{52}$$

$$\dot{\Theta} = q\cos\Phi - r\sin\Phi; \tag{53}$$

$$\dot{\Psi} = q\sin\Phi\cos^{-1}\Theta + r\cos\Phi\cos^{-1}\Theta.$$
(54)

III. LONGITUDINAL MODEL

The longitudinal model is restricted to the $x_{\rm a}$ - $z_{\rm a}$ -plane, assuming $\beta = \mu_{\rm A} = \chi_{\rm A} = 0$.

A. Aerodynamic Coefficients

The longitudinal aerodynamic coefficients, $C_{\rm L}, C_{\rm D}, C_{\rm m}$, are obtained as

$$\begin{bmatrix} C_{\rm L} \\ C_{\rm D} \end{bmatrix} = \begin{bmatrix} +\sin\alpha & -\cos\alpha \\ -\cos\alpha & -\sin\alpha \end{bmatrix} \begin{bmatrix} C_{\rm X} \\ C_{\rm Z} \end{bmatrix}.$$
(55)

B. Equations of motion

The longitudinal equations of motion are given as

$$\dot{V}_{\rm A} = \frac{1}{m} \left(T \cos \alpha - \frac{1}{2} \rho S V_{\rm A}^2 C_{\rm D}(\alpha, \eta, q) - mg \sin \gamma_{\rm A} \right), \tag{56}$$

$$\dot{\gamma}_{\rm A} = \frac{1}{mV_{\rm A}} \left(T \sin \alpha + \frac{1}{2} \rho S V_{\rm A}^2 C_{\rm L}(\alpha, \eta, q) - mg \cos \gamma_{\rm A} \right),\tag{57}$$

$$\dot{q} = \frac{1}{I_y} \frac{1}{2} \rho S c_{\rm A} V_{\rm A}^2 C_{\rm m}(\alpha, \eta, q); \qquad (58)$$

$$\dot{\Theta} = q; \tag{59}$$

with

$$\Theta = \alpha + \gamma. \tag{60}$$

Nomenclature

α	=	Angle of attack (rad);
α_0	=	Low-angle of attack boundary (°);
β	=	Side-slip angle (rad);
$\gamma_{ m A}$	=	Flight-path angle relative to air (rad);
ζ	=	Rudder deflection (rad), negative if leading to positive yaw moment;
η	=	Elevator deflection (rad), negative if leading to positive pitch moment;
Θ	=	Pitch angle (rad);
$\mu_{\rm A}$	=	Air-path bank angle (rad);
ξ	=	Aileron deflection (rad), negative if leading to positive roll moment;
Q	=	Air density $(\rho = 1.200 \text{ kg m}^{-3});$
$\chi_{ m A}$	=	Air-path azimuth angle (rad);
Φ	=	Bank angle (rad);
Ψ	=	Azimuth angle (rad);
C_1	=	Aerodynamic coefficient moment body x_f -axis (·);
C_{m}	=	Aerodynamic coefficient moment body y_f -axis (·);
$C_{\rm n}$	=	Aerodynamic coefficient moment body z_f -axis (·);
C_{D}	=	Aerodynamic drag coefficient (·), positive along negative air-path x_a -axis;
$C_{\rm L}$	=	Aerodynamic lift coefficient (·), positive along negative air-path z_a -axis;
$C_{\rm X}$	=	Aerodynamic coefficient force body x_f -axis (·);
$C_{\rm Y}$	=	Aerodynamic coefficient force body y_f -axis (·);
$C_{\rm Z}$	=	Aerodynamic coefficient force body z_f -axis (·);
D	=	Drag force (N), positive along negative air-path x_a -axis;
F	=	Thrust force (N), positive along body x_f -axis;
L	=	Lift force (N), positive along negative air-path z_a -axis;
q	=	Pitch rate $(rad s^{-1})$;
b	=	Reference aerodynamic span $(b = 2.088 \text{ m});$
c_{A}	=	Aerodynamic mean chord ($c_{\rm A} = 2.800 \times 10^{-1} \mathrm{m}$);
g	=	Standard gravitational acceleration $(g \approx 9.810 \mathrm{m s^{-2}});$
m	=	Aircraft mass $(m = 2.619 \times 10^1 \text{ kg});$
p	=	Roll rate $(rad s^{-1});$
r	=	Yaw rate $(rad s^{-1});$
$L_{\rm f}$	=	Roll moment (N m), mathematically positive around $x_{\rm f}$ -axis;
$M_{\rm f}$	=	Pitch moment (N m), mathematically positive around $y_{\rm f}$ -axis;
N_{f}	=	Yaw moment (N m), mathematically positive around $z_{\rm f}$ -axis;
S	=	Wing area $(S = 5.500 \times 10^{-1} \mathrm{m}^2);$
$V_{\rm A}, {f V}_{\rm A}$	=	Aircraft speed and velocity relative to air $(V_{\rm A} = \ \mathbf{V}_{\rm A}\ _2, \mathrm{ms^{-1}});$
$X_{\mathrm{f}}^{\mathrm{A}}$	=	Aerodynamic force along body $x_{\rm f}$ -axis (N);
$X_{\rm f}^{\rm F}$	=	Thrust force along body $x_{\rm f}$ -axis (N);
$Y_{\rm f}^{\rm A}$	=	Aerodynamic force along body y_{f} -axis (N);
$Z_{\rm f}^{\rm A}$	=	Aerodynamic force along body $z_{\rm f}$ -axis (N);
$(\cdot)^{post}$	=	Domain of high angle of attack;
$(\cdot)^{pre}$	=	Domain of low angle of attack;
x_a, y_a, z_a	=	Air-path axis system;
x_f, y_f, z_f	=	Body axis system;
x_g, y_g, z_g	=	Normal earth-fixed axis system;