
HAL Id: hal-02267452
https://enac.hal.science/hal-02267452

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Policy Optimization in Automated Point Merge
Trajectory Planning: An Artificial Intelligence-based

Approach
Man Liang, Weigang Li, Daniel Delahaye, Philippe Notry

To cite this version:
Man Liang, Weigang Li, Daniel Delahaye, Philippe Notry. Policy Optimization in Auto-
mated Point Merge Trajectory Planning: An Artificial Intelligence-based Approach. DASC 2019,
38th AIAA/IEEE Digital Avionics Systems Conference, Sep 2019, San Diego, United States.
�10.1109/DASC43569.2019.9081789�. �hal-02267452�

https://enac.hal.science/hal-02267452
https://hal.archives-ouvertes.fr


Policy Optimization in Automated Point Merge
Trajectory Planning: An Artificial Intelligence-based

Approach
Man Liang

School of Engineering
University of South Australia

Adelaide, Australia
annie.liang@unisa.edu.au

Weigang Li
Translab, Department of Computer Science

University of Brasilia
Brası́lia, Brazil

weigang@unb.br

Daniel Delahaye, Philippe Notry
OPTIM Research Lab

Ecole Nationale de l’Aviation Civile
Toulouse, France

daniel@recherche.enac.fr

Abstract—Air traffic management is a complex decision mak-
ing process. Air traffic controllers decision on aircraft trajectory
control actions directly lead to the efficiency of traffic flow
management. This paper aims to realize an automated routine
trajectory management in terminal manoeuvring area with an
intelligent decision making agent. An artificial intelligence based
approach is applied to adaptively and smartly integrate four
types of deconflict actions for resolving conflicts. Especially, the
reinforcement learning policy optimization process is discussed in
detail. Firstly, application of reinforcement learning in adaptive
trajectory planning is presented. The entire problem is adaptively
divided into several sub-problems. For each sub-problem, an
online policy is applied to guide the simulation and optimization
modules to find out the conflict free and less delay solution.
The online policy is a scale of weight distribution for choosing
desirable actions. It follows the rule of roulette wheel selection
with weighted probability. The highest desirable decision variable
has the largest share of the roulette wheel, while the lowest
desirable decision variable has the smallest share of the roulette
wheel. Direct policy optimization algorithm is designed to update
the online policy. Finally, experiments are built up for validation
of the proposed policy optimization algorithm for the intelligent
decision making process. The results in the test environment
showed that learning agent with different exploration and ex-
ploitation ability will result in different system performance in
conflict resolution and delay.

Index Terms—air traffic management, decision making, artifi-
cial intelligence, reinforcement learning, policy optimization

I. INTRODUCTION

Air traffic congestion is one of the most challenging prob-
lems in current air transportation system. Heavy traffic conges-
tion causes not only economic loss, but also pollution. In order
to enhance capacity, a number of new operational concepts
were proposed. In view of enhancing automation in the tactical
and pre-tactical levels of Air Traffic Management (ATM),
reducing the controllers’ intervention through advanced de-
cision support tools is an important approach. This idea is
not new. Actually, different kinds of traffic advisor have been
developed since the 1990s in the U.S. and Europe, such as the
Center-TRACON Automation System (CTAS) and the Final
Approach Spacing Tool (FAST) [1]–[3]. However, for a long
time, the acceptance of automation by controllers has been a

bottleneck for successful implementation of automation in air
traffic control units [4]. In en-route airspace, the key question
of free flight is whether the airborne self-separation can safely
accommodate the very high traffic demand [5]. ATM is a
complex decision-making process that requires involvement
of multiple stakeholders. Air traffic controllers’ decision on
aircraft trajectory control actions directly lead to the efficiency
of traffic flow management. With the rapid development
in Artificial Intelligent (AI) and Machine Learning (ML)
technologies, the intelligent decision making could play an
important role in realizing a positive capacity enhancement
with better human acceptance of automation. It shapes the
digital transformation of the future ATM system.

Automated Point Merge Trajectory Planning (APMTP) aims
to realize an automated routine trajectory management in Ter-
minal Maneuvering Area (TMA). In terms of the architectural
concept, an intelligent decision-making agent is designed to
work together with two main modules: a simulation mod-
ule and an optimization module. During the implementation
process, an AI-based approach, mainly Reinforcement Learn-
ing (RL) algorithm, is applied to guide the agent adaptively
and smartly integrating four types of deconflict actions, so
as to improve the overall system performance, i.e. solving
conflicts with fewer delay in the environment. It combines
tactical air traffic flow management with automated conflict
detection and resolution. In this paper, we primarily discuss
the policy optimization in APMTP, focusing on improving the
agents’ learning quality and exploration efficiency.

This paper is organized as follows, in Section II, a short
discussion about previous studies on air traffic flow manage-
ment. Then, in Section III, the AI-based methodologies used in
addressing APMTP problem. Especially, the implementation
of intelligent agent in flow managing decision making and
the application of policy optimization analyzed in detail. In
Section IV, experiments with relatively large time scales were
designed for validation of the proposed approach. Simulation
results were discussed. Finally, in Section V, conclusion and
future works were outlined.



II. PREVIOUS STUDY

In the operational reality, for a long time, traffic flow
managers used their experiences to estimate the flow rate.
They give flow regulation to adjacent units based on the
congestion situation in the sector. It is not precise and efficient.
The efficiency of controllers’ conflict detection and resolution
has a direct influence on the traffic flow rate. When facing
the same traffic scenario, a good controller usually provides
better conflict resolution. They could achieve a higher traffic
flow rate without compromising safety. Facing the periodic
traffic characteristics of traffic flow, in the view of intelligent
decision making, those best human controlling cases should
be learned, and the best strategy should be transferable to
sufficiently handle future traffic circumstances. Combining the
tactical flow management with automated conflict resolution
is an interesting topic to investigate.

In tactical Air Traffic Flow Management (ATFM), the traffic
flow rate on a specific route or some significant waypoint
reflects the congestion level of this area. Controllers need
to choose the right conflict resolution action to maintain
an orderly flow in airspace, especially safely and efficiently
merging flows. A good flow management strategy will keep
the traffic flow rate at a reasonable level, so that the maximum
capacity in a specific airspace could be achieved. In view of
application of RL algorithm to ATFM problem, [6] proposed
an agent based adaptive approach to automatically manage
the traffic flow in airspace. Instead of choosing aircraft as an
agent, “fix” or “waypoint” can also be assigned as an agent. All
agents aim to learn the appropriate separation for their location
using a RL algorithm. The agent’s action could speed up or
slow down traffic to manage congestion. It was tested using
a simulation tool FACET (Future ATM Concept Evaluation
Tool). Based on this research, [7] further enriched the RL
reward function by considering the safety factors and fairness
impact. Case studies in Brazil were described to show the
effectiveness and efficiency of the new RL reward functions
in the controller decision process of ATFM.

In fact, Multi-Agent System (MAS) has been used to
address the ATFM problem for a long period. It was found
that the agent selection is a fundamental problem. Aircraft
waypoints could be chosen as agents [6]. If aircraft are selected
as agents, then there will be hundreds of thousands of aircraft
(agents) in the sky on a given day as a result, agent mobility
in the environment would be very high. Massive agents’
communications and negotiations make the MAS hard to be
observed and controlled. The level of automation acceptance
is low. Waypoint based MAS could largely reduce system
complexity, however it is limited to only controlling the traffic
flow rate at a specific waypoint, it cannot handle the traffic flow
between the waypoints, including sequencing aircraft from
different flight levels to assigned altitudes, conflict detection
and resolution of in-route etc. In addition, the learning speed
of the RL applied in ATFM needs to be considered to match
the real-time operational requirement as well. Therefore, in
our APMTP problem, instead of choosing “waypoint (fix)”

Fig. 1. Principle of Reinforcement Learning

as agent, we plan to design only one virtual agent. This
agent aims at applying the reinforcement learning approach
to adaptively choosing the right conflict resolution action by
interacting with the traffic flow environment, resulting in an
optimal traffic flow rate and less delays, a conflict-free flow
management.

III. METHODOLOGIES

A. Application of RL in Adaptive Trajectory Planning
RL is learning what to do, how to map situations St to

actions At, so as to maximize a numerical reward signal Rt,
shown by Fig. 1. The learner (agent) is not told which actions
to take, but must discover which actions yield the most reward
by trying them. In the most interesting and challenging cases,
actions may affect not only the immediate reward but also the
next situation St+1 and, through that, all subsequent rewards
Rt+1 [8]. Beyond the agent and the environment, there are
four main sub-elements of a RL system:
• Policy: a mapping from perceived states of the environ-

ment to actions to be taken on those states.
• Reward signal: the goal of a reinforcement learning

problem. On each time step, the environment sends to
the agent a single number.

• Value function: the total amount of reward an agent can
expect to accumulate over the future, starting from that
state.

• Environment model: it mimics the behavior of the envi-
ronment.

The Markov Decision Process (MDP) is an approach in RL
to take decisions in an environment. Before addressing MDP
to the APMTP problem, some notations need to be mentioned:
• k ∈ {1, 2, ...,K} describes the different steps of sliding

window.
• Sk is a set of states of traffic for the kth sliding window.
• Ak is a set of actions for the kth sliding window.
• Rk is a set of rewards for the kth sliding window.
• n ∈ {1, 2, ..., N} describes the different iterations in one

sliding window.
• (snk )n∈{1,2,...,N} is the process of different states of traffic

in the kth sliding window.
• (ank )n∈{1,2,...,N} is the process of different actions in the
kth sliding window.

• (snk , a
n
k )n∈{1,2,...,N} is the process of state-action pairs in

the kth sliding window. The actions which can be taken
depend on the current policy π.



• (rnk )n∈{1,2,...,N} is the process of different rewards fol-
lowing a triple (state snk , action ank , resulting state sn+1

k ).
As shown in Fig. 2, in the APMTP problem, firstly, we
decompose the entire optimization problem (from TINIT

to TFINAL) into several sub-optimization problems by the
application of sliding window. Then, in the active sliding
window (from Ts(k) to Te(k)), after going through a sequence
of actions and states with a policy π, together with simulation
module (SI) and Optimization module (OP), we arrive at a
terminal state sNk , which is corresponding to the best conflict-
free and less-delay solution for current sub-problem. After
that, we update the policy π, and move the sliding window
forward to next sub-problem. The new policy π is learned by
the intelligent decision making agent (DA). In brief, a finite
MDP for our problem in sliding window k could be described
as following:
• In some state snk ,
• Taking an action ank by following a online policy π,
• The state-action pair (snk , a

n
k ) leads to another following

state sn+1
k |(snk , ank ) by working together with SI and OP

modules,
• The triple (snk , a

n
k , s

n+1
k ) leads to a reward rnk .

The methodology with SI, OP modules and the decision
making agent is shown in Fig. 3. In the SI module, trajectory is
generated with consideration of the route network design and
Base of Aircraft Data (BADA). In the OP module, Simulated
Annealing (SA) algorithm is applied to find the optimized
conflict-free solution for a set of traffic. A decision making
agent is to optimize the delay at airport. The ML-PM route
network helps to achieve a more dynamic and less constrained
position shift in landing queue. The SA algorithm finds out a
global optimal conflict-free solution, removing all potential
conflicts in all the trajectories. The decision making agent
adaptively chooses the right policy π for combining the four
available actions. Note, that this agent aims to find a good
policy by application of RL, so as to achieve a minimum
cumulative delay, or a maximum cumulative reward, at the
airport.

B. Action space

The action space in this problem is a discrete action space.
For example, one arrival aircraft i ∈ Farr is selected. It could
be controlled by four possible types of actions: speed regula-
tion at the entry point of TMA (g), entry time modification at
the entry point of TMA (j), turning time controlling on the
sequencing leg (h), and runway allocation in multiple runways
(w).

ank ∈ Ak, Ak = {g, j, h, w}. (1)

The selected type of action ank is transferred to update the
trajectory of aircraft in the Simulation module. In the Simu-
lation module, the actual trajectory of aircraft i is controlled
by four decision variables: the actual entry time at TMA (tai
), the actual entry Calibrated Airspeed (CAS) at TMA (vai ),
the actual turning time on the sequencing legs (tTi ), and the

actual runway-in-use (xai ). The selected type of action ank is
going to update one of these four decision variables. More in
details, the time tai is adjusted by a type of action ank = j,

tai = tei + j∆|∆=2s, j = −150,−149, ..., 449, 450. (2)

where tei is the Estimated Time of Arrival (ETA) at the entry
point of TMA (pei ). The value range of j depends on the time
constraint [-5 mins, +15 mins].

The speed vai is changed in a discrete way by a type of
action ank = g,

vai = vei (1 + g), g = 0,±1%,±2%, ...,±15%. (3)

where vei is the initial CAS at the entry point pei .
The time tTi is changed in a discrete way by a type of action

ank = h,

tTi = tTimin + h(tTimax − tTimin), h = 0%, 1%, ..., 100%, (4)

where tTimin is the earliest turning time for aircraft i, and tTimax

is the latest turning time.
The runway-in-use xai is defined by a type of action ank = w,

xai = w ∈ {0, 1}. (5)

C. Reward structure

The key issue needs to be addressed is to select the reward
structure for the intelligent decision making agent. In this
paper, the difference system performance is considered as the
reward rnk for this agent on the nth iteration in the kth sliding
window,

rnk = Gn+1
k −Gn

k , (6)

where Gn
k is the system performance on the nth iteration in

the kth sliding window. The system performance evaluation
function is considered as a linear combination of two terms:

Gn
k = −αAn

k − γBn
k , (7)

where An
k is the total conflict penalty and Bn

k is the total delay
penalty. α and γ are two experience-based parameters. Then,
we have:

rnk = Gn+1
k −Gn

k = α(An
k −An+1

k ) + γ(Bn
k −Bn+1

k ). (8)

The total conflict penalty An
k is relative to the sum of total

potential conflicts Cn
k with all the aircraft in the kth sliding

window, and is given by:

An
k = Cn

k . (9)

So we have:

rnk = Gn+1
k −Gn

k = α(Cn
k − Cn+1

k ) + γ(Bn
k −Bn+1

k ). (10)

The difference of the total delay penalty (Bn
k − B

n+1
k ) is

relative to all aircraft Farr. Because in the kth sliding window,
on one SA iteration, we randomly modify the set of aircraft
Farr, thus we have:

Bn+1
k −Bn

k =∑
i∈Farr

Θ
(
tLi (ank )− ETAL

i

) (
tLi (ank )− ETAL

i

)2
, (11)



Fig. 2. Markov Decision Process

Fig. 3. New Methodology with the Decision Making Agent

where ETAL
i is the estimated time of landing of aircraft i, and

tLi is the actual landing time of flight i. They are computed
by the Simulation module and Θ (·) is the step function that
equals 1 when the argument

(
tLi (ank )− ETAL

i

)
is greater

than zero, otherwise it equals 0. In particular, we use the
square deviation of landing time of aircraft i for computing
the difference of the total delay penalty (Bn

k − B
n+1
k ), when

aircraft i has to be late. It will be useful for the SA algorithm
in the Optimization module to consider the fairness between
airlines for sharing the possible delay due to congestion. It is
to avoid single huge delay on one specific aircraft in landing
queue. Finally, we have:

rnk = Gn+1
k −Gn

k = α(Cn
k − Cn+1

k )−
γ
∑

i∈Farr

Θ
(
tLi (ank )− ETAL

i

) (
tLi (ank )− ETAL

i

)2
. (12)

It is found that the reward rnk is both sensitive to the overall

system deconflict performance and the individual aircraft delay
penalty. In another words, different strategy to scaling the
four types of actions will have different effect on the system
deconflict performance and delay penalty performance. In
this case, we would like to have a conflict-free full system
performance, so we define α = 1 for significance of conflict.
The magnitude of total square delay is significantly large
compared with the magnitude of conflict, so we chose average
value of square delay to simplify (12). γ = 0.001 is an
experience based parameter. Note, that choosing the right
conflict resolution action will result in a higher conflict-free
traffic flow rate and less delay.

D. Policy optimization

In the APMTP problem, it is hard to estimate the value
of a (state, action) pair. Without a definite value function, a
direct policy optimization is used in this study case. Thus,
in the sliding windows, we keep running the same online



policy π. This online policy is a scale of weight distribu-
tion for choosing the desirable actions. It follows the rule
of Roulette-wheel selection with weighted probability. The
highest desirable decision variable has the largest share of the
roulette wheel, while the lowest desirable decision variable has
the smallest share of roulette wheel. The default weights are:
[25%, 25%, 25%, 25%]. All the four types of actions have the
same probability to be chosen. However, it may not be always
the optimal policy to find the optimal conflict-free and less-
delay solution. Due to each sliding window, the traffic situation
is different. Then, it is better to only evaluate the advantage
of current policy π at the end of SA iterations in the sliding
window. Due, frequently changing the online policy on each
iteration with reference to the temporal reward may lead to
pay more attentions to the action itself, fail to find out the
overall conflict-free solution together with the PI module.

In addition, balancing the ratio of exploration and exploita-
tion is an important problem in reinforcement learning [9].
The agent can choose to explore its environment and try new
policy in the future, or keep the default policy.

Finally, the direct policy optimization algorithm 1 is de-
scribed as Algorithm 1. It is a deterministic policy optimization
algorithm.

Algorithm 1 Direct policy optimization
for k = 1→ k do

for n = 1→ k do
In some state snk , follow a policy π to randomly

choose the highest desirable action ank ;
Put action ank in SI module, update the trajectories

in environment;
Compute sn+1

k together with OP module;
Compute rnk ;

end for
Compute the frequency of four types of actions for the

lowest temperature in SA iterations;
Update the online policy to π∗ with probability α, keep

the default policy [25%,25%,25%,25%] with probability 1−
α.
end for

IV. EXPERIMENTS AND RESULTS

A. Environment setting up

Taking Beijing Capital International Airport (BCIA) as a
study case, there are four entry points in the South: JB,
BOBAK, VYK and DOGAR, two entry points in the North:
KM and GITUM, see Fig. 4a. The possible manoeuvring area
in this TMA for sequencing and merging dense arrival flows
are very limited.

The set of aircraft (Dataset 1) for simulation representing
the routine traffic data is based on the flight plan at BCIA on
specific day in Dec. 2015. There are 670 flights planned to land
at BCIA in 24 hours, 76.27% of which are “Medium”, 23.58%
of which are “Heavy”. The geographic distribution of traffic
is as follows: 14.03% traffic come from KM, 15.97% from

(a) TMA of BCIA

(b) Hourly coming flights in BCIA TMA

Fig. 4. Test data set-up

JB, 12.24% from BOBAK, 18.66% from VYK, 18.66% from
DOGAR, and 20.45% from GITUM. In total, 57.76% flights
are planned to land on runway 01-19, and 42.24% flights will
land on runway 18L-36R. The hourly distribution of flight data
in 24 hours is shown in Fig. 4b. In this paper, we only focus
on the range of 6:00-7:00 for initial investigation.

Our program is coded in Java. The default values of the
parameters in the RHC-SA algorithm are designed as the same
in Reference [10].

B. Numerical results and discussion

1) Experiment 1, α = 1: In the first experiment, α = 1
means that the agent always accept the new policy. We
compare the average square delay value for each conditions,
see Tab. I. Note that WIND-ON means wind data is put into
SI module for generating trajectory of aircraft. DELAY-ON
means delay factor is put in the OP module neighborhood
function for finding the new aircraft candidate for reducing
potential conflicts, meanwhile it is put in the objective function



TABLE I
AVERAGE SQUARE DELAY [MIN*MIN]

Cases No. arrivals/hour Unsolved Conflicts Average square delay [min*min]
1) WIND-OFF+DELAY-OFF 41 0 148
2) WIND-ON+DELAY-OFF 41 0 175
3) WIND-OFF+DELAY-ON 41 0 8
4) WIND-ON+DELAY-ON 41 0 11
5) POLICY OPTIMIZATION OFF 41 0 167

TABLE II
POLICY (RWY-SPEED-TURNING-SLOT) LEARNING PROCESS

Policy Learning
CASE 1
WIND-OFF
DELAY-OFF

CASE 2
WIND-ON
DELAY-OFF

CASE 3
WIND-OFF
DELAY-ON

CASE 4
WIND-ON
DELAY-ON

Initial setting 25-25-25-25 25-25-25-25 25-25-25-25 25-25-25-25
Update 1 26-28-36-10 23-28-35-14 40-15-20-25 23-47-14-16
Update 2 20-28-40-12 30-28-34-8 33-33-27-7 27-33-27-13
Update 3 29-29-33-9 42-19-32-7 18-48-21-13 33-30-24-13

for minimize total average delay. Case 1) to case 4) are
with policy optimization function ON. Case 5) is with policy
optimization function OFF.

The results show that with DELAY-ON condition, the
proposed system could find less delay conflict-free solutions.
For example, with DELAY-ON, the average square delay with
WIND-OFF in case 3 is 8 and with WIND-ON in case 4 is
11, which improves around 95% delay performance than the
previous two cases with DELAY-OFF condition. In addition,
delay performance is sensitive to wind effect, because the
average square delay in case 2 increases around 18% than
that in case 1, and in case 4 it increases around 38% than that
in case 3. Note that, case 5 is WIND-OFF and DELAY-OFF
with the default setting [25%:25%:25%:25%]. Thus, policy
optimization improves the delay performance.

The policy learning results are shown in Tab. II. It is found
that entry slot time modification is not very desirable to find
less delay conflict-free solutions. In all cases, the weight for
slot time is relatively lower. However, it does not mean that
slot time modification is useless for conflict resolution. The
fact is that the maximum number of potential conflicts is in
the first window and the minimum number of potential conflict
is in the third window. It is found that when the potential
conflict is greater, then more weight is distributed to slot time
modification. Thus, slot time modification is a very useful
deconflict action to handle dense traffic demand. But, when
the potential conflict is less and we don’t consider the delay
performance, such as in update 3 of case 1 and case 2, it
is found that weight distribution to slot time modification is
even less than that of case 3 and case 4. Note, that the average
square delays for case 1 and case 2 are relatively higher than
case 3 and case 4. The reason may be that, the slot time
modification is less desirable in case 1 and case 2, but once it is
selected for deconflict, its modification may be relatively large.
However, in case 3 and case 4, the slot time modification is less
desirable, but once it is selected for deconflict, its modification
has to be relatively small, which leads to less delays.

2) Experiment 2: The second experiment is to analyze the
impact of α with different values. For simplification, here
α = 0, α = 0.5, α = 0.8, α = 1. The traffic sample A
with 29 new arrivals in the first sliding window (3600s) is
compared with the traffic sample B with 13 new arrivals in
the second sliding window (3600s). The results are shown in
Fig. 5 and Fig. 6. The axis Y is system performance which
is considered as a linear combination of two terms: conflict
penalty and delay penalty. Conflict penalty is with heavier
weighting. The axis X is the iteration. At the beginning of the
iteration, there is a great number of potential conflicts, thus
the overall system performance is bad. Then, after resolving
all the potential conflict the overall performance is improved.s

The decision agent learns the policy from traffic sample
A, and apply the new policy to traffic sample B. In the case
α = 1.0, the decision agent always accepts the new policy.
Comparing the system performance with traffic sample A
and traffic sample B, it is found that when α = 1.0, the
policy for sample B is better, because the system perfor-
mance is improving rapidly. When α = 0, the default policy
setting [25%:25%:25%:25%] is always applied, then system
performance in traffic sample B is not improved. While when
α = 0.8, the system performance is relatively stable, and when
α = 0.5, the system performance is improved.

V. CONCLUSION

Air traffic management is a complex decision-making pro-
cess with multiple stakeholder requirements. Air traffic con-
trollers’ decisions on tactical control actions directly lead
to the efficiency of traffic flow management. This paper
describes a novel framework of integrating one intelligent
agent with simulation module and optimization module. It
discusses the approach of reinforcement learning to address
automated decision making problem in ATFM. Meanwhile,
it discusses about the integration problems with APMTP in
the agent implementation process, mainly Markov decision
making, action space and policy optimization. The numerical
results show the possibility of applying intelligent agent in



Fig. 5. System performance with traffic sample A

Fig. 6. System performance with traffic sample B

the trajectory planning to help reducing delay. Learning agent
with different exploration and exploitation ability will result in
different system performance in conflict resolution and delay.
Because the size of traffic dataset is not of sufficient quantity,
so more experiments are required to validate the learning
model. Meanwhile, another policy optimization algorithm may
be required to do a comparative study.

REFERENCES

[1] H. Erzberger and W. Nedell, “Design of automated system for manage-
ment of arrival traffic,” 1989.

[2] H. Erzberger, “Ctas: Computer intelligence for air traffic control in the
terminal area,” 1992.

[3] T. J. Davis, H. Erzberger, S. M. Green, and W. Nedell, “Design and
evaluation of an air traffic control final approach spacing tool,” Journal
of Guidance, Control, and Dynamics, vol. 14, no. 4, pp. 848–854, 1991.

[4] G. Spinardi, “Up in the air: Barriers to greener air traffic control and
infrastructure lock-in in a complex socio-technical system,” Energy Re-
search and Social Science, vol. 6, pp. 41 – 49, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2214629614001340

[5] H. A. Blom and G. Bakker, “Safety evaluation of advanced self-
separation under very high en route traffic demand,” Journal of
Aerospace Information Systems, vol. 12, no. 6, pp. 413–427, 2015.

[6] K. Tumer and A. Agogino, “Distributed agent-based air traffic flow
management,” in Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multiagent Systems, ser. AAMAS ’07. New
York, NY, USA: ACM, 2007, pp. 255:1–255:8. [Online]. Available:
http://doi.acm.org/10.1145/1329125.1329434

[7] L. L. Cruciol, A. C. de Arruda, L. Weigang, L. Li, and A. M.
Crespo, “Reward functions for learning to control in air traffic
flow management,” Transportation Research Part C: Emerging
Technologies, vol. 35, pp. 141 – 155, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X13001320

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2018.

[9] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[10] M. Liang, D. Delahaye, and P. Maréchal, “Integrated sequencing and
merging aircraft to parallel runways with automated conflict resolution
and advanced avionics capabilities,” Transportation Research Part C:
Emerging Technologies, vol. 85, pp. 268–291, 2017.


