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Abstract: Earthquakes generate energy that propagates into the ionosphere and incurs co-seismic 
ionospheric disturbances (CIDs), which can be observed in ionospheric delay measurements. In 
most cases, the CID has a weak signal strength because the energy in the atmosphere transferred 
from the earthquake dissipates as it travels toward the ionosphere. It is particularly hard to observe 
at reference stations that are located far from the epicenter. As the number of Global Navigation 
Satellite System stations and their positions are restricted, it is important to employ weak CID data 
in the analysis by improving the detection performance of CIDs. In this study, we suggest a new 
method to detect CIDs, which mainly uses sequential measurement combination of the carrier 
phase–based ionospheric delay data with a 1-second interval. The proposed method’s performance 
was compared with conventional methods, including band-pass filters and a representative 
time-derivative method, through data from the 2011 Tohoku earthquake. As a result, the maximum 
CID-to-noise ratio can be increased by a maximum of 13% when the proposed method is used, and 
consequently, the detection performance of the CID can be improved. 
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1. Introduction 

Earthquakes can result in disturbed electron density in the ionosphere, which is called 
co-seismic ionospheric disturbances (CIDs). When an earthquake occurs, its energy is transferred to 
the atmosphere by solid earth–atmosphere coupling. This waveform energy travels through the 
atmosphere, and it is amplified, due to the combined effect of an exponentially decreasing air 
density and conserved kinematic energy. It eventually arrives in the ionosphere and affects the 
electron density by momentum transfer between neutral particles and electrons [1-3]. Consequently, 
a disturbed electron density is observed shortly after earthquake events. 

Global Navigation Satellite System (GNSS) measurements can be used to estimate the electron 
density in the ionosphere. The ionospheric delay error in the GNSS signal is proportional to the total 
electron content (TEC), which is the integrated electrons along the signal path. As TEC, in turn, is 
inversely proportional to the square of the signal frequency, it can be estimated with a linear 
combination of L1 and L2 frequency signals [4].  

The sources of the CIDs can be classified into three types of waves, the first of which is a 
Rayleigh wave. A Rayleigh wave is a ground wave that propagates from the epicenter when 
earthquakes occur, and its speed is around 3.5 km/s. The vertical movement of the ground surface 
induces acoustic waves. As the Rayleigh wave propagates through the ground surface, the acoustic 
wave is initiated from the ground, and it reaches the ionosphere after the Rayleigh wave [5]. 
Therefore, the same circular wave is observed in the ionosphere around 10 minutes after the 
signature of the ground Rayleigh wave. Here, the period of 10 min represents the time for the 
acoustic wave to travel from the ground to the height of the ionosphere, which is an altitude of 350 



  

 

km. The second source of CIDs is a direct acoustic gravity wave (AGW), which is caused by an 
abrupt vertical movement of the ground at the epicenter. As this wave starts from the point source of 
the epicenter, it is attenuated rapidly. Previous studies have indicated that the CIDs from AGWs 
disappear at around 500–1000 km horizontal distance [6]. The final source of CIDs is tsunamis. 
Tsunami ocean surface waves induce gravity waves in the atmosphere, which reaches the 
ionosphere and disturbs the electron density. This type of CID has the same horizontal speed as a 
tsunami, which is around 200 m/s, and it is observed in the ionosphere ~30–40 min after the tsunami 
passes the same horizontal location on the water surface [6,7]. 

Among the three types of ionospheric disturbances, the Rayleigh wave CIDs are the first 
signatures to be detected, due to their fast speed. Also, as there are no ionospheric disturbances in 
the signal before the Rayleigh wave CID arrives, clear detection is possible, in comparison with other 
types of CIDs, where the ionosphere is already in a disturbed state. Therefore, in this study, we will 
focus on the CIDs caused by Rayleigh waves for the detection of ionospheric disturbances that are 
associated with earthquakes. 

To allow for CID detection in ionospheric delay measurements, the normal trend, which 
includes the trend due to satellite geometry, local time, and the season, needs to be removed. There 
are several de-trending methods that are used to remove the nominal trend in ionospheric delay for 
when there is no ground impact, such as that from earthquakes. Band-pass filtering and high-pass 
filtering are commonly used to de-trend ionospheric delay measurements. The Rayleigh wave CID is 
known to have dominant frequencies of 3.7 mHz and 4.4 mHz [8], whereas the normal trend has a 
frequency of under 1 mHz. In order to de-trend the signal and to reduce noise, previous studies have 
used some designated passbands, such as 1–10 mHz [9], 1–8 mHz [7], 0.5–5 mHz [10], ~1.6–5.5 mHz 
[11], and ~3.3–5.5 mHz [12] with 30-s interval data. For 1-s interval data, Astafyeva et al. used the 
0.8–333 mHz passband to remove the normal trend in the data [13]. 

The time derivative is another option for de-trending. Park et al. used the numerical 3rd order 
time derivative to remove the nominal trend [14,15], and Hernández‐Pajares and Zhang used the 
time derivative with an extended time step [16,17]. 

Previous studies with both a band-pass filter and time derivative have focused on CID 
detection. However, few studies have investigated how to optimize the detection performance by 
increasing the relative magnitude of the CID-to-noise level. The signal-to-noise ratio (SNR) of CIDs 
is important when the magnitude of the CID is too small, either because the impacts of the 
earthquakes are small or because the CID is detected far from the epicenter. As GNSS stations are 
limited in terms of CID detection coverage, the performance of weak signal detection needs to be 
improved in order to employ all of the viable data. 

To improve the SNR of the CID, we used the time derivative method. Time derivatives can be a 
useful tool for reducing noise in the signal since its noise level can be numerically calculated with 
some assumptions [18]. In this study, we propose a new time derivative method to improve the SNR 
of CID. To maximize the detection performance, 1-second interval data will be used. 

 

2. Methodology 

Carrier phase L1 and L2 signals are denoted in Equation (1): 
 

1 1 1 1 1d B b I T Nφ λ ε= + − − + + + , 

2 2 2 2 2d B b I T Nφ λ ε= + − − + + + . 
(1) 

 
The symbol of φ  indicates a carrier phase, where the subscripts 1 and 2 indicate L1 and L2, 

respectively. The term d  is the true range from the satellite to the receiver, B  is the receiver clock 
bias, b  is the satellite clock bias, I  is the ionospheric delay error, T  is the tropospheric delay 
error, λ  is the wavelength of the carrier phase, N  is the ambiguity, and ε  is the noise of the 



  

 

carrier phase. In Equation (1), the multipath error is assumed to be zero. In addition, the satellite 
orbit error and inter-frequency bias are not considered here, because their time variation is small 
enough [19] such these can be neglected in the time derivatives of the carrier phase, which will be 
used for CID detection. As the ionospheric delay itself cannot be calculated directly, ionospheric 
combination or geometry-free combination is used, as shown in Equation (2): 

 

1 2 1 2 1 1 2 2
11 1 1I

N NIφ φ ε ε λ λφ
γ γ γ
− − −

= = + +
− − −

. (2) 

 
By taking the time derivative, the last term on the right side in Equation (2) disappears, since it 

is constant as long as there is no cycle slip error. By taking the higher level of the time derivatives, 
the nth-order time derivative of ionospheric combination can be shown in Equation (3): 

 

( ) ( )
( ) ( ) 1 2

1 1

n n
n n

I I ε εφ
γ
−

= +
−

. (3) 

 
When an earthquake takes place, the CID signal is included in ( )

1
nI . To detect the CID using 

Equation (3) reliably, the effect of the noise term in Equation (3) should be minimized. The novel 
methods that are optimized to reduce the noise level of the time derivative will be addressed in the 
following sections. 
 

2.1 Assumptions 

In order to derive the time derivative of the ionospheric combination that is optimized to 
reduce the noise level, two assumptions were adopted in this paper. The first assumption is that the 
ionospheric delay changes linearly for a short time span. This assumption holds true, as the normal 
trend in the ionosphere has a very long period (>1000 s). As the ionospheric change by the normal 
trend is very slow, it is nearly linear within a short time span. The other assumption is that the 
ionospheric delay has Gaussian random noise. This assumption was adopted to simplify the 
computation of the standard deviation of the time derivative ionospheric delay. 

 

2.2 De-noising Methods Using Forward Numerical Differentiation 

The simplest form of a time derivative is the forward difference [20]. However, in 1-s interval 
data, the noise in the forward difference is so significantly large that even a sizable CID cannot be 
detected. The first method to reduce noise in the time derivative therefore uses the moving average 
[21,22]. We will call this the forward difference and the moving average (FDMA) and we consider it 
to be a conventional method.  

Ionospheric combination can be denoted via Equation (4), where f  is the ionospheric 

combination, g  is the true ionospheric delay, and ν  is the Gaussian noise with 2~ (0, )N νν σ : 
 

f g ν= + . (4) 

By taking the forward difference with a 1-second time step as in Equation (5) [20], and using the 
moving average for 1 to (N - 1), the time derivative of the ionospheric combination can be computed 
as in Equation (6): 
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1i i if f f+= − , (5) 
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' ' 1

1

1
1 1

N
N

FDMA i
i

f ff f
N N

−

=

−
= =

− −∑ . (6) 

The subscript i  indicates the epoch index. Then, through the linearity of Equation (4), the time 
derivative of noise in the ionospheric combination can be obtained via Equation (7): 

 

' 1

1
N

FDMA N
ν νν −

=
−

. (7) 

 
Here, '

FDMAν  is the noise component in ionospheric combination with 2~ (0, )N νν σ . The 
noise level of the FDMA can be calculated via Equation (8): 

 

'
2

1FDMA Nν νσ σ=
−

. (8) 

 
The second and more effective way to reduce noise is to use an extended time step for the time 

difference operation, and then to subsequently use the moving average. We will call this proposed 
method as the time step and moving average (TSMA). The extension of the time step for a de-noising 
purpose has already been used by [7]; however, the moving average is additionally used to reduce 
the noise further in the TSMA. The forward difference with extended time step K  can be expressed 
via Equation (9) [16,17]: 

 

' i K i
i

f ff
K

+ −
= . (9) 

 
With the moving average applied for 1 to M, the time derivative of the ionospheric combination 

by the TSMA can be obtained via Equation (10): 
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. (10) 

 
As can be seen in Equation (10), the total length of the dataset is ( )K M+ . In order to set the 

same data length for the derivative as that in the other methods, we can set ( )N K M= + . Then, 
Equation (10) becomes: 
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The last term in Equation (11) can be obtained since the elements in the numerator are 

correlated. The noise level can be calculated via Equation (12): 
 

'
2

( )TSMA

K
K N Kν νσ σ=

−
. (12) 

 
Based on the fact that the extreme values have zero gradient, the variable K  that minimizes 

'TSMAνσ  can be computed as 
3
N

, which implies that N  needs to be a multiple of 3 for optimality. 

The noise level for this case is calculated with Equation (13). The same noise level holds true for the 

case of 
2
NK >  by symmetry of 'TSMAf : 

 

'
3 6

2TSMA N Nν νσ σ= . (13) 

 
For a data length of N , FDMA’s noise level is inversely proportional to N , while TSMA’s is 

inversely proportional to 1.5N . Therefore, TSMA has a better noise level compared to FDMA. Both 
methods, however, are not optimal combinations in terms of noise reduction since the moving 
average is optimal only for independent datasets. Because the moving average was applied in both 
methods to time differenced data, which are correlated, optimization cannot be guaranteed. We 
therefore propose a time derivative method that ensures a minimum noise level for a given length of 
data. 

 

2.3 Minimum Noise Derivative (MND) Method 

Derivation of the proposed method starts with a Taylor series expansion for N  sequential 
epochs [20]: 
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

.  (14) 

 
According to the linearity assumption, the 2nd and higher order terms, 2( )O h , are assumed to 

be zero. Also, as this study deals with 1-second interval data only, the time step h  equals 1. The 
time derivatives of the ionospheric combination, 'f , can be expressed as a linear combination of 

f  using arbitrary constants, ia ’s, as demonstrated in the following procedure: 
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Here 'ig  and 'iν  represent the first derivative of ionospheric delay and noise at the i-th 

epoch. The standard deviation (STD) of 'iν  is proportional to the root square sum of its coefficients. 
That is: 

 

'' ~ (0, )
ii N νν σ  where 2

' 1i

N
kk

cν νσ σ
=

= ∑ . (17) 

 
In order to effectively detect the CID, noise level reduction is crucial. By using the fact that the 

extreme values have zero gradient, the equation constraints to determine the constant, ia , can be 
derived as follows: 
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(20) 

From Equation (18), we see that the value of J  does not change when divided by one value of 

ia . Therefore, we set 1ia =  as a pivot. Using Equations (18) to (20), the following equation holds 

for 2,3, ,( 1)i N= − : 
 

1 1
11 1

( )N N
k k ik k

i a a a a− −

= =
+ = +∑ ∑ . (21) 

 
Now that ( 1)N −  equations are all set, the unknown variables 1 2 1, , , Na a a −  are solvable. 

In the end, the sequential combination solution is as follows: 
 

1 2 1 1'
6( 1) 12( 1) ( 1,2, , )
( 1) ( 1)

i i i N i N

k

f c f c f c f
N kwhere c k N
N N N

+ + −= + + +
− − + −

= =
− +





. (22) 

 
Then, the STD of 'iν  can be computed via Equation (23): 
 

'
12

( 1) ( 1)MND N N Nν νσ σ=
− +

. (23) 

Table 1 shows time derivative equations and noise levels of the conventional and the proposed 
algorithms. Here N denotes the number of epochs for time derivative, vσ  the standard deviation of 
background noise in ionospheric delay measurements. 

 
Table 1. The time derivative equations and their noise levels of the conventional (FDMA, TSMA) and the 

proposed (TSMA, MND) methods. 
Algorithm Time Derivative Equation Noise Level 

FDMA 
  

TSMA 
(proposed)   

MND (proposed) 
 

where, 

  

 

2.4 Noise Level Comparison for FDMA, TSMA, and MND 

Figure 1 shows the relative noise level comparison of FDMA, TSMA, and MND according to the 
number of epochs for the time derivative, N . Here, νσ  is assumed to be 1. 



  

 

 

 
Figure 1. Noise level comparison for FDMA, TSMA, and MND 

 
As can be seen from Figure 1, the noise levels of the TSMA and the MND are lower than that of 

the FDMA, as predicted from Equations (8), (13), and (23). Also, the MND has a better noise level 
compared to the TSMA. Specifically, for the 3rd derivative with N = 100, the TSMA has a 15% higher 
noise level compared to the MND. In short, it is reasonable to select the MND-based time derivative 
of ionospheric combination as the monitoring value for CID detection in terms of noise reduction. 

 

2.5 SNR and the Estimation of the Best N for CID Detection 

Conventional SNR is defined as the ratio of signal variance to noise variance. However, the 
variance of Rayleigh-wave CID cannot be calculated in a simple way. For one thing, CID’s frequency 
of around a few mHz often coincides with that of the background noise and the ionospheric delay, in 
low elevation angle. Also, the Rayleigh wave CID has a fairly irregular duration time, in accordance 
with the distance from the epicenter, the magnitude of earthquake, the ionospheric condition, etc. As 
the exact span of the CID signal can hardly be specified for these reasons, it is possible that 
miscalculated signal variance could lead to a severely erroneous result with the conventional SNR. 
Therefore, we redefined the SNR as the ratio of the maximum absolute value of the CID signal to the 



  

 

noise STD. In this way, the detection performance of the CID could be analyzed in a safer way. In 
Equation (24), max(| |)CID  indicates the maximum absolute value of the CID caused by a 
Rayleigh wave. This value is extracted from 10–30 min after an earthquake to account for the time 
required for the impact of the earthquake to reach the ionosphere. The symbol of noiseσ  represents 
the noise STD in the region without the CID. This value is calculated using 1-hr data that are 
collected just before the onset of the earthquake. This time span of data is chosen to exclude the effect 
of the CID in the nominal STD and to minimize the different effects of elevation angles on noise for 
nominal and disturbed data: 

 

max(| |)

noise

CIDSNR
σ

= . (24) 

 
While the noise level of the proposed time derivative method decreases monotonically, its SNR 

does not continuously increase with N . This is because the CID becomes nonlinear with a large 
N , and the nonlinearity curtails the peaks of the CID in the time derivative. Therefore, the best N , 
which maximizes the SNR of CID, needs to be determined for each algorithm. 

The necessity of determining the best N can be demonstrated well by Figure 2, which shows the 
results of the MND with different values of N . The 3rd order derivative of the ionospheric 
combination was selected as the monitoring value to effectively remove the nominal trend in the 
data. Each dataset was normalized by the STD of shaded area (a), which corresponds to the 1-hour 
time span before the earthquake. The red vertical dashed line is the time of the earthquake 
occurrence. The shaded area (b) is the time span in which the CID is expected to arrive. This 
corresponds to ~10–30 min after the earthquake onset for the dataset we used. The arrival time of the 
CID associated with the earthquake varies according to the distance between the epicenter and the 
point in the ionosphere through which the satellite signal passes. This point is called the ionospheric 
pierce point (IPP). As illustrated in Figure 2, N  has a critical effect on the SNR and the CID 
detection. To be more specific, when 20N =  and 200N = , the signatures of the CID hardly 
stand out from the noise. On the other hand, when 100N = , the CID’s peaks are dominant in the 
time series. Finding the best N , therefore, is crucial to enhancing detection performance of the CID. 

 

 
Figure 2. Normalized MND 3rd derivatives with different N’s: 20, 100, 200 (KIMC, prn15) 
 
 Due to the irregularity of the shape and duration of the CID, real data were used to estimate 

the best N . Data from the 2011 Tohoku earthquake collected from National Geographic 
Information Institute (NGII) stations in Korea were chosen. There are 45 total stations, and 3 GPS 
satellites were chosen for the proximity of their IPP tracks to the epicenter, as shown in Figure 3.  



  

 

 
Figure 3. The location of the epicenter (red star), NGII stations (blank squares), and the IPP ground tracks for 

1 hour from the earthquake outbreak observed at the KIMC station (filled square). IPP moves toward the 
filled circles. 

 

 
Figure 4.  SNR based on the MND method according to N for 2011 Tohoku Earthquake 

   

 
Figure 5. The Maximum SNR distribution according to various values of N (MND) 



  

 

 
Figure 6. The Maximum SNR distribution according to various values of N (FDMA) 

 

 
Figure 7. The Maximum SNR distribution according to various values of N (TSMA) 

 
Figure 4 shows the SNR for 132 datasets according to N , and the pairs of the maximum SNR 

and corresponding N  for each dataset are marked with a diamond. It can be inferred from the 
figure that the SNR variation of each measurement shows diverse shape even for the 2011 Tohoku 
Earthquake case alone. This means a small number of CID samples cannot represent the overall 
characteristics of the phenomenon, which is the reason we adopted a statistical approach for finding 
the best N. As shown in Figure 5, the maximum SNRs are distributed around 100N = . This means 
that the CID can be most successfully detected when 100N = . Likewise, the maximum SNR for 
FDMA and TSMA are shown in Figures 6 and 7. Based on these observations, the best N  values for 
the MND, FDMA, and TSMA are determined as in Table 2. The 3rd order derivative by FDMA has its 
best N  at 80, while the TSMA has its best N  at 108. The TSMA’s interval of N  is set to be 9 
instead of 10, because the TSMA algorithm requires a multiple of 3 for N . 
 

Table 2. The Best N’s for MND, FDMA, and TSMA 

Noise reduction method Best N 
MND 3rd 100 

FDMA 3rd 80 
TSMA 3rd 108 

 

2.6 Band-pass Filter for 1-second Interval CID Data 

Since previous studies, which used band-pass filters for de-trending, have not focused on 
enhancing detection performance of the CID, an appropriate passband-maximizing SNR is needed 
for conservative comparison with the proposed algorithm. It is unrealistic, however, to optimize the 



  

 

band-pass filter for its complexity. We empirically observed that the 3–20 mHz passband would be 
the best option to maximize the SNR of the CID for our datasets. In Figure 8, the values in the shade 
on the right indicate the SNR performance for each passband. It appears that the 3–20 mHz passband 
has higher SNR performance than do the passbands used in previous studies. However, for rigorous 
study, further verification is needed on the relation between the passband and the SNR of the CID. 

 

 
Figure 8. Band-passed ionospheric combination by different passbands (KIMC, prn15). Values in the 

right shade indicate SNR. Refer to Figure 2 for notation. 
 

2.7 Applications for Early Detection Cases 

Although the size of the maximum SNR is a major concern for the post-processing of data, there 
are other considerations for real-time applications. The detection algorithm uses a certain length of 
data before and after the epoch of interest, so it uses both past and future data for some particular 
time. Since future data are yet to be measured in real time, there exists a time lag that amounts to one 
half of N . Figure 9a shows simulated real-time ionospheric delay data with 4.44 mHz frequency, 
which accounts for one of the dominant normal frequencies between earthquakes and their 
atmospheric coupling [8]. The time lag with 100N =  appears larger than that with 20N = . For 
general cases, as illustrated in Figure 9b, the time lag in the real-time application is directly 
proportional to N . 

There are real-time scenarios in which small time lags are required, such as tsunami detection 
and early warning. In these scenarios, it is more beneficial to use proposed time derivative methods 
with a smaller number of N  to enable early detection by allowing reduced time lag. In the next 
section, the performance of the proposed methods will be further discussed for smaller N values to 
account for these real-time applications. 

 



  

 

 
(a)                                   (b) 

Figure 9. (a) Time lag inherent in the detection algorithms for real-time application and (b) its 
schematic. 

 

3. Results 

3.1 Maximum SNR Comparison 

Figure 10 shows the filtering outputs of two conventional and three proposed algorithms. The 
“ND” indicates the conventional numerical 3rd order derivative with a 30-second interval [14,15]. In 
addition, the “BP” stands for the band-pass filter with a 3–20 mHz passband, which gives a 
seemingly optimal SNR for this dataset. To assess the performance with a different PRN, the average 
of the SNR values at 45 reference stations is used, using the best Ns from Table 2. 

Table 3 shows the overall test results of the average values of the SNR for 45 NGII stations using 
the best Ns for each algorithm. PRN 26 shows the largest SNR due to the small distance of its IPP to 
the epicenter at the time of the earthquake. The MND showed an over 300% SNR improvement from 
the numerical 3rd order derivative and ~12–13% improvement from the band-pass filter and FDMA. 
In addition, it can be concluded from the results that the TSMA and MND attained similar 
performance, having a performance difference of less than 1%. In conclusion, the test results confirm 
that the TSMA and the MND provide the maximum detection performance of the CID. 

 

 
Figure 10. The filtering outputs of conventional (ND and BP) and proposed (FDMA, TSMA and 

MND) detection algorithms 



  

 

 
Table 3. Average values of the SNR for 45 NGII stations using the best N’s and the SNR 

improvements of the MND from other algorithms 

Algorithm PRN 15 PRN 26 PRN 27 
SNR improvement 

of MND 
Numerical 3rd (ND, 30-sec) 3.20 8.92 2.25 340.6 % 
Band-pass (BP, 3-20 mHz) 16.65 20.08 8.05 13.6 % 

FDMA 3rd 14.27 28.40 6.88 12.5 % 
TSMA 3rd 17.71 29.37 7.95 -0.8 % 
MND 3rd 17.87 28.98 7.89  

 

3.2 SNR Comparison in an Early Detection Case 

Figure 11a shows the SNR of the MND and TSMA according to N . Figure 11b shows the SNR 
improvement of the MND against the TSMA, especially in the small-N region. The small- N  region 
is defined as the region where the SNR of the TSMA ranges from five to its maximum value, which is 
indicated as the shaded area in Figure 11. The minimum SNR value for determining the small-N 
region is set to five because smaller SNR values, which correspond to signal amplitudes under 
5 noiseσ , have the potential to cause frequent false alarms in real-time applications. In Figure 11b, 
MND shows larger improvement percentage when N is 20 rather than 60, while the absolute SNR 
increase of MND from TSMA in Figure 11a is larger when N is 60. This is because in the small-N 
region the SNR difference between MND and TSMA does not vary significantly according to N, 
while absolute SNR values of both MND and TSMA increase drastically. Table 4 shows the 
maximum and mean values of the SNR improvements of the MND against the TSMA within the 
small- N  region, where the averaged values for 45 NGII stations were used for analysis. The MND 
showed ~6–7% SNR improvement in the maximum values and ~3–4% SNR improvement in the 
mean values compared to those from the TSMA. Therefore, for real-time applications, the MND is 
recommended over the TSMA. 

 

 
    (a)                                           (b)  

Figure 11. SNR comparison of the MND and the TSMA within the small-N region (shaded area) for 
early detection case (ANHN station, PRN15). (a) SNR of the MND and the TSMA, (b) SNR 
improvement of the MND against the TSMA 
 
Table 4. The SNR improvement of the MND against the TSMA within the small-N region (Average 

values for 45 NGII stations are used for analysis) 
 Percentage improvement (%) 



  

 

PRN Maximum Mean 
15 7.4 3.8 
26 5.9 2.2 
27 5.9 2.7 

 

4. Conclusions 

In this study, a novel time derivative method that can minimize noise levels was proposed and 
analyzed. By preserving disturbance signals and reducing noise through the proposed method with 
their best N  values, the CID can be effectively detected from the ionospheric combination. The 
suggested MND algorithm assures the minimum noise level under a couple of assumptions and 
leads to enhanced detection performance. The SNR of the CID for the 2011 Tohoku earthquake data 
was maximized when estimating one epoch slope using 100 sequential data points in 1-second 
interval data with the MND algorithm. SNR improvements of 12% and 13% were observed 
compared to the FDMA and band-pass results, respectively. Also, the TSMA, which determines a 
moving average after the forward difference with an extended time interval, showed similar 
performance as the MND method. However, for a small N , which enables fast detection and early 
warnings, the SNR of the MND is relatively higher than that of the TSMA. In conclusion, the MND 
would be the most effective solution in terms of both detection performance and application for 
early warning cases. It should be noted that the derived best N in this article is best suitable for 2011 
Tohoku Earthquake event. For more rigorous study, case studies of other earthquakes will be 
performed for future work. 
 

Author Contributions: Conceptualization, Seonho Kang and Changdon Kee; Data curation, Seonho Kang and 
Bugyeom Kim; Formal analysis, Seonho Kang; Funding acquisition, Changdon Kee; Investigation, Seonho 
Kang; Methodology, Seonho Kang, Junesol Song, Deokhwa Han and Bugyeom Kim; Project administration, 
Junesol Song, Deokhwa Han, Hyoungmin So, Kap-jin Kim and Changdon Kee; Supervision, Junesol Song, 
Deokhwa Han and Changdon Kee; Writing – original draft, Seonho Kang; Writing – review & editing, Junesol 
Song and Deokhwa Han. 

Acknowledgements: This work has been supported by the program ‘Satellite Navigation Augmentation to 
Improve Navigation Technology’ of Agency for Defense Development, contracted through the SNU-IAMD. 
This research was supported (in part) by the Institute of Advanced Aerospace Technology at Seoul National 
University. The Institute of Engineering Research at Seoul National University provided research facilities for 
this work. 

Conflicts of Interest: The authors declare no conflict of interest 

References 

1. Hines, C.O. Internal atmospheric gravity waves at ionospheric heights, Canadian J. of Phys. 1960, 38, 1441–1481. 
2. Peltier, W.R.; Hines, C.O. On the possible detection of tsunamis by a monitoring of the ionosphere, JGR 1976, 

81(12), 1995–2000. 
3. Blanc, E. Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: A summary, 

Ann. Geophys. 1985, 3(6), 673– 688. 
4. Calais, E.; Minster, J.B. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge 

earthquake, Geophys. Res. Lett. 1995, 22(9), 1045–1048. 
5. Occhipinti, G.; Rolland, L.; Lognonné, P.; Watada, S. From Sumatra 2004 to Tohoku‐Oki 2011: The systematic 

GPS detection of the ionospheric signature induced by tsunamigenic earthquakes. JGR Space Physics 2013, 118(6), 
3626-3636. 

6. Ducic, V.; Artru, J.; Lognonné, P. Ionospheric remote sensing of the denali earthquake rayleigh surface waves, 
Geophys. Res. Lett. 2003, 30(18), 1951–1954, doi:10.1029/2003GL017,812. 

7. Artru, J.; Ducic, V.; Kanamori, H.; Lognonné, P.; Murakami, M. Ionospheric detection of gravity waves induced 
by tsunamis. Geophys. J. Int. 2005, 160(3), 840-848. 



  

 

8. Lognonné, P.; E. Clévédé; H. Kanamori, Computation of seismograms and atmospheric oscillations by 
normal-mode summation for a spherical earth model with realistic atmosphere, Geophys. J. Int. 1998, 135, 388 – 406 

9. Rolland, L. M.; Lognonné, P.; Munekane , H., Detection and modeling of Rayleigh wave induced patterns in the 
ionosphere. JGR: Space Physics 2011, 116.A5. 

10. Komjathy, A.; Galvan, D. A.; Stephens, P.; Butala, M. D.; Akopian, V.; Wilson, B.; ... Hickey, M, Detecting 
ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case 
study, Earth Planet Space 2012, 64(12), 24. 

11. Calais, E.; J. S. Haase; J. B. Minster, Detection of ionospheric perturbations using a dense GPS array in Southern 
California, Geophys. Res. Lett. 2003, 30(12), 1628, doi:10.1029/2003GL017708. 

12. Chen, C. H.; Saito, A.; Lin, C. H.; Liu, J. Y.; Tsai, H. F.; Tsugawa, T.; ... Matsumura, M, Long-distance 
propagation of ionospheric disturbance generated by the 2011 off the Pacific coast of Tohoku Earthquake. Earth 
Planet Space 2011, 63(7), 67. 

13. Astafyeva, E.; P. Lognonné; L. Rolland, First ionospheric images of the seismic fault slip on the example of the 
Tohoku-oki earthquake, Geophys. Res. Lett. 2011, 38, L22104, doi:10.1029/2011GL049623. 

14. Park, J.; von Frese, R. R.; Grejner‐Brzezinska, D. A.; Morton, Y. Gaya‐Pique, L. R; Ionospheric detection of the 
25 May 2009 North Korean underground nuclear test. Geophys. Res. Lett 2011, 38(22). 

15. Park, J.; Grejner‐Brzezinska, D. A.; von Frese, R. R.; Morton, Y. GPS discrimination of traveling ionospheric 
disturbances from underground nuclear explosions and earthquakes. J NAVIGATION 2014, 61(2), 125-134. 

16. Hernández‐Pajares, M.; J. M. Juan; J. Sanz. Medium‐scale traveling ionospheric disturbances affecting GPS 
measurements: Spatial and temporal analysis. JGR: Space Physics 2006, 111(A7). 

17. Zhang, X.; Tang, L., Detection of ionospheric disturbances driven by the 2014 Chile tsunami using GPS total 
electron content in New Zealand. JGR Space Physics 2015, 120(9), 7918-7925. 

18. Kang, S.; Improving Detection Performance of Ionospheric Disturbances due to Earthquake with a Noise Reduction 
Method, Master’s thesis, Seoul National University, Seoul, 2019.  

19. Schaer, S.; Dach, R. (2010), “Biases in GNSS Analysis”, IGS Workshop, Newcastle, England, 28 June - 2 July 
2010. 

20. Mitch, R. H.; Psiaki, M. L.; Tong, D. M; Local ionosphere model estimation from dual-frequency global navigation 
satellite system observables. Radio science 2013, 48(6), 671-684. 

21. Afraimovich, E. L.; Ding, F.; Kiryushkin, V. V.; Astafyeva, E. I.; Jin, S.; Sankov, V. A. TEC response to the 
2008 Wenchuan earthquake in comparison with other strong earthquakes. IJRS 2010, 31(13), 3601-3613. 

22. Astafyeva, E.; Heki, K.; Kiryushkin, V.; Afraimovich, E.; Shalimov, S. Two‐mode long‐distance propagation of 
coseismic ionosphere disturbances. JGR Space Physics 2009, 114(A10). 


	1. Introduction
	1. Introduction
	2. Methodology
	2. Methodology
	2.1 Assumptions
	2.1 Assumptions
	2.2 De-noising Methods Using Forward Numerical Differentiation
	2.2 De-noising Methods Using Forward Numerical Differentiation
	2.3 Minimum Noise Derivative (MND) Method
	2.3 Minimum Noise Derivative (MND) Method
	2.4 Noise Level Comparison for FDMA, TSMA, and MND
	2.4 Noise Level Comparison for FDMA, TSMA, and MND
	2.5 SNR and the Estimation of the Best N for CID Detection
	2.5 SNR and the Estimation of the Best N for CID Detection
	2.6 Band-pass Filter for 1-second Interval CID Data
	2.6 Band-pass Filter for 1-second Interval CID Data
	2.7 Applications for Early Detection Cases
	2.7 Applications for Early Detection Cases

	3. Results
	3. Results
	3.1 Maximum SNR Comparison
	3.1 Maximum SNR Comparison
	3.2 SNR Comparison in an Early Detection Case
	3.2 SNR Comparison in an Early Detection Case

	4. Conclusions
	4. Conclusions
	Acknowledgements: This work has been supported by the program ‘Satellite Navigation Augmentation to Improve Navigation Technology’ of Agency for Defense Development, contracted through the SNU-IAMD. This research was supported (in part) by the Institu...
	Acknowledgements: This work has been supported by the program ‘Satellite Navigation Augmentation to Improve Navigation Technology’ of Agency for Defense Development, contracted through the SNU-IAMD. This research was supported (in part) by the Institu...
	References
	References

