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Abstract—This paper aims at presenting a novel way of pre-
dicting and analyzing air traffic delays using publicly available
data from social media with a focus on Twitter data. Three
different machine learning regressors have been trained on this
2017 passenger-centric dataset and tested for the prediction
up to five hours ahead of air traffic delays and cancellations
for the first two months of 2018. Comparing and analyzing
different accuracy measures of their prediction performances
show that this dataset contains useful information about the
current state and short-term future state of the air traffic
system. The resulting methods yield higher prediction accuracy
than traditional state-of-the-art and off-the-shelf time-series
forecasting techniques performed on flight-centric data. More-
over a post-training feature importance analysis conducted on
the Random Forest regressor allowed a simplification and a
refining of the model, leading to a faster training time and more
accurate predictions. This paper is a first step in predicting
and analyzing air traffic delays leveraging a real-time publicly
available passenger-centered data source. The results of this
study suggest a method to use passenger-centric data-sources
both as an estimator of the current state of air traffic delays
as well as an estimator of the short-term state of air traffic
delays in the United States in real-time.
Keywords - delay prediction, ATM performance measurement,
big data, machine learning

I. INTRODUCTION

The Air Transportation System is a complex intercon-
nected system that carried more than 631 million passengers
on domestic flights in the United States in 2010 according
to the Bureau of Transportation Statistics (BTS) [1]. Flight
delays are a major issue both in the United States and in
Europe. In 2017, 44.4% of flights in Europe departed with a
delay greater than 5 minutes and 38.5% arrived with a delay
greater than 5 minutes [2]. In the US, it represents 27.0%
of departing flights and 27.8% of arriving flights [1].

Mueller and Chatterji [3] created a probabilistic model
of delays by fitting Poisson and Normal distributions to the
historic delay data from 10 airports. Rebollo and Balakr-
ishnan [4] implemented a network model to classify and
predict future delays on specific specific links or specific
airports using two years of flight-centric and weather-related
data. Klein et al. [5] and [6] focused on predicting short-
term weather-related delays using only past and current
weather information. Aljubairy et al. [7] used Internet of
Things in order to analyze flight-related sensors in real-
time and classify the delay of an upcoming flight. To the
best of the authors knowledge, these previous works to
predict or classify flight delays were all centered on flight-
centric information coming from a variety of sources with
different levels of public availability, and using only very
little passenger-centric data.

Over the past few years, NextGen [8] in the United States
and SESAR [9] in Europe have been advocating a shift from
flight-centric metrics to passenger-centric metrics to evaluate
the performance of the Air Transportation System. The
failures and inefficiencies of the air transportation system
not only have a significant economic impact but they also
stress the importance of putting the passenger at the core of
the system [10] [11]. Several studies have highlighted the
disproportionate impact of airside disruptions on passenger
door-to-door journeys. Flight delays do not accurately re-
flect the delays imposed upon passengers’ full multi-modal
itinerary. Cook et al. [12] designed propagation-centric and
passenger-centric performance metrics, and compare them
with existing flight-centric metrics. In [13], Bratu et al.
calculated passenger delay using monthly data from a major
airline operating a hub-and-spoke network. They show that



disrupted passengers, whose journey was interrupted by a
capacity reduction, are only 3% of the total passengers,
but suffer 39% of the total passenger delay. Wang [14]
showed that high passenger trip delays are disproportionately
generated by canceled flights and missed connections. 9 of
the busiest 35 airports cause 50% of total passenger trip de-
lays. Congestion, flight delay, load factor, flight cancellation
time and airline cooperation policy are the most significant
factors affecting total passenger trip delay. Both NextGen
and SESAR intend to not only improve the predictability
and resilience of the Air Transportation System, but also to
reduce door-to-door travel time for passengers.

Passengers are at the core of this system and, yet, lim-
ited quantitative information about passenger movements is
publicly shared. Each aviation stakeholder only has access
to a partial view of the passenger-side of air transportation
operations. Airline passenger information - such as: Tickets,
boarding passes, boarding time - is airline proprietary. Each
airline therefore has a partial view of passenger move-
ments on board aircraft and on the ground (from check-
in kiosks and counters to boarding the aircraft). Airports
gather customs or security records, shuttle traffic, parking
occupancy, sometimes measure queue lengths, while third-
parties collect online traces through WiFi hotspots and
Bluetooth beacons [15]. Therefore, a system-wide data-
driven picture of passenger behavior remains unavailable.
The BTS provides aggregated passenger data per market
but no granular information. Passenger surveys conducted
by airports or airlines, while very detailed, remain limited
to small samples of passengers and short time periods, and
may not be representative.

Precursor work was made by Marzuoli et al. in [16]
and [17] using mobile phone data in order to analyze the
performances of airports from the passengers’ perspective.
These studies validated the use of passenger-centric data to
better assess the overall health of the Air Transportation
System. García et al. used mobile phone data to analyze
the door-to-door travel times between two Spanish cities in
[18] as well as the different legs of an air trip to Madrid in
[19]. Mobile phone data is however proprietary data and is
not often publicly available. Therefore in order to operate in
real-time, it is necessary to also look into other sources of
passenger data available on a national scale.

Another popular source of data previously used for study-
ing large-scale behaviors is social media, in particular Twit-
ter. With more than 68 millions active users in the United

States [20], Twitter is an important pool of user-created data
that is still not fully leveraged. Twitter has already been the
main focus of many studies, including studies on its network
topology by Java et al. [21], Krishnamurthy et al. [22] and
Huberman et al. [23], as well as more recent studies by Palen
et al. on how Twitter is being used during natural disasters
[24], [25], [26]. Most works mining Twitter data for the air
transportation field focus on how airlines are perceived by
passengers by means of sentiment analysis [27] or sentiment
classification [28]. Though these works give a good insight
on how passengers perceive the state of specific actors within
the air transportation system, it does not give a global idea
of its health.

The contribution of this paper is twofold. By extracting
relevant features from the massive amount of data available
from Twitter, it is possible to accurately predict different
flight-centric information, paving way to a real-time global
assessment of the US Air Transportation health using only
passenger-centric datasources. Since the study presented
uses only Twitter data, it can be easily replicated to other
countries or regions with important domestic traffic as long
as the flight on-time data is available for an initial validation
and tuning of the models.

This paper is organized as follows: Section II describes
the different datasets and the initial feature selection. Sec-
tion III analyzes the performance of the chosen regression
models with this initial choice of features and show that
they already outperform a robust forecasting benchmark. A
feature analysis and reduction is performed in Section IV
leading to faster and more accurate predictions. Section V
concludes this study and discusses possible future steps.

II. DATASET DESCRIPTION AND FEATURE SELECTION

A. Dataset description

The goal here is to use passengers behavior on social
media - in particular on Twitter - in order to analyze
and predict the health of the US air-transportation system.
This health is described by BTS data from a flight-centric
perspective: number of delayed and/or cancelled flights as
well as the amount of delay. This data is publicly available
usually with a two to three month delay and this study limits
itself with the BTS data from January 2017 to February
2018.

The Twitter dataset available for this study consists of all
the tweets found using a basic search for each handle of 7
major US airlines as well as 34 major US airports (one of



TABLE I: TWITTER HANDLES USED FOR GATHERING TWEETS

Category Twitter handles
Airlines @united, @Delta, @AmericanAir, @SouthwestAir, @SpiritAirlines, @VirginAmerica, @JetBlue
Airports @JFKairport, @ATLairport, @flyLAXairport, @fly2ohare, @DFWAirport, @DENAirport,

@CLTAirport, @LASairport, @PHXSkyHarbor, @MiamiAirportMIA, @iah, @EWRairport,
@MCOAirport, @Official_MCO, @SeaTacAirport, @mspairport, @DTWeetin, @BostonLogan,
@PHLAirport, @LGAairport, @FLLFlyer, @BWI_Airport, @Dulles_Airport, @MidwayAirport,

@Reagan_Airport, @slcairport, @SanDiegoAirport, @flyTPA, @flypdx, @flystl,
@flySFO,@HobbyAirport, @flynashville, @AUStinAirport, @KCIAirport

them having two Twitter handles). The full list of handles
can be found in Table I. Each entry consists of a timestamp,
a user id, the content of the tweet and the handle used to
retrieve the tweet. This dataset spans the entire period from
January 1st 2017 to February 28th 2018.

In this study the BTS dataset has been filtered in order
to consider only the data related to the same seven major
airlines as for the Twitter dataset. The resulting BTS data
is then aggregated per hour, and the following attributes are
extracted:

• Number of delayed departing flights: NumDepDelay
• Number of delayed arriving flights: NumArrDelay
• Number of cancelled flights: NumCancelled
• Percentage of delayed departing flights: PercDepDelay
• Percentage of delayed arriving flights: PercArrDelay
• Percentage of cancelled flights: PercCancelled
• Total delays at departure (in minutes): MinDepDelay
• Total delays at arrival (in minutes): MinArrDelay
The BTS and Twitter datasets are split into a training set,

consisting of the full year 2017, and a testing set, consisting
of the months of January and February 2018.

After aggregation, it is easier to visualize some charac-
teristics of both datasets. Fig. 1 show the evolution of the
number of delayed departing and arriving flights per hour
and the number of cancelled flights per hour over a week in
the month of January 2017 (Monday 16th to Sunday 22nd).
Fig. 2 show the evolution of the number of tweets collected
per hour using seven airline handles and six airport handles
over the same period. Though both datasets show a clear 24
hour pattern, the Twitter dataset (Fig. 2) has some occasional
spikes of activity which do not seem directly correlated to
spikes in delays nor in cancellations (Fig. 1).

B. BTS dataset analysis

In order to have a better understanding of the BTS values
to predict, Fig. 3 shows the hourly average over the year
2017 of the total number of flights, the number of delayed

Figure 1: Sample of the BTS dataset: Hourly evolution of some selected
BTS attributes during a week of January 2017 (Monday 16th - Sunday
22nd)

flights and of the number of cancelled flights along with
their hourly standard deviation. This plot indicates a plateau
for the hourly number of flights over the period 8am-8pm,
therefore Table II shows the average over this period of the
2017 means and standard deviations for the values shown.
TABLE II: AVERAGE OVER THE PERIOD 8AM-8PM OF THE 2017 HOURLY
MEAN AND STANDARD DEVIATION OF THE BTS VALUES

Average Average
BTS label mean standard deviation
Total flights 865.45 71.32
Delayed departing flights 316.23 89.97
Delayed arriving flights 305.48 93.96
Cancelled flights 12.37 25.81
Total delay at departure (min) 11,547.09 6,282.40
Total delay at arrival (min) 11,494.82 6,659.81
% delayed departing flights 0.364 0.098
% delayed arriving flights 0.351 0.098
% cancelled flights 0.014 0.030

The values presented in Table II can be used as a bench-
mark for analyzing the accuracy scores presented later in



(a) Twitter data: volume of airlines-related tweets

(b) Twitter data: volume of airports-related tweets

Figure 2: Sample of the Twitter dataset: Hourly evolution of the number of
tweets related to specific airline or airport handles during a week of January
2017 (Monday 16th - Sunday 22nd). Occasional spikes of activities occur
not necessarily synchronized with spikes in the BTS data (Fig. 1)

Section III-B. For example, this table indicates that in 2017
during the day (8am-8pm), there are on average 316 flights
delayed departing flights per hour with an average standard
deviation of 90 flights. For a prediction model to be useful,
it needs to yield a lower error than this average standard
deviation.

C. Feature selection on Twitter data

Considering now only the Twitter dataset, the number
of tweets per hour per search handle are obvious features
to keep. In order to maintain as well some information
regarding the content of the tweets, some simple keyword-
based filters were used: a first step is to extract the number of
tweets containing delay or cancellation related keywords per
hour and per search handle. These keywords were already
used in a study of the impact of a bomb cyclone on the US
East Coast [17] and are presented in Table III.

TABLE III: KEYWORDS USED FOR FILTERING TWEETS

Filter Keywords
Cancellation cancellation, cancel, cancelled, postponed

Delay delay, delayed, wait, waiting, late, postponed, hours

Figure 3: Hourly average of some BTS values over the year 2017. The
hourly standard deviation is represented by the vertical bars

Another way of exploiting information from the content
of these tweets is to perform a topic analysis of the tweet
database using Latent Dirichlet Allocation [29] (LDA). A
first step in topic analysis is to clean the documents analyzed,
here the tweets. This cleaning process was already performed
in [17] and consists of the following steps: Any reference
to websites or pictures was replaced by a corresponding
keyword. Every mention to another Twitter user within a
tweet (@someone) as well as most emojis were similarly
replaced. Since this database contains many replies from
airlines to their customers, individual signatures of each
agent were also replaced by a keyword. Dates and times
were also generically replaced by keywords (e.g. "3rd Jan
2017" becomes "DATE" and "4pm" becomes "TIME"). The
resulting text was then filtered from common stop-words
and from words occurring only once in the whole year
of 2017. A list of 100 topics was then created using the
Gensim [30] library. The topic distribution of each tweet
was then calculated before averaging these distributions per
hour and per search handle. The hourly standard deviation
of the distributions was also extracted.

Given the temporal nature of the data analyzed, the
following features were chosen to keep track of the date:
month of the year, day of the month, day of the week and
hour in the day. In summary the following 8,327 features
are considered:

• Hourly volume of tweets for each search han-



dle (7 airlines and 34 airports giving 41 features):
Num_tweets_handle

• Hourly volume of delay-related tweets for each search
handle (41 features): Num_tweets_kwd_handle

• Hourly volume of cancelled-related tweets for each
search handle (41 features): Num_tweets_kwc_handle

• Hourly average of topic distribution for each search
handle (41x100 features): Mean_topic_handle

• Hourly standard deviation of topic distribution for each
search handle (41x100 features): Std_topic_handle

• Month of the year, Day of the month, Day of the week
and Hour in the day (4 features)

A first analysis of this choice of features is to calculate the
Pearson correlation between each pair of (BTS label, tweet
feature). The highest correlation score was obtained for the
number of delayed departing flights with a score of 0.703.
The best feature - i.e. the feature with the highest correlation
score - for each label is recorded in Table IV.

TABLE IV: MOST CORRELATED FEATURE PER BTS LABEL

BTS Best Feature Correlation
MinDepDelay Num_tweets_kwd_@AmericanAir 0.685
MinArrDelay Num_tweets_kwd_@AmericanAir 0.668
NumDepDelay Num_tweets_@SouthwestAir 0.703
NumArrDelay Num_tweets_@SouthwestAir 0.684
PercDepDelay Num_tweets_kwd_@AmericanAir 0.573
PercArrDelay Num_tweets_kwd_@AmericanAir 0.585
NumCancelled Num_tweets_kwc_@Delta 0.330
PercCancelled Num_tweets_kwc_@Delta 0.291

A first observation is that cancellations are poorly corre-
lated to the Twitter dataset, even relatively to the other BTS
labels considered. Another observation is that the simple
keyword filters seem to be efficient since cancellations are
most correlated to a cancellation-keyword filter and most
delay related labels are most correlated to a delay-keyword
filter. This observation confirms the usefulness of adding
these filters to the feature set and to not settle with only the
raw number of tweets obtained from the initial search.

III. PREDICTION RESULTS

The aim of this section is to see how well it is possible
to predict flight delays and cancellations using the features
extracted from the Twitter dataset and how long in advance
the results are accurate. This study limits itself to predicting
0 to 5 hours in advance the different BTS values described
in section II-A.

A. Methodology

For each BTS value and for each prediction horizon,
three different machine learning regressors were trained on
the training data set (the full year of 2017): a Decision
Tree regressor (DTR), a Random Forest regressor (RFR)
and a Gradient Boosting regressor (GBR). These regressors
were implemented from scikit-learn[31] using their default
hyper-parameters on the first run. The maximum depth of
each regressor was limited to ten, the minimum number of
samples for a split was fixed to two and the number of trees
for the Random Forest regressor was fixed at ten.

Using accuracy measures presented in the upcoming sec-
tion III-B, the performance of this first run was analyzed
against a forecasting benchmark tool. A feature importance
analysis was then conducted to assess the relevance of the
proposed feature selection.

B. Prediction accuracy tests

In order to measure the accuracy, two different accuracy
indicators were used: the R2 score and the mean-absolute
error (MAE).

The R2 score, also known as the coefficient of deter-
mination, is defined as the unity minus the ratio of the
residual sum of squares over the total sum of squares:
R2 = 1−

∑
i(yi−fi)

2∑
i(yi−ȳ)2 , where y is the value to be predicted,

ȳ its mean and f is the predicted value. It ranges from −∞
to 1, 1 being a perfect prediction and 0 meaning that the
prediction does as well as constantly predicting the mean
value for each occurence. In the case of a negative R2, then
the model has a worse prediction than if it were predicting
the mean value for each occurence and therefore yields no
useful predictions.

Regarding the mean-absolute error, the smaller its value
is, the more accurate the prediction is. It is calculated using
the following formula: MAE = 1

n

∑
i |fi − yi| where n is

the number of values being predicted.
As a comparison benchmark, we used Facebook’s time-

series forecasting tool Prophet [32] on the 2017 BTS data
to forecast the full two first months of 2018. This choice
was made since the BTS data is only available after a two
month delay. The Prophet tool is based on an additive model
where non-linear trends are fit with yearly, weekly, and daily
seasonality [33]. It is described as robust to outliers and
missing data with no parameter tuning necessary, therefore
the default parameters of the Prophet tool was used for this
forecasting benchmark.



C. Prediction accuracy results

Table V lists the R2 scores related to the immediate pre-
diction of the different BTS values for the regressors trained
as well as the R2 scores for the benchmark Prophet. Table VI
compares the mean-absolute errors of the Random Forest
regressor with the Prophet benchmark and also indicates the
ratio of the MAE with the corresponding average hourly
mean from Table II.

TABLE V: IMMEDIATE PREDICTION R2 SCORE COMPARISON

BTS label FB Prophet DTR RFR GBR
MinDepDelay 3.80e-01 5.19e-01 6.57e-01 6.96e-01
MinArrDelay 3.24e-01 3.85e-01 5.58e-01 6.13e-01
NumDepDelay 6.39e-01 7.72e-01 8.58e-01 8.76e-01
NumArrDelay 6.47e-01 6.90e-01 7.70e-01 7.99e-01
PercDepDelay -2.40e-02 2.92e-01 5.22e-01 5.84e-01
PercArrDelay -1.90e-01 -1.49e-01 2.65e-01 2.94e-01
NumCancelled 7.23e-03 -3.80e-01 2.80e-01 3.08e-01
PercCancelled -9.62e-02 -2.70e-01 1.86e-01 1.25e-01

TABLE VI: IMMEDIATE PREDICTION MAE COMPARISON

BTS label FB Prophet RF regressor
MinDepDelay 4.09e+03 (35.4%)a 2.61e+03 (22.6%)
MinArrDelay 4.12e+03 (35.9%) 2.80e+03 (24.4%)
NumDepDelay 7.21e+01 (22.8%) 3.97e+01 (12.6%)
NumArrDelay 6.09e+01 (19.9%) 4.42e+01 (14.5%)
PercDepDelay 1.15e-01 (31.6%) 7.27e-02 (20.0%)
PercArrDelay 1.05e-01 (29.8%) 7.84e-02 (22.3%)
NumCancelled 1.14e+01 (92.4%) 1.07e+01 (86.2%)
PercCancelled 1.85e-02 (132.1%) 1.82e-02 (130.3%)

a. In parenthesis is the ratio of the MAE with the corresponding average hourly mean from Table II

From Table V it can be seen that for all delay related
predictions, the Prophet benchmark yields the lowest R2

score, followed by the Decision Tree regressor, the Random
Forest regressor and finally the Gradient Boosting regressor.
Regarding cancellation predictions, the ranking varies, how-
ever the Random Forest and Gradient Boosting regressors
still outperform the Prophet benchmark.

Comparing the MAE scores in Table VI with the average
hourly standard deviations presented in Table II, it is worth
noting that all prediction methods have a lower MAE than
the average hourly standard deviation associated to the pre-
dicted value. In the case of the number of delayed departing
flights, a way of assessing the improvement brought by these
prediction methods is to realize that the Prophet benchmark
has a MAE at 22.8% of the hourly average mean number of
delayed departing flights, while the RFR and GBR are closer
to 12%. Another way of understanding this improvement,

is to consider the following: From the historical data, it is
known that out of an average 865 flights per hour there
is an average of 316 flights delayed at departure with an
average standard deviation of 90 flights (cf. Table II). The
benchmark Prophet gives an estimation of the number of
delayed flights with a MAE of 72 flights, the Random
Forest regressor with a MAE of 40 flights and the Gradient
Boosting regressor with a MAE of 37 flights, which is an
important improvement of the incertitude margin.

Since even a simple Decision Tree regressor provides
more accurate results than the Prophet benchmark, a robust
forecasting tool, it means that Twitter - i.e. a passenger-
centric data-source - does contain some extra and useful
information for assessing the health of the air traffic system.

Regarding the prediction of these values up to 5 hours
ahead of time, the R2 scores of these tests for the Random
Forest regressor are plotted in Fig. 4. This plot shows that
this prediction method has an almost constant performance
for short-term prediction up to five hours ahead. The Gradi-
ent Boosting and Decision Tree regressors both have a sim-
ilar behavior with values corresponding to those in Table V.
The maximum variation of the R2 scores of the Random
Forest regressor ranges from 1.3e-3 for the number of de-
layed departing flights to 2.0e-2 for the number of cancelled
flights, where the maximum variation is the absolute value of
the difference between the maximum and minimum values.
Twitter data thus contains useful information regarding the
short-term future state of the air traffic system and can be
thus used as a viable estimator of its health.

Since the BTS label with the best accuracy measures
is the number of delayed flights, the following analyses
concentrate on this label.

D. Feature importance analysis

Focusing on the Random Forest regressor, it is possible to
search for the most important features within the 8,327 initial
features. This is achieved by using the Mean Decrease Impu-
rity measure defined by Breiman in [34] and normalizing the
obtained feature importances so that the sum of all feature
importances is equal to one. This analysis yields the same
top ten features for each estimator built (one for each hour
in advance). This observation is similar to the observation in
Section III-C concerning the low variation of the accuracy
measures. The top ten features are displayed in Fig. 5 using
the normalized measures obtained for the prediction at run
time.



Figure 4: Random Forest regressor R2 score evolution. The maximum vari-
ation for the Random Forest regressor ranges from 1.3e-3 for NumDepDelay
to 2.0e-2 for NumCancelled.

This ranking shows that even though half of the top ten
features uses the delay-keyword filter, the raw number of
tweets is still a major feature with two such features in the
top three. Another observation is that besides for two date-
related features, this top ten is filled with airlines related
features. Only five out of the seven airlines are represented
here, indicating most likely a difference in performance
between the chosen airlines with respect to passengers.

Though the feature ’Hour’ seems predominant, there is
an important decrease in performance if one only uses that
feature for predicting the number of delays as is shown in
Fig. 6 compared to the full feature dataset. It does however
perform better than the Facebook Prophet benchmark.

IV. SIMPLIFIED FEATURES ANALYSIS

The aim of this section is to analyze the initial feature
set in order to perform a feature reduction leading to a
faster training time while also improving the regressors
performance by reducing over-fitting. Once the training time
is reduced, it is possible to launch a fine-tuning analysis of
the Random Forest’s hyper-parameters to ensure a close-to-
optimal hyper-parameter set.

A. Feature reduction

Once the feature importances for the Random Forest
Regressor were calculated and normalized, it is possible to

Figure 5: Top ten features from the Random Forest regressor used for
predicting the number of delayed flights at h = 0

Figure 6: R2 score comparison of the performance of the different re-
gressors (Decision Tree, Random Forest and Gradient Boosting) using the
full feature set and using the sole feature ’Hour’. The Prophet benchmark
performance is indicated for comparison as well.

extract the features gathering 99% of the total importance
for predicting the number of delayed flights at each step
of time ahead. Grouping these features together yields 672
features. Tables VII & VIII give us some insight on the
selected features.

Table VII presents the feature type distribution within



TABLE VII: FEATURE CATEGORIZATION OF THE REDUCED FEATURE SET
EXPLAINING 99% OF THE NUMBER OF DELAYED FLIGHTS PREDICTION
ACCURACY

Feature type Frequency
Raw number of tweets 26
Number of tweets with delay keywords 5
Number of tweets with cancellation keywords 4
Average distribution of a topic 453
Standard deviation of the distribution of a topic 180

these 672 features: whether the feature is related to a raw
volume, a keyword filtered volume or to the mean or the
standard deviation of a topic. An observation from this table
is that the delay-keyword filtered features present in the top
ten features (Fig. 5) are the only ones kept in this top 99%.
The cancellation-keyword filtered features kept are the same
as the delay-keywords ones with the exception of JetBlue
related tweets.

Features from every airlines have been kept, however
only 26 airports are represented in this reduced feature
set. Table VIII shows the frequency ranking of the different
airlines and the top seven airports. Airports are noticeably
less present in these features, acknowledging the fact that
passengers tend to complain towards the airlines rather than
the airport they are in when delays occur. When comparing
with the actual ranking of number of delays over the
year 2017 (Table IX), the two rankings for the airlines are
different, indicating a different reaction to delays depending
on the chosen airline.

TABLE VIII: AIRLINES AND AIRPORTS CATEGORIZATION OF THE RE-
DUCED FEATURE SET EXPLAINING 99% OF THE NUMBER OF DELAYED
FLIGHTS PREDICTION ACCURACY

Rank Airlines Freq. Airports Freq.
1 Delta 137 ATL 13
2 AmericanAir 127 DFW 10
3 United 116 LAX 8
4 SouthwestAir 95 PHL 7
5 JetBlue 55 SEA 6
6 SpiritAirlines 18 JFK 6
7 VirginAmerica 15 DEN, CLT 5

Regarding the topic-related features, every topic is repre-
sented in the reduced feature set, i.e. for every topic, there is
at least one feature associated with its average distribution
or the standard deviation of its distribution for at least one
search handle. The topic frequency distribution histogram
within this reduced dataset is presented in Fig. 7 and seems
to validate the choice of 100 topics. Only two topics are kept

TABLE IX: DELAY RANKING ON THE YEAR 2017 WITHIN THE SELECTED
AIRLINES AND AIRPORTS

Rank Airlines # delays Airports # delays
1 SouthwestAir 615,095 ATL 129,196
2 AmericanAir 282,508 LAX 90,729
3 Delta 280,975 ORD 88,127
4 JetBlue 238,230 DEN 81,401
5 United 184,120 SFO 68,184
6 SpiritAirlines 47,412 DFW 64,661
7 VirginAmerica 28,938 PHX 55,171

less then twice, i.e. there are at most two irrelevant topics.
Furthermore, there are no extreme outliers, which indicates
that no single topic outperforms the other topics. Finally, the
frequency distribution is quite tightly centered around six,
indicating a well-balanced importance distribution within the
topics.

Figure 7: Frequency histogram of topic distributions with the reduced
feature set

B. Performance comparison

This reduced dataset is now used to train new regressors
in order to compare their performance with the full feature
dataset regressors. The same regressors as previously intro-
duced are considered with the addition of a Linear Regressor,
now that the number of features is considerably smaller than
the number of samples.

Only the R2 scores are presented in Fig. 8 since the other
accuracy measures have shown similar behavior for this test.



Figure 8: R2 score comparison of the prediction of NumDepDelay of the
different regressors (Decision Tree, Random Forest and Gradient Boosting)
using the full feature set and using the reduced feature set along with a
Linear regressor trained on the reduced feature set. The Prophet benchmark
performance is indicated for comparison as well.

The accuracy of these new estimators for predicting the
number of delayed flights is two-by-two comparable with
the full-feature ones, with slightly better R2 scores most of
the time (cf. Fig. 8). Only the Linear Regression performs
poorly compared to the other estimators - though still with
better accuracy scores than the Prophet benchmark.

Regarding the other BTS values, the reduced Gradient
Boosting and Random Forest regressors yield slightly more
accurate predictions of delays and of the number of delayed
arriving flights than the full feature dataset even though
the reduced feature data set was not tailored for these
predictions. An exploration of different combinations of
hyper-parameters was conducted from where it was noted
that the chosen parameters were already close to optimal.

V. CONCLUSION

This paper aimed at investigating a novel approach to
delay prediction in the US Air Transportation system with a
focus on Twitter, a passenger-centric data-source. Exploiting
both raw volume information as well as different levels of
content information within the Twitter stream leads to the
creation of a useful and comprehensive feature set. Using
this passenger-centric feature set leads to better predictive
accuracy of flight-centric air traffic perturbation values on a
system-wide level than by using a state-of-the-art and off-

the-shelf forecasting tool on the flight-centric data alone.
In particular, this dataset is most efficient in determining
the total number of delayed departing flights per hour. This
performance was then improved by analyzing the initial per-
formance of the derived random forest regressor. Focusing
on feature importance, it was possible to extract a reduced
yet wide-ranging feature set leading to the implementation
of an even faster and more accurate predicting model.

Information contained in passenger-centric datasets are
therefore useful for a better understanding of the overall
air transportation system, and have the added benefit of
being more readily and publicly available than flight centric
datasets. Future studies would focus on refining this assess-
ment of the air transportation health to a finer level, i.e. for
each airline considered or each airport. Another direction of
study considered is to validate this method to other countries
or regions (e.g. the European Union) where sufficient flight-
centric data is available.
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