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Abstract: The Fisher information metric provides parameterized probability densities with a1

Riemannian manifold structure, yielding the so-called information geometry. The information2

geometry of the gamma manifold associated to the family of gamma distributions has been well3

studied. However, only a few results are known for the generalized gamma family, that adds an4

extra shape parameter. The present article gives some new results about the generalized gamma5

manifold. This paper also introduces an application in medical imaging that is the classification of6

Alzheimer’s disease population. In the medical field, over the past two decades, a growing number of7

quantitative image analysis techniques have been developed, including histogram analysis, which is8

widely used to quantify the diffuse pathological changes of some neurological diseases. This method9

presents several drawbacks. Indeed, all the information included in the histogram is not used and the10

histogram is an overly simplistic estimate of a probability distribution. Thus, in this study we present11

how using information geometry and the generalized gamma manifold improved the performance of12

the classification of Alzheimer’s disease population.13

1. Introduction14

The generalized gamma distribution was introduced in [1], and can be viewed as a special case of15

the Amoroso distribution [2] in which the location parameter is dropped [3]. Apart from the gamma16

distribution, it generalizes also the Weibull distribution and is of common use in survival models. The17

purpose of the present work is to investigate some information geometric properties of the generalized18

gamma family, especially when restricted to the gamma submanifold. First, in Section 2, the Fisher19

information as a Riemannian metric and results in the case of the gamma manifold will be briefly20

introduced. Next, the case of the generalized gamma manifold will be detailed, using an approach21

based on diffeomorphism groups. In section 4, the extrinsic curvature of the gamma submanifold will22

be computed. Finally, an example of application in the medical imaging domain will be given in the23

last section.24

2. Information geometry and the gamma manifold25

Information geometry deals with parameterized families of distributions whose parameters are26

understood as local coordinates on a manifold and provided with a Riemannian structure by the27
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can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Fisher metric. In the sequel, Θ will be a smooth manifold and (pθ), θ ∈ Θ a family of probability28

density functions defined on a common event space Ω and depending smoothly on the parameters θ.29

Thorough the paper, the Einstein summation convention on repeated indices will be used.30

Definition 1. The Fisher information metric on Θ is defined at point θ ∈ Θ by the symmetric order 2 tensor:

g = gijdθi ⊗ dθ j

where:
gij = Epθ

[
∂θi l∂θj l

]
, l(θ) = log pθ

When the support of the density functions pθ does not depend on θ, the information metric can
be rewritten as:

gij = −Epθ

[
∂θi ∂θj l

]
(1)

It gives rise to a Riemannian metric on Θ.31

When the underlying event space Ω is also a smooth manifold, the Fisher metric has a classical32

nice invariance property, that corresponds to information preservation by sufficient statistics:33

Proposition 1. Let Ω̃ be a smooth manifold and Φ : Ω→ Ω̃ be a smooth diffeomorphism. Let g̃ be the Fisher34

information metric associated to the image family Φ∗pθ defined on the event space Ω̃. Then g̃ = g.35

The Fisher metric has a very simple expression when the parameterized family pθ is of natural
exponential type. In such a case, assuming for the sake of simplicity that Θ and Ω are open subsets of
finite dimensional real vector spaces, the density function pθ can be written as:

pθ(x) = exp(〈θ, F(x)〉 − φ(θ) + g(x)) (2)

The function φ in eq. 2 is called the potential function of the density and an immediate application
of the definition (1) yields for the expression of the Fisher information metric:

gij(θ) =
∂2φ

∂θi ∂θj

(θ) (3)

A manifold with such a Riemannian metric is referred to as a Hessian structure [4]. Many36

important tools from Riemannian geometry, like the Levi-Civita connection, are greatly simplified37

within this frame. In the sequel, all partial derivatives ∂θi will be abbreviated by ∂i.38

Proposition 2. For a parameterized density family pθ , θ ∈ Θ pertaining to the natural exponential class with
potential function Ψ, the Christoffel symbols of the first kind of the associated Hessian structure are given by [5]:

Γijk =
1
2

∂i∂j∂kφ

The gamma distribution can be written as a natural exponential family on two parameters (α, λ),39

defined on the parameter space R+∗ ×R+∗ by:40

Definition 2. The gamma distribution is the probability law on R+∗ with density relative to the Lebesgue
measure given by:

p(x; α, λ) =
1

Γ(λ)αλ
xλ−1e−

x
α , x > 0 (4)

with parameters α > 0, λ > 0.41
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The next proposition comes directly from the definition:42

Proposition 3. The gamma distribution defines a natural exponential family with natural parameters λ and43

η = α−1 and potential function φ(η, λ) = log (Γ(λ))− λ log(η).44

Using 3, the Fisher metric is obtained by a straightforward computation:

g(η, λ) =

(
λ
η2 − 1

η

− 1
η ψ′(λ)

)
(5)

where ψ is the digamma function.45

It is sometimes convenient to perform a change of parameterization in order to have a diagonal46

form for the metric. The next proposition is of common use and allows the computation of a pullback47

metric in local coordinates:48

Proposition 4. LetM be a smooth manifold and (N , g) be a smooth Riemannian manifold. For a smooth
diffeomorphism f : M → N , the pullback metric f ∗g has matrix expressed in local coordinates at the point
m ∈ M by:

Jt
f (m)G( f (m))J f (m) (6)

with J f (m) the jacobian matrix of f at m and G(n) the matrix of the metric g at n ∈ N .49

Performing the change of parameterization: f : (µ, β) 7→ (η = β/µ, λ = β) yields:

J f (µ, β) =

(
− µ

β2
1
β

0 1

)

Using prop. 4 then gives for the pullback metric matrix:

G(µ, β) =

(
β

µ2 0

0 ψ(β)′ − 1
β

)
.

The information geometry of the gamma distribution is studied in details in [6], with explicit50

calculations of the Christoffel symbols and the geodesic equation.51

3. The geometry of the generalized gamma manifold52

While the gamma distribution is well suited to study departure to full randomness has pointed53

out in [6], it is not general enough in many applications. In particular, the Weibull distribution, that54

also generalizes the exponential distribution is not a gamma distribution. A more general family was55

thus introduced, by adding a power term.56

Definition 3. The generalized gamma distribution is the probability measure on R+ with density respective to
the Lesbesgue measure given by:

p(x; α, λ, β) =
βxβλ−1

αβλΓ(λ)
e−(

x
α )

β

, x > 0 (7)

where α > 0, λ > 0, β > 0.57

Due to the exponent β, the generalized gamma distribution does not define a natural exponential58

family. However, letting β fixed, the mapping Φβ : x 7→ xβ is a diffeomorphism of R+ to itself, and59

the image density of p(α, λ, β) under Φβ is a gamma density with parameters (αβ, λ). For any κ > 0,60
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the submanifold β = κ of the generalized gamma manifold is diffeomorphic to the gamma manifold.61

Using the invariance of the Fisher metric under diffeomorphisms, the induced metric on the above62

submanifold can be obtained.63

Proposition 5. Let κ > 0 be a fixed real number. The induced Fisher metric Gκ on the submanifold (α, λ, κ) of
the generalized gamma manifold is given in local coordinates by:

Gκ(α, λ) =

(
λκ2

α2 − κ
α

− κ
α ψ′(λ)

)
.

Proof. In local coordinates (ακ , λ), the Fisher metric of a gamma distribution manifold (ακ , λ) is

Gκ(α
κ , λ) =

(
λ

α2κ − 1
ακ

− 1
ακ ψ′(λ)

)
.

The Jacobian matrix of the transformation (α, λ) → (ακ , λ) is the matrix J = diag(κακ−1, 1) and the
change of parametrization yields:

Gκ(α, λ) = JtGκ(α
κ , λ)J.

The Fisher metric on the submanifold (α, λ, κ) is directly obtained from the invariance by using the64

diffeomorphism Φβ : x 7→ xβ.65

Proposition 6. In local coordinates, the fisher information metric of the generalized gamma manifold is given
by:

G(α, λ, β) =


β2λ

α2 − β
α

−λψ(λ)−1
α

− β
α ψ′(λ) −ψ(λ)

β
−λψ(λ)−1

α −ψ(λ)
β

λψ(λ)2+2ψ(λ)+λψ′(λ)+1
β2

 (8)

Proof. The 2× 2 submatrix corresponding to local coordinates α, λ has already been obtained in prop.66

5. The remaining terms can be computed by differentiating the log likelihood function twice, but an67

alternative will be given below in a more general setting.68

The usual definition of the generalized gamma distribution 3 does stems from the gamma one
by a simple change of variable, thus making some computation less natural. Starting with the above
diffeomorphism Φβ and applying it to a gamma distribution yields an equivalent, but more intuitive
form. Furthermore, it is advisable to express the gamma density as a natural exponential family
distribution:

p(x; η, λ) =
ηλ xλ−1 e−ηx

Γ(λ)
, x > 0,

where λ > 0, η > 0 are the natural parameters of the distribution.69

Definition 4. The generalized gamma distribution on R+ is the probability measure with density:

p(x; η, λ, β) =
β ηλ xβλ−1 e−ηxβ

Γ(λ)
, x > 0,

with η > 0, λ > 0 and β > 0.70
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Due the the invariance by diffeomorphism property of the Fisher information metric, the induced
metric on the submanifolds β = cte is independent of β, and is exactly the one of the gamma manifold,
here given by:

g(η, λ) =

(
λ
η2 − 1

η

− 1
η ψ′(λ)

)
. (9)

An important fact about the family of diffeomorphisms Φβ is the group property Φβ1 ◦Φβ2 = Φβ1β2 .
It turns out that all the computation can be conducted in a general Lie group setting, as detailed below.
Let pθ , θ ∈ Θ, be a parameterized family of probability densities defined on an open subset U of Rn

and let G be a Lie group action on U by diffeomorphisms preserving orientation. For any g in G and θ

in Θ, the image density p̃g,θ under the diffeomorphism x ∈ U 7→ ξ(g, x) = g.x is given by:

∀x ∈ U, p̃g,θ(x) = pθ(ξ(g, x)) |∂2ξ(g, x)| .

Note that, in this paper, we consider increasing monotone diffeomorphisms. For simplicity of calculus,
the absolute value may be remove in the above expression. Denoting l̃(x, θ, g) the log-likelihood of
p̃g,θ(x) and l(x, θ) the one of pθ(x), it comes, by obvious computation:

∀x ∈ U, l̃(x, θ, g) = l(ξ(g, x), θ) + log ∂2ξ(g, x).

Throughout the document, the symbol ∂i stands for the partial derivative with respect to the i-th71

variable. Higher order derivatives are written similarly as ∂i...i,j...j,... by repeating the variable k times to72

indicate a partial derivative of order k.73

Proposition 7. For any x ∈ U, g ∈ G:

∂1ξ(g, x) = ∂1ξ(e, ξ(g, x))TgRg−1

where e is the identity of G and Rg is the right translation mapping h ∈ G 7→ Rg.h = h.g.74

Proof. Since ξ comes from a group action:

ξ(h, ξ(g, x)) = ξ(h.g, x).

Then, taking the derivative with respect to h at identity:

∂1ξ(e, ξ(g, x)) = ∂1ξ(g, x)TeRg.

Since TeRgTgRg−1 = Id by the chain rule, the claimed result is proved.75

This property allows to compute the Fisher information metric in a convenient way.76

Proposition 8. The element Gg,θ of the Fisher metric of p̃g,θ is given by:

−
∫

U
∂12l(x, θ)∂1ξ(e, x)pθ(x)dx TgRg−1 ,

Proof. Since:
l̃(x, θ, g) = l(ξ(g, x), θ) + log ∂2ξ(g, x),

it comes:
∂2 l̃(x, θ, g) = ∂2l(ξ(g, x), θ)

and thus:
∂23 l̃(x, θ, g) = ∂12l(ξ(g, x), θ)∂1ξ(g, x).
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Now, using prop. 7:
∂23 l̃(x, θ, g) = ∂12lθ(ξ(g, x), θ)∂1ξ(e, ξ(g, x))TgRg−1 .

Taking the expectation with respect to p̃g,θ yields:

E[∂23] =
∫

U
∂12l(ξ(g, x), θ)∂1ξ(e, ξ(g, x)) p̃g,θ(x)dx TgRg−1

and the result follows by the change of variable y = ξ(g, x).77

The case of the elements Gg,g is a little bit more complex, due to the non vanishing extra term in
the log-likelihood l̃(x, θ, g). Taking the first derivative with respect to g yields:

∀x ∈ U, ∂3 l̃(x, θ, g) = ∂1l(ξ(g, x), θ)∂1ξ(g, x) +
∂12ξ(g, x)
∂2ξ(g, x)

.

The second term in the right hand side can be further simplified using the next proposition, that is a78

direct consequence of prop. 7.79

Proposition 9. For any θ ∈ Θ, g ∈ G, x ∈ U:

∂12ξ(e, ξ(g, x))∂2ξ(g, x) = ∂12ξ(g, x) TeRg.

Applying it to the log-likelihood derivative and using again 7 yields:

∀x ∈ U, ∂3 l̃(x, θ, g) = (∂1l(ξ(g, x), θ)∂1ξ(e, ξ(g, x)) + ∂12ξ(e, ξ(g, x))) TgRg−1 .

Proposition 10. The element Gg,g of the Fisher metric of p̃g,θ is given in matrix form by:

TgRT
g−1

∫
U

hg,θ(x)Thg,θ(x)pθ(x)dx TgRg−1

with:
hg,θ(x) = ∂1l(x, θ)∂1ξ(e, x) + ∂12ξ(e, x).

Proof. Starting with the definition:

Gg,g = E[(∂3 l̃)T (∂3 l̃)]

the result follows after the change of variable y = ξ(g, x) in the expectation.80

An important corollary of 8 and 10 is that the Fisher metric is right invariant with respect to the81

group action.82

Propositions 8 and 10 allow to compute the coefficients gηβ, gλβ, gββ in the Fisher metric, thus83

yielding the next proposition.84
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Proposition 11. The Fisher information matrix in natural coordinates has coefficients:

gηη =
λ

η2

gηλ = − 1
η

gλλ = ψ′(λ)

gηβ =
λ

ηβ
(ψ(λ + 1)− log η)

gλβ =
1
β
(log η − ψ(λ))

gββ =
1
β2

[
1 + λ log2 η − 2λψ(λ + 1) log η + λψ2(λ + 1) + λψ′(λ + 1)

]
Recalling that the Christoffel symbols of the first kind for the Levi-Civita connection are obtained

using the formula:

Γkij =
1
2

(
∂igjk + ∂jgik − ∂kgij

)
one can obtain them as:

Γ111 = − λ
η3 Γ211 = 1

2η2 Γ311 =
λ(−1+log η−ψ(λ+1))

η2β

Γ121 = Γ211 = Γ112 Γ221 = Γ212 = 0 Γ321 = Γ312 =
1−log η+ψ(λ+1)+λψ′(λ+1)

2ηβ

Γ122 = 0 Γ222 = 1
2 ψ′′(λ) Γ322 = −ψ′(λ)

β

(10)

Γ131 = Γ113 = 0

Γ231 = Γ213 =
1+log η−ψ(λ+1)−λψ′(λ+1)

2ηβ

Γ331 = Γ313 =
λ(log η−ψ(λ+1))

ηβ2

Γ132 = Γ123 =
−1−log η+ψ(λ+1)+λψ′(λ+1)

2ηβ

Γ232 = Γ223 = 0

Γ332 = Γ323 =
ψ′(λ+1)(1−2λ log η)−2ψ(λ+1)(log η−λψ′(λ+1))+log2 η+ψ(λ+1)2+λψ′′(λ+1)

2β2

Γ133 = 0

Γ233 = −−2ψ(λ+1)(log η−λψ′(λ+1))+ψ′(λ+1)(1−2λ log η)+log η(log η+2)+ψ(λ+1)2−2ψ(λ)+λψ′′(λ+1)
2β2

Γ333 = − λ log2 η+λ(−2 log ηψ(λ+1)+ψ(λ+1)2+ψ′(λ+1))+1
β3

(11)

4. The gamma submanifold85

The submanifolds β = cte of the generalized gamma manifold are all isometric to the gamma86

manifold. This section is dedicated to the study of their properties using the Gauss-Codazzi equations.87

In the sequel, the generalized gamma manifold will be denoted by M while Nκ , κ > 0 will stand for88

the embedded submanifold β = κ.89

Proposition 12. The normal bundle to Nκ is generated at (η, λ) on the gamma submanifold by the vector:

n(η, λ) =
(
−η(λψ′(λ)(ψ(λ + 1)− log(η)) + log(η)− ψ(λ)),−1, κ

(
λψ′(λ)− 1

))
Proof. The matrix of the Fisher metric at (η, λ, β) can be written in block form as:

G(η, λ, β) =

(
g(η, λ) v

vt gββ

)
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with:

g(η, λ) =

(
λ
η2 − 1

η

− 1
η ψ′(λ)

)
and

v =

(
λ

ηβ (ψ(λ + 1)− log η)
1
β (log η − ψ(λ))

)
Any multiple of the vector:

(−g(η, λ)−1v, 1)

is normal to the tangent space to the submanifold Nκ . The result follows by simple computation.90

Let ∇ be the levi-civita connection of the gamma manifold and ∇ that of the generalized gamma.
It is well known [7] (pp 60-63) that these two connections are related by the Gauss formula:

∀X, Y ∈ TNκ , ∇XY = ∇XY + B(X, Y) (12)

where B is a symmetric bilinear form with values in the normal bundle. Letting n = niei with
e1 = ∂η , e2 = ∂λ, e3 = ∂β, it comes, with i, j = 1 . . . 2:

g
(
∇ei ej, n

)
= nkΓkij = g

(
∇ei ej, n

)
+ g

(
B(ei, ej), n

)
. (13)

Since B takes its values in the normal bundle, it exists a smooth real value mapping aij, i, j = 1 . . . 2
such that B(ei, ej) = aijn The equation 13 yields:

aij =
nkΓkij

g(n, n)
. (14)

From [7] (p 63), the sectional curvature K(e1, e2) of M can be obtained from the one K(e1, e2) of Nκ as:

K(e1, e2) = K(e1, e2) +
g (B(e1, e2), B(e1, e2))− g (B(e1, e1), B(e2, e2))

g(e1, e1)g(e2, e2)− g(e1, e2)2 (15)

or:

K(e1, e2) = K(e1, e2) + g(n, n)
a2

12 − a11a22

g11g22 − g2
12

. (16)

Using the expressions if the Christoffel symbols and the metric, the coefficients a11, a12, a22 can be
computed as:

a11 =
2λ(1− λψ′(λ)) + 1

2η2D
(17)

a12 =
λ2ψ′(λ)2 − ψ′(λ)− 1

2ηD
(18)

a22 =
ψ′(λ)(1− λψ′(λ))− ψ′′(λ)/2

D
(19)

with:
D = g(n, n) = (λψ′(λ)− 1)(ψ′(λ)(λ2ψ′(λ)− 1)− 1).

Finally:

g(n, n)
a2

12 − a11a22

g11g22 − g2
12

= F(λ)/G(λ) (20)
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with:

F(λ) =λ4ψ′(λ)4 − 2λ2(2λ + 1)ψ′(λ)3 +
(

6λ2 + 2λ + 1
)

ψ′(λ)2

− 2λ(λψ′′(λ) + 2)ψ′(λ) + (2λ + 1)ψ′′(λ) + 1

and:
G(λ) = 4(λψ′(λ)− 1)2

(
ψ′(λ)

(
λ2ψ′(λ)− 1

)
− 1
)

.

Proposition 13. The term a2
12 − a11a22 is strictly positive.91

Proof. Using the expressions of the coefficients:

a2
12 − a11a22 =

1
4η2D2 (A(λ) + B(λ)C(λ))

with:

A(λ) = (λ2ψ′(λ)2 − ψ′(λ)− 1)2

B(λ) = 2λ(1− λψ′(λ)) + 1

C(λ) = 2ψ′(λ)(−1 + λφ′(λ)) + ψ′′(λ).

The ψ′ function satisfies the next inequality [8]:

1
λ
+

1
2λ2 < ψ′(λ) <

1
λ
+

1
λ2

from which it comes:
− 1

2λ
> 1− λψ′(λ) > − 1

λ

and in turn:
0 > B(λ) > −1.

To obtain the sign of C(λ), a different bound is needed for the polygamma function. Again from [8]:

(k− 1)!
(x + 1)k +

k!
xk+1 <

∣∣∣ψ(k)
∣∣∣ < (k− 1)!

(x + 1/2)k +
k!

xk+1 , k ≥ 1. (21)

Using the inequality 21, it comes:
λ + 1

λ(2λ + 1)
< λψ′(λ)− 1

so that: (
1

λ + 1/2
+

1
λ2

)(
λ + 1

λ(2λ + 1)

)
< ψ′(λ)(−1 + λφ′(λ)).

Using again 21 with k = 2 yields finally:

C(λ) < − 2
λ2(1 + 2λ)2 .

Since both B(λ) and C(λ) are strictly negative, A(λ) + B(λ)C(λ) is strictly positive as claimed.92

Proposition 14. The sectional curvature of the generalized gamma manifold in the (e1, e2) satisfies:

K(e1, e2) →
λ−>0+

12− π2

2(π2 − 6)
.
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Proof. The sectional curvature of the gamma manifold satisfies [6]:

K(e1, e2) →
λ−>0+

−1
2

.

It is thus only needed to estimate the limit of (20) when λ→ 0+. The asymptotics of the polygamma
functions at 0 are given by:

ψ′(λ) =
1

λ2 + ψ′(1) + o(1),

ψ′′(λ) = − 2
λ3 + ψ′′(1) + o(1).

The term:

F(λ) =λ4ψ′(λ)4 − 2λ2(2λ + 1)ψ′(λ)3 +
(

6λ2 + 2λ + 1
)

ψ′(λ)2

− 2λ(λψ′′(λ) + 2)ψ′(λ) + (2λ + 1)ψ′′(λ) + 1

can thus be approximated by:(
π8x6 − 24π6x5 + 12π6x4 + 216π4x4 − 432π2x4ψ′′(1)− 360π4x3 − 864π2x3+

2592x3ψ′′(1) + 36π4x2 + 2592π2x2 + 1296x2 − 1296x2ψ′′(1)− 864π2x− 5184x + 2592
)

/(1296x2)

and the term :
G(λ) = 4(λψ′(λ)− 1)2

(
ψ′(λ)

(
λ2ψ′(λ)− 1

)
− 1
)

.

is approximated by: (
π2x2 − 6x + 6

)2 (
π4x2 + 6π2 − 36

)
324x2

Finally, the quotient F(λ)/G(λ) is equal at λ = 0 to

3
π2 − 6

and the result follows by summation with −1/2.93

It is conjectured that the sectional curvature of the generalized gamma manifold in the directions94

∂η , ∂λ is strictly positive, bounded from above by 1/2 as it appears to be the case numerically.95

5. Medical imaging application96

Magnetic Resonance Imaging (MRI) seeks to identify, localize and measure different parts97

of the anatomy of the central nervous system, and has been demonstrated as a valid marker of98

neurodegenerative diseases such as Alzheimer’s disease, the most common cause of dementia [9–11].99

Indeed, brain atrophy measured by structural MRI has been proposed as a surrogate marker for the100

early diagnosis of Alzheimer’s disease [12,13].101

Many of these studies limited their work by using central tendency measures such as the mean or102

the median and more recent ones used histogram-analysis [14,15] in order to represent a biomarker103

rather than using the biomarker probability distribution of the whole brain or of specific tissues. In this104

section, we present one of the possible applications of information geometry on manifold of probability105

distributions and demonstrate the use of probability distributions in the context of the classification of106

the Alzheimer’s disease population.107
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5.1. Study set-up and design108

Data used in the preparation of this paper were obtained from the Alzheimer’s disease109

Neuroimaging Initiative (ADNI) database. ADNI is a project that has been initiated in 2004 by the110

National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering111

(NIBIB) and the Food and Drug Administration (FDA), whose principal investigator is Dr. Michael112

Weiner. ADNI provides all data without embargo to all scientists in the world. The aim of the project113

is the development of clinical, genetic, biochemical or imaging biomarkers for the early diagnosis and114

follow-up of Alzheimer’s disease. For up-to-date information, see ADNI website.115

5.2. Participants116

Our study is based on a part of ADNI population. Indeed, the initial subjects were not age- and117

sex-matched and our procedure consisted in randomly selecting subjects. In addition, some of the118

subjects were excluded because of a low diagnosis reliability (according to ADNI criteria) and others119

because of unsuccessful cortical thickness measurement due to poor image quality. The resulting120

population is composed of 143 subjects; 71 healthy controls (HC) subjects and 72 Alzheimer’s disease121

(AD) patients whose demographic data are presented in Table 1.122

5.3. MRI Acquisition123

MRI volumes were downloaded from ADNI1 (i.e. ADNI first study). All the MR scans124

are T1-weighted MR images and were acquired on a 1.5 Tesla scanner. For each subject, we125

only used the MRI scan from the baseline visit and the ones that were acquired according to126

3D MP-RAGE (Magnetization -Prepared Rapid Acquisition Gradient Echo) sequence. The 3D127

MP-RAGE sequence was used with the following protocol parameters: slice width = 1.2mm;128

echo time (TE)=3.61ms; repetition time (TR)=3000 ms; flip angle=8deg; matrix size=192x192;129

slice number=160-170; FOV=250mm; pixel size=1.25mm×1.25mm. The MPRAGE images are130

considered the best in the quality ratings and have undergone gradwarping, intensity correction,131

and have been scaled for gradient drift using the phantom data.132

5.4. Cortical thickness measurement and distribution133

Cortical thickness was chosen as the MRI biomarker because of its ability to quantify134

morphological alterations of the cortical mantle in early stage of AD. Cortical Thickness (CTh) was135

measured using the Matlab Toolbox CorThiZon [16] and computed on the entire cortical ribbon using136

a Laplace’s-equation-based algorithm as described by Jones et al [17]. Thus, a 3D cortical thickness137

map was obtained.138

We applied the method of moments previously described to estimate the three generalized gamma139

parameters (α, λ, β) and thus we obtained the CTh distribution.140

Table 1. Demographic and clinical characteristics of the study population

HC AD p-value
(n=71) (n=72)

Age (years) 76.1 ± 5.6 77.4 ± 5.5 0.17
Sex (F/M) 38 / 33 41 / 31 0.20

MMSE 29 ± 0.9 23.2 ± 2.1 <0.001

Plus-minus values are means ± standard deviation.
All p-values are based on ANOVA test, apart from
Sex, which is based on Chi-square tests (α <0.05).
Abbreviations: HC, Healthy Control; AD,
Alzheimer’s disease patients; MMSE, Mini Mental
State Examination.

http://adni.loni.usc.edu/about/
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5.5. Clustering Based on Distribution Similarity141

Clustering, also called unsupervised classification, has been extensively studied for years in142

many fields, such as data mining, pattern recognition, image segmentation and bioinformatics. This143

technique is used primarily to segment or classify a database or extract knowledge to attempt to144

identify subsets of data that are difficult to distinguish. The aim is to group data sets in a way that the145

intra-cluster similarity is maximized while the inter-cluster similarity is minimized. Three principal146

categories of clustering exist in literature, namely partitioning clustering, hierarchical clustering and147

density-based clustering.148

In our study, the experiments were conducted using partitioning k-medoids algorithm [18], that
we extended using an approximate geodesic distance that is computed in two steps.
Let p(η2, λ2, β2), p(η1, λ1, β1) be two generalized gamma densities. The energy E1 of the path t ∈
[0, 1] 7→ γβ(t) = (η1, λ1, (1− t)β1 + tη2) is computed using the formula:

E1 = (β2 − β1)
2
∫ 1

0
gββ(γβ(t))dt

Then the energy E2 of the path joining p(η1, λ1, β1) and p(η2, λ2, β2) is computed on the gamma149

submanifold only. The overall distance is then taken to be
√

E1 + E2. Using this approximate distance150

avoids circumvent numerical instabilities resulting from the positive curvature of the generalized151

gamma manifold in the plane ∂η , ∂λ and yields a faster algorithm.152

The K-medoids approach, as all clustering algorithm, tries to organize data into K clusters, to do153

so the method consists of two phases, the building phase and the swapping phase. The building phase154

consists on selecting the initial k representatives (i.e. medoids) at random. Non-selected objects are155

assigned to the most similar representative according to geodesic distance. Then, in the swapping156

phase, we iteratively replace representatives by non-representative objects (see algorithm 1).157

Algorithm 1 Distribution based K-medoids algorithm

1. Initialization: Select randomly k distributions as the initial representative objects (i.e.
k-medoids)

2. Repeat

i. Calculate the geodesic distance between each medoid m and the remaining data objects
ii. Assign the non representative object oi to the closest medoid m (i.e. smallest geodesic

distance)
iii. Compute the total cost S of swapping the medoid m with oi; the total cost is defined to

be the sum of the squared errors SSE of the resulting clustering
iv. If S < 0 , then swap m with oi to form the new set of medoids

3. Until
Convergence criterion is satisfied (i.e. no change in the medoids or in total swapping cost)

The K-medoids algorithm is chosen instead of k-means algorithm for mainly two reasons:158

It minimizes a sum of pairwise dissimilarities instead of a sum of squared Euclidean distances.159

Consequently it is more robust to noise and outliers as compared to k-means. Moreover, k-means160

represent each cluster by the mean of all objects in this cluster, while k-medoids use an actual object in161

a cluster as its representative and since the objects in our case are probability distributions; it was more162

efficient to proceed with the k-medoids method [19].163

164
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5.6. Results165

The quality of the clustering results was assessed using an external evaluation measure, called
Purity. The external clustering measures are used to assess how well clusters matched up with real
labels. In order to compute the evaluation measure Purity, each cluster is assigned to the class which is
most frequent in the cluster, and then the accuracy of this assignment is measured by counting the
number of correctly assigned objects and dividing by the total number of objects. It is the percent of
the total number of objects that were classified correctly.

Purity =
1
N

k

∑
i=1

max
j
|ci ∩ tj| (22)

where N is the number of objects, k is the number of clusters, ci is the number of objects in the i-th166

cluster of the clustering solution, and tj the number of objects in the j-th cluster of the groundtruth ci167

and |ci ∩ tj| is the number of objects in both the i-th cluster of the clustering solution and j-th cluster of168

the groundtruth. Figure1 summarizes the approach.169

In our case, the aim was to assess how accurately our approach would group AD patients and170

HC subjects. Thus, we have chosen k = 2 as cluster number in the k-medoids algorithm, one cluster171

would represent the AD patients and the other the HC subjects. These clusters are compared with the172

true label data using the Purity measure. We obtained Purity=0.84, meaning that the two clusters of173

the distribution based k-medoids algorithm match up with 84% of the real labels.174

Figure 1. General scheme of the proposed approach

5.7. Discussion175

The distribution based K-medoids algorithm obtains accurate classification of the Alzheimer’s176

disease population (Purity = 84%). Indeed, information geometry offers suitable tools that allows the177

proper use of probability distribution, which increase significantly the performance of the disease178

classification compared to classical approaches [10]. Thus, we can consider that this approach is a179

powerful aid to study neurological diseases.180
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