
HAL Id: hal-02158902
https://enac.hal.science/hal-02158902v1

Submitted on 30 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigations of Process Mining Methods to discover
Process Models on a Large Public Administration

Software
Florent Mouysset, Célia Picard, Christophe Bortolaso, Frédéric Migeon,

Marie-Pierre Gleizes, Christine Maurel, Mustapha Derras

To cite this version:
Florent Mouysset, Célia Picard, Christophe Bortolaso, Frédéric Migeon, Marie-Pierre Gleizes, et al..
Investigations of Process Mining Methods to discover Process Models on a Large Public Administration
Software. 37ème Congrès Informatique des Organisations et Systèmes d’Information et de Décision
(INFORSID 2019), Jun 2019, Paris, France. pp.147-162. �hal-02158902�

https://enac.hal.science/hal-02158902v1
https://hal.archives-ouvertes.fr

Investigations of Process Mining Methods

to discover Process Models on a Large Public

Administration Software

Florent Mouysset1,3, Célia Picard2*, Christophe Bortolaso1,

Frederic Migeon3, Marie-Pierre Gleizes3, Christine Maurel3 and

Mustapha Derras1

1. Berger-Levrault, 64 Rue Jean Rostand, 31670 Labège, France

{first name}.{last name}@berger-levrault.com

2. ENAC, 7 Avenue Edouard Belin, 31400 Toulouse, France

{first name}.{last name}@enac.fr

3. IRIT, Université Toulouse 3 (Paul Sabatier),31400 Toulouse, France

{first name}.{last name}@irit.fr

ABSTRACT. Maintaining large and aging applications in a software house, with heterogeneous

technologies, is very challenging. Whereas it is mandatory to continuously enhance user

experience and maintain a good quality of service, the real business usage can be difficult to

know precisely. To reach this goal, our project is to discover business models from the

analysis of "logs". In this paper, we report on existing studies about applying process mining

techniques and on our own experience with large datasets generated from daily end-user

activities within an existing public services software. Our experiments led us to identify an

interesting combination of features making our data hard to process with existing techniques.

We conclude by providing perspectives to enable process discovery with such specific data.

KEYWORDS: Software logs analysis, Interweaving, Process Mining

1. Introduction

The complexity of software for public services increases with the constant

evolut This has major impacts on

software quality and maintenance processes. First, on the software editor side, this

usually leads to an increasing number of bugs (Subramanyam & Krishnan, 2003).

execution contexts and data make the bugs very hard to reproduce and to fix. As the

project team designs the tests a priori, they may not reflect

Thus, a gap appears between the theory and the reality (second Lehman s law

(Lehman, 1980)), leading to failures on untested and unexpected cases. Then, from

oftware becomes more difficult to use, interact with

* The work described in this paper -

.

and understand (Thompson et al., 2005). A new paradigm emerges and tries to

design intelligent software, able of adapting themselves to specific users (Salinesi,

2017). This requires observin

Logger syst activities. We made the

assumption that logger systems combined with process mining techniques (Ailenei

et al., 2011) would enable the discovery of the observed system model. The

discovered business process model would allow us, in a first step, to elicit use cases

like user goals or business scenarios. In a second step, it would lead to prioritization

of the maintenance, more realistic tests, and business intelligence.

In this paper, we report on experiments and lessons learned from applying

process mining techniques on logs extracted from an existing on-use large public

(Astromskis et

al, 2015) who managed successfully to use process mining to understand user

interaction on software. It led us to believe that their approach would be easily

replicable on our dataset.

In the following pages, we first present our case study, the logged data and the

associated software. Then, after presenting a general review of existing approaches,

the best technique is selected to conduct experiments. Section 4 details these

experiments. To conclude the paper, we stress that the presence of certain

characteristics in our logs makes the process mining techniques ineffective. The

problem is conceptual and not related to the logging system.

2. Case Study Description and Associated Data

We collected logs1 generated by a rich client application used by town hall

re is

composed of four modules. In this study, we focus on the analysis of logs coming

from the Civil Status Management Module (hereafter called CSMM). This module

contains numerous features related to civil registries, such as elections, births, deaths

or court jurors. The software interface is composed of multiple tabs, each of them

containing multiple forms. The navigation inside the CSMM is structured as

follows: it starts with a home page containing a list of buttons. When clicking a

button in this menu, a new tab opens and gets the focus. This new tab provides

access to a second level menu containing itself user interface components to access

forms and functional features.

The logging system is implemented in a software layer shared by all the different

modules. This enabled developers to rely on a generic tracing system and to focus

only on the development of functional features.

Despite the simplicity of the main navigation, the CSMM is extremely large and

dense. Indeed, it is composed of about 600 different forms representing about

1 Data are on open access on https://github.com/FM-BL/PublicCSMM_Logs

200,000 lines of code. We collected logs from 104 users over one year. The data

contains 227,782 events for 60 mega-bytes in an XML structure.

<ExportList>

<FormName>A</FormName>

<FormDescription>A long description</FormDescription>

<UserID>USER1</UserID>

<OpeningTimestamp>2016-07-07T09:00:00</OpeningTimestamp> A1

<ClosingTimestamp>2016-07-07T10:00:00</ClosingTimestamp> A2

</ExportList>

<ExportList>

<FormName>B</FormName>

<FormDescription>B long description</FormDescription>

<UserID>USER1</UserID>

<OpeningTimestamp>2016-07-07T09:15:00</OpeningTimestamp> B1

<ClosingTimestamp>2016-07-07T09:30:00</ClosingTimestamp> B2

</ExportList>

<ExportList>

<FormName>C</FormName>

<FormDescription>C long description</FormDescription>

<UserID>USER1</UserID>

<OpeningTimestamp>2016-07-07T09:30:01</OpeningTimestamp> C1

<ClosingTimestamp>2016-07-07T09:59:59</ClosingTimestamp> C2

</ExportList>

<ExportList>

<FormName>D</FormName>

<FormDescription>D long description</FormDescription>

<UserID>USER1</UserID>

<OpeningTimestamp>2016-07-07T09:35:00</OpeningTimestamp> D1

<ClosingTimestamp>2016-07-07T09:55:00</ClosingTimestamp> D2

</ExportList>

<ExportList>

<FormName>E</FormName>

<FormDescription>E long description</FormDescription>

<UserID>USER1</UserID>

<OpeningTimestamp>2016-07-07T10:15:00</OpeningTimestamp> E2

</ExportList>

Figure 1. Example of CSMM log

Each event represents the opening and the closing of a form. As depicted on

ExportList

event has five FormName

FormDescription readable UserID

indicates the user id p OpeningTimestamp

ClosingTimestamp dates.

A1 B1 B2 C1 D1 D2 C2 A2 E1

Figure 2. Temporal representation of the Figure 1 log

Figure 2 illustrates on a timeline the sequence of opening and closing events of

the five forms present in Figure 1. Here, the form A enables to reach form D through

form C. The closure of forms works with a FILO (i.e. First In Last Out) behavior.

However, the software interface is designed to allow other additional navigation

instances. From a form D another form C can be opened in a new tab, both being

independent. Thus, it is possible to close the form D first, and after form C. Closing

forms can also work with a FIFO (i.e. First In First Out) behavior. This indicates that

a form closure does not necessarily imply a parent relationship. Furthermore, in

ClosingTimestamp

not have a closing tag). It means either that the form encountered an error, making it

impossible to write the closing date or that the form was not closed before leaving

the application. Finally, we observed that sometimes, even if two forms are

dependent, the closing date might be incoherent. For instance, the form C is child of

form A (and are dependent, no new navigation instance) but the closing of form C

occurs after the closing of its parent (A2). These three scenarios illustrate the wide

range of behaviors that can be found in the processed data in our case study. The

next section describes the different existing approaches that use input logs to

discover process models.

3. Discovery Process: Existing Approaches

Multiple scientific domains focus on the analysis of human activity logs. In fact,

several methods and algorithms designed to discover usage patterns and process

models on business activity logs exist. We identified two types of relevant

paradigms: 1) web mining and 2) process mining.

3.1. Web Mining

The web mining or web usage mining offers several approaches to analyze a web

application and its usages (Srivastava et al., 2000). Usually, the techniques are user-

centric: all the events are related to a user. Existing techniques are most of the time

based on sequence mining and pattern discovery methods. One of the typical

purposes of web mining is to find the main way to accomplish a predefined goal. For

instance, this purpose cou

product in an

optimize navigation paths and hence, increase sales (Spiliopoulou et al., 2000). The

goal of web mining differs from ours even though the data are similar. In web

mining, the user is linked to a web session and each web session corresponds to a

single use case (Srivastava et al., 2000). Moreover, in the analysis the user goal is

usually known beforehand: a purchase, a web page access or more generally the

achievement of a well-known special action.

goals in the current

navigation path. Worse, the user can perform several use cases (i.e. pursue several

goals) concurrently and we do not know how to relate the events to use cases. Thus,

these techniques appear irrelevant for our problem.

3.2. Process Mining

Compared to the specificities of web analytics and mining, process mining

appears to be a more suitable approach to our problem. The process mining is a

recent scientific domain defined as a mix between data mining and workflow

analysis (van der Aalst, 2016). The process mining grasps three main aspects: 1)

process discovery, 2) conformance model and 3) process enhancement. Since we

seek to produce a process model from logs, we focused on the first aspect of the

process mining: the process discovery. The process discovery is a collection of

techniques that take logs as inputs and give process models as outputs. The input

logs contain traces. Each trace is a sequence of events referring to the same case.

Events are footprints left by the users when performing a business activity. Each

event contains, at least, the name of the process activity, a timestamp and a specific

process instance identifier2. Generally, the inputs are process-oriented

(Pourmasoumi & Bagheri, 2017). This means that each trace corresponds to a

process execution. Each process execution is identified by a unique id called the

process instance id (or case id). The events belonging to the same process execution

share the same process instance id: they are labelled. Logs containing labelled

events are called labelled logs. The logs can contain various sorts of noises ((van der

Aalst, 2016) p.148-151) and some data can be missing, incorrect or imprecise. This

problem can occur in a continuous, intermittent or unpredictable manner. Business

process models are generated as output. Various formalisms exist such as Petri Nets

and Business Process Models and Notations (BPMN). Quality metrics can also be

computed on these models. The most frequent metrics are the fitness (i.e. the ability

to replay the behaviors seen in the logs) and the precision (i.e. the ability to forbid

the behaviors unseen in the logs).

3.2.1. Approaches dealing with labelled logs

To enable process discovery, Cook and Wolf early proposed solutions based on

neural-networks or Markov models, each solving a limited part of the problem. For

example, the KTail approach finds a correct model but is noise-sensitive. On the

contrary, the RNet methods find a less accurate model but are robust to noise (Cook

& Wolf, 1998). However, none of those methods can manage concurrency aspects:

in a business process, some activities can be performed simultaneously, and it is

important to detect and represent these concurrent activities (Buijs et al., 2012). The

-algorithm (van der Aalst et al., 2004) brings a formalism to discover WorkFlow

nets (WF-nets) (van der Aalst, 1998). WF-nets are a subclass of Petri Nets that can

offer some interesting properties like soundness and safeness. They provide very

good results, but these methods remain extremely noise-sensitive (van der Aalst et

al., 2004).

-

algorithm (van der Aalst, 2016). The Heuristics Miner Algorithm (Weijters et al.,

2006), brings a significant improvement by solving problems such as the short loop

discovery or the mining of long-distance dependencies (Wen et al., 2006). Günther

to discover processes from

noisy data by using a graph model formalism (Günther & van der Aalst, 2007). With

two new defined metrics (the significance and correlation) the method captures the

2 In any case, an id is a unique identifier.

main patterns. But human intervention is required to tune parameter settings and

identify the best model. Overall, probabilistic and statistical approaches are adapted

to simple events but are limited when data is rich and complex.

The last family of approaches studied is the genetic algorithms. For instance,

(Alves de Medeiros, 2006) proposes to reuse the main

concept of the genetic algorithms in process mining. With her method, an individual

is considered as a process model on which selection and reproduction steps are

applied. The main drawbacks of genetic algorithms are the long execution time and

the local minimum risk. Moreover, genetic algorithms generate very complex

models when using real-life logs (De Weerdt et al., 2012).

3.2.2. Approaches dealing with unlabeled logs

Because obtaining labelled logs can be very challenging (Pérez-Castillo et al.,

2013), various methods try to deal with unlabeled data. The solution relies on

labelling events artificially. We have identified two approaches: 1) making

assumptions about structural, behavioral and temporal aspects of logged activities

(Pourmirza et al., 2015; Walicki & Ferreira, 2011), and 2) techniques based on

expert

(Pérez-Castillo et al., 2013).

Pourmirza (Pourmirza et al., 2015) proposes an algorithm to label logs coming

from orchestration services. Three conditions must be respected: 1) it does not work

with data coming from other services than acyclic orchestration services, 2) metrics

on duration per activity must be given to the algorithm, and 3) the idle time between

two requests should not be equal to the activity duration. Similarly, Walicki and

Ferreira propose a probabilistic approach (Walicki & Ferreira, 2011) to process

discovery with unlabeled logs. The approach has a high level of abstraction because

the problem can be reduced to sequence mining challenges. Their technique tries to

cover the sequence with a minimal set of patterns. However, some conducted

experiments show that this approach is not suitable to process large logs (Walicki &

Ferreira, 2011).

When the assumptions about data and processes are too variable, experts can

explicitly write rules to inform the tagging algorithms. Pérez-Castillo (Pérez-Castillo

et al., 2013) propose a semi-automatized process able to build correlation rules. An

event must contain various attributes and the logging system must be designed to put

the candidate correlation attributes into events. An expert can choose the attributes

in the log and determine the correlation rules.

3.3. Synthesis on process discovery

Broadly speaking, the literature shows that a large variety of techniques are

unclear in our software when and where use cases start and end. We chose to skip

the early approaches of process mining for the more efficient recent ones. Process

mining approaches dealing with unlabeled logs are not suitable as they require

realistic temporal and structural assumptions. As described before, due to the

activity interweaving and interruptions, it is impossible to make any realistic

has many legacy features; it is impossible to find experts with enough business

knowledge and time to choose the attributes for each code injection. The difficulties

of improving logging system are detailed in section 6.3. The logs only represent the

opening and closure of forms, tabs and windows. The missing of the case id is the

only limitation that forbids us to apply approaches dealing with labelled data. Thus,

we artificially labelled our events to execute existing process mining techniques on

 (Astromskis et al., 2015).

4. Experiments with Process Mining

Based on our data and literature review, process mining methods appeared to be

promising approaches to process our logs and generate the software business process

model. To generate the business process model of CSMM, we have conducted

experiments with several process mining techniques implemented in ProM. ProM is

an academic process mining software that offers several process mining techniques

through plugins.

Figure 3. The main steps of our case study experimentation

We tested four different methods aiming to discover valid process models and

compared the results. Hereafter, we describe our protocol and data transformation

process, the tools, and finally our results.

4.1. Protocol

As described in Figure 3, our protocol is divided into three main steps: 1)

anonymization, 2) XES transformation and 3) execution of ProM.

1. Anonymization. Due to privacy concerns, the first step consists in removing

data that can be related to individuals such as: emails, addresses, names,

surnames, etc. This information is replaced by IDs to maintain coherence

and integrity in the logs. This process is reproducible and non-reversible.

Figure 4. Sub-steps of the XES transformation

2. XES transformation. ProM accepts XES files as inputs. Therefore, a

tran . Labelling the

events can be very difficult, thus we developed several strategies based on a

successful study (Astromskis et al., 2015). Each of them provides a smaller

granularity supposed to give a better trace. We tested different transformations

methods in the next sub-sections. Each concern is addressed as a sub-step as

depicted in Figure 4.

2.a Filtering: we removed some noise and execution errors from the raw logs.

More precisely, we identified and removed the events where the closing date is

missing as they indicate a software failure, according to the development team.

Overall, 7939 events were removed, corresponding to 3.3% of the total dataset.

2.b Event converter: various alternatives are available to translate CSMM events

into XES events, each providing different advantages and semantics. We identified

two strategies:

1)

to the corresponding field of the XES event. This is the straightforward approach.

2) either a

form opening or a form closing. Thus, the conversion may produce two XES events

for each event, one a - -

2.c Artificial Case Labelling: XES logs are structured into traces, which is a

missing concept in our logs. In the XES format, a trace reflects a case which is not

delimited in our data. Thus, we tried five different strategies to provide each event

with a case id and artificially recreate traces from our logs:

1.

Hence, only one trace is created containing all the events.

2. trategy builds one trace per user. All events

performed by the same user have the same case id.

3.

user labelling; a case represents a use

performed by the same user in the same day have the same case id. Note that a case

cannot be performed over several days because town hall agents must respect

working hours. Moreover, none of the use cases require several days to be

accomplished.

4.

the end of the previous business scenario and the beginning of a new one. All the

events performed by the same user in the same day between two home page accesses

have the same case id.

5. er Sub-

principle as UHTD but considers the direct children forms of the home page. CSMM

counts 11 sub-forms at a 2nd level of navigation. When an opening event of a sub-

home form occurs, all the encountered events form a trace. All the events performed

by the same user in the same day between sub-home forms have the same case id.

We chose to stop at the second level because it still represents a manageable size of

sub-nodes. The number of forms at the 3rd level increases exponentially.

We crossed all the possibilities between our two event conversion strategies and

our five artificial use case labelling strategies. We decided not to consider the

combination of USHTD and 1EGRC2XES strategies. In fact, we observed that by

applying this strategy 50% of the events were located between accesses of forms.

This led us to believe that this strategy would not provide any significant results.

The artificial use case labelling strategies can be considered as cutting functions. In

fact, all the opening forms of a considering level are cut points. The forms path

before the cut belongs to a use case; the forms path after the cut belongs to another

use case. We restricted our study to these five strategies because more refined

approaches would over-cut the logs and would have created too many traces.

2.d Sorting: Finally, we sort the events by date in the resulting XES files. In the

1EGRC1XES condition, we sort the events by start date (i.e. opening of the form).

In the 1EGRC2XES condition, we sort the events by the date kept in the event, thus

opening date of the form for some events and closing date of the form for the others.

Execution. The last step consists in executing the four plugins, described in the

apparatus below, on various data sets. Exactly, each one of the four listed plugins

are tested with each generated XES file using the two different converters (2b) and

the 5 different labelling strategies (2c), hence, a total of 4*2*5=40 experimentations.

4.2. Apparatus

To perform process mining, we rely on ProM v.6.7. ProM is an academic process

mining software3. Various plugins exist, especially for process model discovery. As

explained above we aim at testing and comparing four different methods on our data

(see Table 1). The experiment has been carried on a standard laptop machine

including 16Gb with 6Gb RAM dedicated for JVM, Inte -4210M

CPU@ 2.60GHz. Our evaluation is based on the replay fitness metric (Buijs et al.,

3 http://www.promtools.org/doku.php

2012). The replay fitness indicates how much the discovered model can reproduce

the behavior capture in logs. The replay fitness is ranged between 0 (the discovered

model cannot replay any part of the logs) and 1 (a perfect replay).

Table 1. ProM Plugins Used and Tested

Name Version Output

HeuristicsMiner 6.7.70 Fitness metrics

Fuzzy 6.7.53 Replay percentage

Alpha Robust Miner 6.7.70
Petri Net. PN Conformance Analysis plugin to

compute conformance

Evolutionary Tree Miner (ETM) 6.7.168 Process Tree / Display fitness per generation

4.3. Results

The results of the experiments are listed on Table 2. After the XES

transformation step, we obtain traces corresponding to process runs in process

mining. The trace number increased as the trace granularity became smaller. The

event conversion produces a total of 227,782 events, considering only the opening of

the forms (1EGRC1XES), and logically twice as much (455,564) when also

considering closing events (1EGRC2XES). Overall, the results are disappointing,

and no method allow us to discover a reliable process.

First, surprisingly, with the Heuristic Miner, the more we try to label use cases

precisely, the lower the fitness is. We also observe that in over one-third of our tests,

the Heuristic Miner could not provide positive fitness. Negative fitness indicates a

very low success due to many remaining tokens in the associated Petri Net. The

0.55. For the Heuristic Miner, it appears simpler to deal with a unique high grain

trace than to indicate various precise but noisy traces.

The ETM execution time was extremely long (several hours on our target

computer), and the computation failed several times due to memory lack (i.e. java

heap space). Even when reducing by 50% the dataset content, the best fitness

provided by the ETM was only of about 0.59 (with Naïve labelling). This result is

 (De Weerdt et al., 2012) that the genetics

approaches are not very suitable to process real life data. On the contrary, the Alpha

Robust Miner provides no result when applying the Naïve strategy. It becomes more

efficient when splitting the data into use cases. It provides results between 0.40 and

0.46. We attribute this to a better noise robustness.

Finally, the Fuzzy miner provides the best results (~73%) with the

, the discovered model is unreadable and

-

traces replays shows that many transitions noted as wrong in the model exist. Unlike

the Heuristic Miner, the Fuzzy miner is better with precise tagging techniques.

Table 2. Summary of experiment results

Converter Labelling
Nb

Traces

Nb

Events

Heuristics

Miner

Fitness (0-1)

Fuzzy

Replay %

ETM

Fitness

0-1

Alpha Robust

Miner

replay score

1EGRC1XES Naive 1 227 782 0.4084 61.77 0.59 -

1EGRC2XES Naive 1 455 564 0.5351 47.07 0.59 -

1EGRC1XES UT 104 227 782 0.5554 57.54 - 0.44

1EGRC2XES UT 104 455 564 0.4036 43.80 - -

1EGRC1XES UTD 6 617 227 782 -1.6116 56.76 - 0.40

1EGRC2XES UTD 6 638 455 564 -0.3839 39.68 - 0.45

1EGRC1XES UHTD 12 794 227 782 -0.2543 73.03 0.51 0.41

1EGRC2XES UHTD 12 840 455 564 0.2346 56.16 - 0.46

1EGRC1XES USHTD 8 882 141 828 -0.1706 68.78 - 0.52

5. Discussion and threats of validity

None of the tested techniques provides satisfying results with our data, even

though we tested multiple conditions and provided ProM with logs of various

granularity of events and several use case labelling strategies. We found that some

of the methods have trouble to simply provide results. This could be an

implementation problem or a lack of memory, but our tests highlight that with large

datasets, some algorithms require very powerful machines to reach their objective

without causing issues. In addition, we observed that getting reasonably good results

does not mean that the resulting graph is readable. Our example with the Fuzzy

miner is quite a good illustration of this limit. Our software experts indicated a high

level of wrong transitions on the generated models. This brings us to a well-known

problem: the Oracle. How confident in our results can we be? Moreover, 73% of

replay indicates that we still have 27% of noise.

Furthermore, despite the application of an equivalent methodology and protocol,

our results are in opposition with the results obtained by Astromskis (Astromskis et

al., 2015). The main difference between their study and ours lies in the

implementation of the logging system and the size of our software. We believe that

the automatic and generic implementation of our logging system could be the main

explanation to the differences between our conclusions and Astromskis et al

fact, the logging system was manually added in their work. This means that the

logging software was designed a posteriori for their purposes. On the opposite, in

our case, the logging system was designed and implemented long time before our

research. Nevertheless, the lack of information on the complexity of the analyzed

software is not sufficient to explain reliably our failure. Some of the characteristics

of our data might also be a reason. We detail them in the next section.

6. Learned Lessons

After obtaining the results we conducted a qualitative analysis to understand why

process mining techniques deprived us from satisfying results. Our analysis led us to

understand many specificities about our data which were directly induced by the

next sub-section with the secretary scenario.

6.1. The Town Hall Agent Scenario

h explains the nature

and complexity of our data. The scenario starts with a town hall agent who starts a

business scenario (BS1) thus creating events. A phone call occurs interrupting the

case; BS1 is suspended. During the phone call, the agent starts a new scenario (BS2)

phone call ends but the agent still must perform actions related to BS2. At this point,

someone enters the office and makes a new request. Again, this interruption

suspends the processing of BS2. The agent starts a third scenario (BS3). When it

ends, the secretary can resume BS2 and produce associated events. Finally, BS2

ends and BS1 is resumed.

This sequence of actions is possible because: 1) software users can be interrupted

while executing a use case and 2) the software allows to start one or several new use

cases simultaneously. This flexibility between use cases and tasks is mandatory to

provide efficient tools to support this kind of activities. The understandability of

software logs consequently suffers from this type of practice and thus our ability to

understand the tasks.

6.2. A combination of four features

Overall, following the previously described scenario, we have identified that our

data is characterized by four features which, all combined, make the business model

hard to discover:

Unlabeled Use Cases. The first issue is related to the impossibility of labelling

use cases on the fly. The users require flexible software that allow multiple use cases

in parallel thus there is no clear indication in the log about when a use case starts

and stops. This is a strong tendency in modern-web apps, such as Single Page

Applications, enabling more flexibility, interactivity and overall a better user-

experience to end-users (Mesbah & van Deursen, 2007).

The Impossibility of making Temporal or Structural Assumptions. Our data

provide no clear indication about the duration of tasks. In fact, depending on the

situation, filling a form to update a civil status can take from a few minutes up to

several hours due to the interruptions and the requests. Moreover, some of the forms

and screens are used by multiple use cases. For example, declaring a newborn may

require updating the civil status of a parent. This parent civil status update will be

the same as for a new passport request. The nature of our logs does not enable to

identify clearly which specific screen is used in which use case.

The Presence of Loops. vities also involves many

redundant activities. For instance, the agent can come back and forth between the

home menu and the burial plot attribution form. This enables the users to fill forms

in a row in order, for instance, to process a large quantity of records. This, again, is

quite common in administrative activities and will have to be identified when

applying analysis techniques on our logs.

Multiple Levels of Interweaving. As illustrated in the scenario on Figure 6, we

found multi-level of interweaving between use cases. The logs represent a list of

events where each one contains a starting timestamp and ending one. These

timestamps might overlap with other ones in the entire content of the log. This

interweaving is due to the ability of users to concurrently start, perform and close

several use cases. Our logs do not contain one linear story but several interweaved

situations. It appears that existing approaches have difficulties handling the secretary

scenario depicted in our case.

These four features are today more or less manageable by different approaches.

For example, Walicki (Walicki & Ferreira, 2011) is known to be suitable for

interweaving and Pourmirza approach works for cyclic applications (Pourmirza et

al., 2015). However, the combination of these four features makes the problem very

hard to solve.

6.3. Challenges with logging systems

We also investigated the logging system itself. Our analysis highlighted

interesting aspects of the logging system and difficulties to enhance it. In our case

study, the logging system is implemented in a transversal manner, ensuring a strong

decoupling between the application modules. This enables developers to rely on a

generic tracing system and to focus on functional features development. The logging

system uses the minimal data provided, thus the event logs are inaccurate. To make

the logs more detailed, the entire logging system would have to be redesigned;

whereas it is financially impossible. This problem is not restricted to our application.

In general, since the logging system is not a business feature, it is not a major

concern for the production team. The fewer resources are involved to set up a

logging system, the better. The existing logging systems can produce events with

technical details used for debugging purposes but are not able to inform the case id

necessary for process mining. Multi-layer applications increase the difficulty

because the information needed to create the correct event is spread over several

layers. Several logging systems may be mandatory, or a single central logging

system, that may break with a decoupled architecture.

Finally, redesigning the logging system of a large part of legacy code may cause

regression. In fact, in some specific situations, adding logging calls can have

unexpected impact on performances or even on the reliability of the execution. This

problem needs great attention, since most of the practical use cases are unknown,

non-regression tests are potentially inefficient. This analysis of our logging system

stresses the tension between being able to build a generic and transversal mechanism

and collecting enough data to uncover the business models afterwards. This type of

issues solely appears when working on large, distributed applications, where

modifying the code manually is not a viable option. Overall, this highlights the need

to work on logging systems architecture to enable genericity and low granularity of

collected events.

7. Perspectives and Conclusion

In section 2, we have indicated the main reasons making it extremely difficult to

understand our software logs. These difficulties amount to matching the events of a

process with the software task model. This matching can be formalized by a multi-

criteria optimization problem where each event must be associated to a unique task

instance according to the log history, and each task must try to be fully described by

events. This leads to a huge search space due to the combinatorial explosion. For

this reason, we believe that Artificial Intelligence approaches might be of interest to

process software logs. These approaches can preprocess the log to obtain labelled

logs and, hence, prepare the logs to the application of process mining techniques.

Two domains are interesting: 1) the clustering and classification approaches like the

artificial neural networks and support vector machines, 2) the Multi-Agent Systems

(MAS), in particular the Adaptive Multi-Agent Systems (AMAS).

The first approach tries to manage and reduce the complexity and the non-

structuration of some processes. Rocío (Rocío et al., 2015) have done a systematic

literature review on Process Mining with artificial neuronal networks and vector

machines approaches. Only two studies propose a contribution on process discovery

Mining (Song et al., 2013).

On the contrary, the second approach does not try to reduce or simplify the

complexity of data but tries to grasp the entire complexity of a problem. Some MAS

rely on emergent techniques to find solutions. For example, Adaptive Multi-Agent

Systems (AMAS) (Di Marzo Serugendo et al., 2011) have already proved efficiency

to solve some complex problems like big data analysis (Belghache et al., 2016) even

in very noisy environments. AMAS exploits the collective intelligence of agents to

organize themselves and build a business process model.

To produce a suitable product while more complexity is needed, future software

will have to dynamically adapt themselves to the users. To design these systems, we

cannot rely on a known business process model. As the system cannot be intrusive,

activities user traces must be taken as input. Regarding our needs, the process

mining seems to be able to provide models of our software from execution logs.

Because our events are unlabeled and our logging system unmodifiable, we used

similar preprocessing steps as existing studies. Then, a set of process mining

techniques was executed including the ProM plugins. The results showed an

important quantity of wrong transitions in the discovered processes. This result

highlights the complexity of our data: interweaving of use cases, lack of use case

labels and various loops creating wrong trace labelling. Because of the diversity of

users and use cases, we could not make temporal, structural, behavioral or semantic

assumptions. To deal with the complexity and removing the noise, we consider

exploring artificial intelligence approaches and particularly multi-agent systems as a

potential solution.

Bibliography

Ailenei I., Rozinat A., Eckert A., van der Aalst W. M. P. (2011). Definition and Validation of

Process Mining Use Cases. In Proceedings of Business Process Management Workshops,

pp. 75-86, Springer Berlin Heidelberg, Clermont-Ferrand, France.

Alves de Medeiros A. K. (2006). Genetic Process Mining. Thesis in Computer Science,

Eindhoven University of Technology.

Astromskis S., Janes A., Mairegger M. (2015). A process mining approach to measure how

users interact with software: an industrial case study. In Proceedings of the International

Conference on Software and System Process, pp. 137-141, ACM Press, New York, USA.

Belghache E., George J.-P., Gleizes M.-P. (2016). Towards an Adaptive Multi-agent System

for Dynamic Big Data Analytics. In Proceedings of the Conferences on Ubiquitous

Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and

Communications, Cloud and Big Data Computing, Internet of People, and Smart World

Congress, pp. 753-758, IEEE, Toulouse, France.

Buijs J. C., van Dongen B. F., van der Aalst W. M. P. (2012). On the Role of Fitness,

Precision, Generalization and Simplicity in Process Discovery. In Proceedings of On the

Move to Meaningful Internet Systems, pp. 305-322, Springer Berlin Heidelberg, Rome,

Italy.

Cook J. E., Wolf A. L. (1998). Discovering models of software processes from event-based

data. Transactions on Software Engineering and Methodology, vol. 7, no 3, pp. 215-249,

ACM.

De Weerdt J., De Backer,M., Vanthienen J., Baesens B. (2012). A multi-dimensional quality

assessment of state-of-the-art process discovery algorithms using real-life event logs.

Information Systems, vol. 37, no 7, pp. 654-676, Elsevier.

Di Marzo Serugendo G., Gleizes M.-P., Karageorgos A. (2011). Self-

from natural to artificial adaptation. Springer.

Günther C. W., van der Aalst W. M. (2007). Fuzzy mining adaptive process simplification

based on multi-perspective metrics. In Proceedings of International conference on

business process management, pp. 328-343, Springer, Brisbane, Australia.

Lehman M. M. (1980). Programs, life cycles, and laws of software evolution, Proceedings of

the IEEE, vol. 68, no. 9, pp. 1060-1076, IEEE.

Mesbah A., & van Deursen A. (2007). An Architectural Style for Ajax. In Proceedings of

Conference on Software Architecture, pp. 9-9, IEEE, Mumbai, India.

Pérez-Castillo R., Weber B., Piattini M. (2013). Correlation of Business Activities Executed

in Legacy Information Systems. In Proceedings of Evaluation of Novel Approaches to

Software Engineering, pp. 48-63, Springer, Warsaw, Poland.

Pourmasoumi A., Bagheri E. (2017). Business process mining. Encyclopedia with Semantic

Computing and Robotic Intelligence, vol. 1, no 1, World Scientific Publishing Company

Pourmirza S., Dijkman R., Grefen P. (2015). Correlation Mining: Mining Process

Orchestrations Without Case Identifiers. In Proceedings of Service-Oriented Computing,

pp. 237-252, Springer, Goa, India.

Rocío A., Maita C., Martins L. C., Ramón C., Paz L., Peres S. M., Fantinato M., Chopra A.,

Singh B. J. (2015). Process mining through artificial neural networks and support vector

machines: A systematic literature review. Business Process Management Journal, vol. 21,

no 6, pp. 1391-1415, Emerald Group Publishing Limited.

-mêmes. In

Proceedings ion et de

Décision, pp. 5-6, INFORSID, Toulouse, France

Song M., Yang H., Siadat S. H., Pechenizkiy M. (2013). A Comparative Study of

Dimensionality Reduction Techniques to Enhance Trace Clustering Performances. Expert

Systems With Applications, vol. 40, no. 9, pp. 3722-3737, Elsevier.

Spiliopoulou M., Pohle C., Faulstich L. C. (2000). Improving the Effectiveness of a Web Site

with Web Usage Mining, In Proceedings of Web Usage Analysis and User Profiling, pp.

142-162, Springer, San Diego, CA, USA.

Srivastava J., Cooley R., Deshpande M., Tan P.-N. (2000). Web Usage Mining: Discovery

and Applications of Usage Patterns from Web Data. SIGKDD Explorations Newsletter,

vol. 1, no. 2, pp. 12-23, ACM.

Subramanyam R., Krishnan M. S. (2003). Empirical analysis of CK metrics for object-

oriented design complexity: implications for software defects. Transactions on Software

Engineering, vol. 29, no. 4, pp. 297-310, IEEE.

Thompson D. V., Hamilton R. W., Rust R. T. (2005). Feature Fatigue: When Product

Capabilities Become Too Much of a Good Thing. Journal of Marketing Research, vol. 42,

no. 4, pp. 431-442, American Marketing Association.

van der Aalst W. M. P. (2016). Data Science in Action. Springer.

van der Aalst W. M. P. (1998). The Application of Petri Nets to Workflow Management.

Journal of Circuits, Systems and Computers, vol. 8, no. 1, pp. 21-66, World Scientific

Publishing Company.

van der Aalst W. M. P., Weijters T., Maruster L. (2004). Workflow Mining: Discovering

Process Models from Event Log. Transactions on Knowledge and Data Engineering, vol.

16, no. 9, pp. 1128-1142, IEEE.

Walicki M., Ferreira D. R. (2011). Sequence Partitioning for Process Mining with Unlabeled

Event Logs. Data & Knowledge Engineering, vol. 70, no. 10, pp. 821-841, Elsevier.

Weijters A. J. M. M., van der Aalst W. M. P., Alves de Medeiros A. K. (2006). Process

Mining with the Heuristics Miner-Algorithm. Technische Universiteit Eindhoven, Tech.

Rep. WP, vol. 166, pp. 1-34.

Wen L., Wang J., Sun J. (2006). Detecting Implicit Dependencies Between Tasks from Event

Logs. In Proceedings of Frontiers of WWW Research and Development, pp. 591-603,

Springer, Harbin, China.

