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Introduction:  

Multiple Sclerosis (MS) is a demyelinating neurodegenerative disease. Due to diffuse aspect 

of the disease several studies focused on histogram-analysis to quantify the diffuse 

pathological changes of the disease (Cercignani, 2001; Dehmeshki, 2001). A common 

drawback of these studies is that the entire information included in the histogram is not used, 

only arbitrary measures are chosen to describe histogram; these include mean, median, 

percentiles, peak height, peak location, skewness and kurtosis. In our study, we propose an 

alternative way to use histograms by including the entire histogram information and not just a 

few local histogram descriptors, in a k-nearest neighbors classifier, with the aim to improve 

classification performance of MS population.  

Methods:  

Subjects and MRI acquisition: Our study included 111 subjects, 71 Healthy Control 

subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database and 40 patients 

with Progressive Multiple Sclerosis from an MRI substudy of MS-SPI clinical trial (Tourbah, 

2016). The groups are age- and gender-matched. The MR scans are 3D T1-weighted MR 

images and were acquired on a 1.5T scanner for HC subjects and 3T scanner for MS patients. 

Anatomical MRI measure: Gray matter atrophy is a crucial marker of neurodegeneration 

and has therefore been used in several MS studies (Steenwijk, 2016). Cortical Thickness 

(CTh) was measured using the Matlab Toolbox CorThiZon and computed on the entire 

cortical ribbon using a Laplace's-equation-based algorithm (Querbes, 2009). Thereby, a 3D 

cortical thickness map was obtained, from which a CTh histogram have been extracted (cf. 

Figure 1). The histograms are normalized by dividing each histogram value by the sum of all 

the histogram values. 
Histogram-based KNN algorithm: K-nearest neighbors (KNN) is a lazy learning algorithm 

that classify objects simply by assigning to the label of its K nearest neighbors (i.e. K number 

of neighbors). The main difference between histogram-based KNN and the classical KNN 

algorithm is that distances/dissimilarities are measured between CTh histograms and not 

between single descriptors such as CTh mean. Therefore, different distance/dissimilarity 

measures between histograms as presented by Cha (2007) were used, including Euclidean, 

Manhattan, Jaccard, Canberra, Pearson, Chi-squared, Kullback-Leibler and Jensen-Shannon 

and thus we have obtained a distance matrix for each metric. From there, it's easy to find the 

K-nearest neighbors and conclude on the object predicted label. 
Two groups (HC and MS) were classify using stratified 5-fold cross-validated histogram-

based KNN. Classification performance was described using accuracy (ACC), sensitivity 

(SE), specificity (SP) and Area Under the Curve (AUC).  



 
   

Results:  

Since the value of K can influence the accuracy of the overall classification, we tested 

different K value, between 1 and 21 (only odd values because it's a binary classification). 

Overall the best value for K is 3. Table 1 presents the performance of the proposed method for 

different distance/dissimilarity measures. The performances are mostly very satisfying, indeed 

our approach distinguish HC and MS patients with 83% accuracy using Kullback-Leibler 

divergence followed by Jensen-shannon divergence with 81% ACC, which is not surprising 

since they are both from the Shannon's entropy family.  

 

 
   

Conclusions:  

The histogram-based KNN approach achieved comparable and even higher classification 

performances than previous studies based on histogram features or using region of interest-

based approaches (Kwok, 2012; Wottschel, 2017). Indeed, classification based on local and 

arbitrary histogram features are unlikely to be optimum as much potential information is 

ignored. Moreover, using the entire histogram is a powerful aid to the study of diffuse 

diseases because of its ability to detect subtle changes early in the course of the disease, which 

increase significantly the performances of the disease classification.  
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