
HAL Id: hal-02149924
https://enac.hal.science/hal-02149924

Submitted on 6 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software defined network based architecture to improve
security in a swarm of drones

Christophe Guerber, Nicolas Larrieu, Mickaël Royer

To cite this version:
Christophe Guerber, Nicolas Larrieu, Mickaël Royer. Software defined network based architec-
ture to improve security in a swarm of drones. ICUAS’19, International Conference on Un-
manned Aircraft Systems, Jun 2019, Atlanta, United States. art. no. 8797834, pp. 51-60.,
�10.1109/ICUAS.2019.8797834�. �hal-02149924�

https://enac.hal.science/hal-02149924
https://hal.archives-ouvertes.fr


Software defined network based architecture to
improve security in a swarm of drones

Christophe GUERBER
ENAC, Université de Toulouse, France

christophe.guerber@enac.fr

Nicolas LARRIEU
ENAC, Université de Toulouse, France

nicolas.larrieu@enac.fr

Mickaël ROYER
ENAC, Université de Toulouse, France

mickael.royer@enac.fr

Abstract—With the trend of developing more and more ap-
plications for Unmanned Aerial Vehicles (UAV), several research
projects have considered new missions where single UAVs are
replaced by swarms of drones. Although today regulations do not
take into account such scenarios, implementation of an efficient
security policy appears mandatory before operating a swarm of
drones in open spaces.

Consequently, this paper introduces an architecture for provid-
ing security features through the use of software defined network
(SDN) technologies. To validate our approach, we compare the
routing performance of our architecture with a classical solution
based on the AODV routing protocol and the use of iptables
rules. The results confirm the suitability of a SDN solution in
this context. Finally, we present how it may be used to improve
network security for a swarm of cooperative drones.

Index Terms—UAV, UAV Ad hoc NETwork UAANET, AODV,
SDN, OpenFlow, swarm of drones, multi-agent system, security
architecture, routing protocol

I. INTRODUCTION

The expansion of Unmanned Aerial Vehicle (UAV) usage
has drastically reduced costs involved in possessing and oper-
ating drones. New missions have emerged that implied not one,
but several more or less autonomous UAVs collaborating in a
specific mission [1]. Types of missions may vary from mon-
itoring an area, to exploring inaccessible locations, to Search
And Rescue or providing wireless network coverage without
any ground infrastructure. These missions based on swarms
of cooperating drones require additional network capabilities,
both for ground to UAV and UAV to UAV communications.

Although we only consider civilian (as opposed to military)
drones and missions, security has to be taken into account
when deploying these UAV systems. First, we must guarantee
that the system is secure and is operated in a safe way.
Secondly, we have to protect our system against any attempt of
denial of service, so that UAVs may successfully accomplish
their mission.

Given the diversity of the types of missions mentioned
above and the induced communication schemes (from very
centralized ground-UAV to more diverse UAV-UAV dia-
logues), security measures will have to adapt from one mission
to another, if not from time to time during the mission.
As such, security mechanisms providing adaptability and the
possibility of reprogramming would be desirable.

Ad hoc networks does not rely on any pre-existing in-
frastructure or access points as each drone and the ground
control station (GCS) participate in both routing discovery

and forwarding of data. Current implementations of ad hoc
networks make use of traditional distributed algorithms for
routing. Each node has a more or less parcellar knowledge
of the surrounding nodes and takes routing decisions solely
on a local basis, limiting the horizon of any security solution
to local countermeasures. Nowadays, many solutions exist in
wired networks to provide security mechanisms. Some recent
approaches use SDN-based technologies [2] [3]. They make
use of the centralized nature of the SDN architecture to
aggregate a general view of the data flows, trying to detect
and react to security threats. The success of SDN, however,
has its roots in its high adaptability and flexibility in response
to changes in data flows.

In this paper, we present a new architecture for unmanned
aerial ad hoc network (UAANET) that can provide innovative
security features and capabilities. Moreover, the use of SDN
will allow a higher adaptability of the system and provide
easier reprogramming.

The remaining of this paper is organized as follows. In Sec-
tion II, we review some research relating to ad hoc networks,
Software Defined Networks (SDN), security and monitoring.
In Section III, we propose and discuss four alternative archi-
tectures providing the functionalities required for improving
security in a swarm of drones, and we select two architectures
to be compared. Section IV compares the two architectures
from a performance point of view and provides some insight
into how the proposed architecture may be used to improve
the UAANET security. Finally, in Section VI we discuss our
conclusions and make suggestions for future research.

II. RELATED WORK

A. Threats in a swarm of drones

[4] provides an in depth survey of several routing protocols
usable in UAANET, providing a taxonomy of these protocols.
It also shows different threats and security challenges inherent
to ad hoc networks: wormhole and blackhole attacks.

Blackhole attack consists of corrupting route discovery in
the routing protocol so as to place itself on the path of as
many routes as possible. Once done, the attacking node may
drop all or the majority of data packets and thus significantly
degrade routing performances.

On the other hand, wormhole attack consists of two collud-
ing attacks literally creating a worm hole within the ad hoc
network by corrupting the route discovery process in order



to capture sensitive data. Both techniques imply forging false
routing packets.

Like any other network, ad hoc networks may experience
other attacks like Distributed Denial of service which are not
specific to this kind of network, though the size of the network
may be a limiting factor.

Finally, swarms of drones may also be attacked using
techniques that do not specifically aim the network. Battery
depletion, wireless channel jamming are efficient attacks that
should be considered.

Though, [4] shows that most of the ad hoc routing protocols
were not designed with security in mind, over the years, sev-
eral proposals including security features were proposed. Most
of them are dedicated to one specific threat or technique. None
addresses application level attacks as this requires acquiring
data at a system level.

B. Distributed monitoring tasks

Intrusion or anomaly detection heavily rely on monitoring
the system under scrutiny. Statistics on different quantities has
to be shared or reported to a central location in order to be
classified.

[5] presents challenges of monitoring in Mobile Ad hoc
Networks (MANET) and proposes a classification of the
different solutions.

The basic approach uses Simple Network Management
Protocol (SNMP) which requires the supervisor to request
data from each node (polling technique) and is therefore
very expensive in terms of bandwidth. Sometimes the nodes
are provided with a monitoring policy so that they send the
data without a request from the supervisor. Other techniques
aggregate local data using clustering before transmitting them
in a more efficient way. Finally, some solutions just use the
data that are already available in routing protocols, thus do
not require additional protocols for the collection of data.

[5] concludes by comparing the additional load induced by
all the monitoring tasks in terms of CPU and network traffic:

• Clustering-based approaches diminish the number of
monitoring messages using aggregation but require a
costly cluster maintenance process;

• Policy based approaches give more autonomy to nodes
and improve delays;

• Routing protocol based monitoring is efficient, due to the
very nature of those protocols, similar to a monitoring
task.

C. Software Defined Networks

SDN has become one of the main fields of research in net-
works a few years ago for wired networks. In SDN networks
[6], control plane (where the network control resides) and data
plane (where the user applications live) are separately consid-
ered. On the control plane, the nodes maintain a connection
with the SDN controller through the control network. A typical
SDN control network is a loop-less Ethernet network, while
the data plane may have any topology with nodes behaving
both as switches or as routers. The controller supports SDN

applications providing instructions about the behavior of each
node. SDN controllers thus have two interfaces: the south-
bound interface with the SDN switches, and the northbound
interface with all the applications that will take decisions about
anything happening inside the network (forwarding, filtering,
etc.). The dialog between the SDN switch and the SDN
controller may use the OpenFlow protocol [7]. One of the
functions of a controller is usually to detect the topology of the
data network using a discovery protocol, the most commonly
used being Link Layer Discovery Protocol (LLDP) [8].

Previous research has worked on bringing wireless network
to SDN, especially in vehicular ad hoc networks [9]. However,
as vehicles are limited to the road network, Vehicular Adhoc
Networks (VANET) are characterized by a heavy ground based
fixed infrastructure where vehicle are mobiles. [10] proposes
a hybrid architecture using SDN, but also depends on some
ground infrastructure to cover a specific area. Of course, in the
context of a swarm of flying drones, especially for missions
we are considering, we do not have a heavy infrastructure.

If the initial implementations of SDN used very simple
switches with as few functions as possible, some research
trends tend to add some smarter functionalities inside the
switch. After having added group tables allowing fast fail
over behavior and QoS management in the lastest versions
of the OpenFlow protocol, BEBA project suggested adding
stateful behaviors [11]. Stateful behaviors allow a controller
to specify how nodes behaviour dynamically adapt to time-
varying flows and traffic behavior. They showed that though
smarter switches are less generic, SDN can accommodate this
scenario, improving the programmability of the network.

D. Attack detection and SDN

In the above described network security context, SDN
architecture presents interesting features. It defines a central
system where data can be gathered in order to identify system
wide behaviors. Moreover, SDN being responsible for the
routing, it naturally gathers information about the flows of
data inside the network.

[12] provides a method to infer link utilization in a
flow-based network like SDN, thus requiring no additional
monitoring traffic. It captures and analyzes control messages.
Accuracy depends on the amount of control messages and
a good balance between this passive estimate and active
monitoring has to be determined in the case of specific flow
policies (e.g. proactive flows, long lasting flows, large timeouts
for flows).

There are several research projects dealing with attack
detections, both on the data plane and, in the case of an
SDN based network, on the controller itself. The type of data
used for anomaly detection is often bound to IP addresses,
transport layer and transport ports. However, other types of
data, like the flow graph have also been successfully used here.
Current detection techniques may involve either mathematical
properties and/or some machine learning algorithms.

[13] and [14] both address TCP SYN flood attacks, the
objective of which is to consume resources from the target



Figure 1. Detection and response process

up to a point where it will become unresponsive for any new
request. They take advantage of the central position of the
controller to identify malicious behaviors using counters and
thresholding.

[15] uses traffic dispersion graph analysis to detect anoma-
lous patterns of flows like in DDoS. The proposed approach is
based on static and dynamic graph metrics and an algorithm
performing graph comparison. Using traffic databases like
CAIDA1, they generate patterns of malicious behaviors to be
compared with real time traffic. They successfully identify
several DDoS attacks in traces from POSTECH university2.

III. DESIGN OF A SDN-BASED SECURITY ARCHITECTURE

In our approach of swarms of cooperating UAVs, the system
under scrutiny is the network part that allows several user
applications to exchange data. We consider both cooperation
protocols like multi-agent system network i.e. UAV to UAV
communications (e.g. market based protocols) and mission
related traffic like sensors i.e. UAV to ground control sta-
tion or command and control (C2). In addition to actually
provide routing inside the swarm of drones, we are studying
how to improve security within this network. This includes
”outsiders” trying to impair the capability of the network to
provide its service, but also the risk of ”insiders” having the
same unwanted behavior, e.g. after having been hacked.

A. Security architecture characteristics

A typical detection and response process like the one that
we are studying here, is composed of the following building
blocks (see Figure 1):

• One set of measures of the system under scrutiny;
• Some specialized algorithm to detect undesired behavior;
• One decision process to identify an appropriate response;
• A specific pattern to apply the identified response.
This paper focusses on the first and last steps of the above

process: monitor and apply. Our intent is to define an efficient
way to monitor the network activity within the swarm of
drones, and to be able to deploy a response to a hypothetical
attack against the swarm and its mission.

When considering appropriate security policy and counter-
measures, it is usually based on the followings (although there
may be others):

1http://www.caida.org/
2http://postech.ac.kr/

Figure 2. AODV architecture with iptables

• Protection against physical access;
• Providing sets of rules of authorized transmissions and

behaviors;
• Authentication and integrity checking through credential

exchanges;
• Hiding critical information from the outside world as far

as practically possible;
• Isolation and segmentation between different elements of

the system which limit contagion and allow definition of
the above mentioned legitimate rules.

Protection against physical access in a wireless network is
of course illusory. Hiding data from the outside world also
makes wireless a special and challenging case: the antenna of
any station in the coverage of a node’s radio receives all the
transmissions of that node.

The first step of our work was to define architectures provid-
ing some security features that are not limited to supporting an
intrusion detection and response process. In addition, it must
provide comparable performances (in terms of availability and
delays) with current routing protocols for ad hoc network.
Adaptability and programmability are also features that we
should take into account. We have defined the following four
architectures, going from today available routing protocols to
innovative proposals.

B. Set of security architecture designs

1) AODV [16] routing with iptables filtering:
This architecture uses an ad hoc routing protocol. We
chose AODV mainly because it was shown that it
provides better performances for UAANET [17]. Here
is a description of the operation of this architecture
with a short description on how to implement required
functions for securing the network.
AODV nodes announce themselves to the surrounding
nodes using Hello packets. Each node monitors the
neighboring nodes by receiving Hello packets and ac-
tivating timers so as to detect their absence.
A node having to send a packet to destination D for
which it has no fresh route, will issue a Route Request
(RREQ) to the surrounding nodes. RREQ are retrans-
mitted by surrounding nodes if they have no route to
the requested destination D. The originator may control
the depth of retransmission through the TTL value in the
RREQ by a so called expanding ring search technique.



Whenever a node has a route to the destination D, either
because it is the destination or because it has currently a
fresh route to it, the node responds with a Route Reply
(RREP) to the originator. This is made possible as the
nodes receiving a RREQ will cache a route back to the
originator. When a node detects the loss of neighbor
node that is part of an active route, a route error (RERR)
packet is sent in order to inform the other nodes of
the loss of connectivity. These routes must then be re-
discovered.
Routes are maintained a short period of time if no
activity is detected for each active route (3 seconds).
For each packet received or sent using a route, keepalive
timers for the forward and reverse routes are restarted.
AODV does not provide monitoring or supervision ca-
pabilities by itself. We will have to choose a dedicated
protocol like SNMP, or modify AODV for this purpose,
or define a new specific protocol, in order to collect
surveillance data. Some data may be collected through
AODV. Regardless of the technique that is employed,
this will require specific transmissions and fine tuning
to balance increased traffic load and detection accuracy.
Policy based monitoring may also be used here.
AODV does not provide filtering capability neither.
But filtering capabilities are usually available on the
operating system (OS) like in Linux’s iptables. So we
could implement some specific protocol or adapt an
existing one in order to deploy iptable (or equivalent)
rules to the different nodes.
Outside threat may be managed through AODV security
improvements, for which a public key infrastructure3

(PKI) is to be defined.
Figure 2 shows a typical AODV architecture along with
additions to be brought so as to provide monitoring
and security actions. As presented in Section III, we
need some distributed monitoring function and a way
to deploy the identified response, e.g. in the form of
iptables rules.

2) SDN with wide range network as control network:
As stated in previous section, SDN provides some in-
teresting features for the kind of problem that we are
facing here.
In this architecture, the loop less control network is
provided by a wide range network N. This architecture
is thus very close to a typical SDN network. Network N
provides connectivity between the controller and every
node in the coverage, while a second network M with a
shorter range provides the data network.
As an SDN based architecture, flow entries may be
considered as a sort of authorization for a packet to go
through the network. SDN flows will take the role of
the iptables of the previous architecture.

3Public key cryptography requires the ability to verify the identity of
a peer station. Reliable verification of the identity is based on certificates
management. The Public Key Infrastructure is a system for the creation, the
storage and the redistribution of those certificates.

Figure 3. SDN architecture

Figure 4. Hierarchical SDN architecture

In addition, SDN protocols allow for collecting statistics
on the flows and switches in the network. It is also pos-
sible to implement new statistics that may be gathered
through SDN protocols.
Outside threat is managed through secured connection
and the security features of the network M if any.
Figure 3 shows this new architecture. SDN applications
will rule the behavior of our network, gather statis-
tics trying identifying and detecting attacks. Decided
responses will be sent back to the SDN switches of the
swarm.

3) Hierarchical SDN using multiple networks:
As wide range network may not be available everywhere,
we consider here a hybrid and hierarchical network using
a medium range network N to some intermediary UAVs
acting as relays/routers between the ground station and
the rest of the swarm of drones. This may also allow
defining several controllers or delegating parts of the
responsibility to intermediary UAVs (see Figure 4).
We keep the same requirement and additions as in the
previous case, but do not rely on a wide range network
anymore.

4) SDN with AODV routed control plane:
As the use of a control dedicated network would limit
the possible scenarios for the previous architecture, we



Figure 5. In-band AODV SDN architecture

propose to use OpenFlow in-band wise: control plane
and data plane use the same network. Of course, we then
need a routing protocol to allow each node to establish
southbound interface connection with the controller, as
shown in Figure 5. We have chosen AODV for routing
purposes on the control plane, while SDN will provide
forwarding on the data plane, both using the same ad
hoc network. Indeed, routing in the control plane will be
limited to UAV-to-GCS and GCS-to-UAV routes. There
is no need for a more complex routing protocol.
In addition, network topology discovery will not be
based on some active protocols like LLDP as it would
be in a typical SDN network [18]. This would require
regular sending of packets from the controller to a
sending switch and from the receiving switch back to the
controller. So as to limit the amount of data sent for this
purpose, we propose to base our knowledge about the
topology on the neighborhood information from AODV
protocol. A node will thus inform the controller about
its known neighborhood at the moment it establishes the
OpenFlow connection, and will also inform him about
any update: new neighbor appearing or current neighbor
disappearing. OpenFlow allows experimental addition to
the protocol almost without impact on the switch and
controller, except the parsing, the processing and the
generation code for the new interactions.
We thus define four interactions using experimental
extension to OpenFlow:

• AODV STATUS REQUEST,
• AODV STATUS RESPONSE,
• AODV ADD NEIGHBOR and
• AODV DELETE NEIGHBOR.

The first two are used on switch connection establish-
ment, the last two to update controller’s knowledge
about the neighborhood of the node.
Each node (UAV) contains both a router and a host. The
SDN switch will behave as a router and the payload
applications as host applications. Routers (i.e. AODV,
control part of SDN) and hosts live on two separate IP
networks which allow for an easy identification of flows.
As in previous architectures, SDN will provide a stan-
dard set of statistics and a flow graph that may be used
for detection. In addition, new specialized statistics may
be defined.

SDN switch and controller are connected through a
secured transport connection. Credentials management
is eased by the definition of a controller node.

C. Security architecture design selection

As our intent is to cover medium to small UAVs, we have
to consider the aforementioned architectures in a constrained
context in terms of dimension and battery consumption.
Especially, providing two wireless technologies on a small
hardware platform will impose physical constraints for in-
stalling antennas while guaranteeing correct coupling for both
technologies to operate without interferences. In addition, long
range radios usually require more battery power to operate
than shorter range ones. As such, we will not consider those
architectures requiring a second network onboard the UAVs,
especially if they are long range. Moreover, wide coverage
wireless networks would limit the scenarios where such a
coverage actually is available. We will thus put the 2nd
architecture aside.

Although hierarchical network seems to provide some ad-
vantage over the wide range network through the usage of
relays to the second wireless network, it will require the
operator to possess and operate a mixed fleet of UAVs with
dedicated missions for the ”heavier” UAVs and will limit the
type of mission and operator.

As a consequence, we will focus on the first (AODV routing
with iptables filtering) and the last (SDN with AODV routed
control plane) architectures.

IV. SECURITY ARCHITECTURE DESIGNS’ PERFORMANCE
EVALUATION

A. Implementation details

This section will describe implementation choices and de-
tails of the architecture principles described above: AODV for
routing OpenFlow on the control plane and a SDN managed
data plane.

AODV will consider a route as invalid if it is not used for a
few seconds. According to Section 6.2 of [16], the lifetime of
an active route may be either determined by the control packet
i.e. the RREP, or initialized to ACTIVE ROUTE TIMEOUT
value of which is 3 seconds. Instead of increasing the lifetime,
we chose to guarantee that some traffic will be generated
between each UAV and the controller. This may be done
either through OpenFlow Hello packets, or through TCP keep
alive. As Hello packets are also used in OpenFlow to detect
loss of communication, we preferred TCP keep alive over the
OpenFlow option.

In a typical SDN based network, loss of connectivity be-
tween two switches will be entirely managed by the controller.
Controller’s topology discovery function will identify the loss
of connectivity and react by changing the flow entries inside
the different switches to repair the flow of data within the net-
work [18]. As described in architecture description in Section
III-B, instead of LLDP, we propose to use AODV knowledge
about its direct neighborhood. More precisely, the topology
changes when a neighbor disappears will be announced to



the controller through the above mentioned AODV delete
interaction. New neighbors are announced through an add
interaction.

Topology changes must be taken into account as soon
as possible. We have to avoid waiting for the controller to
receive and react to the topology change events. Especially, a
node detecting a missing neighbor shall not continue sending
data to this neighbor. Deletions should be taken into account
immediately to avoid sending data to a node that we know is
too far away. This means that the AODV daemon will have to
automatically delete the flow entries that concerns a node for
which the Hello timer has expired.

In OpenFlow 1.3, flow deletion command only allows flow
selection based on their match fields. Thus, it is not possible
to delete a flow entry based solely on the destination of the
flow: destination is determined through the actions of a flow
entry (port and MAC address). However, OpenFlow provides
a cookie field in each flow entry that can be used for selection
of flow entries to be deleted. When the controller creates an
outgoing or a forwarding flow entry, the value of the cookie
represents the next hop on the route. When a node detects the
loss of connectivity with one of its neighbor, it will generate
a delete command for all the flow entries having the required
cookie value.

B. Evaluation testbed implementation

The choice of the different building block of our evaluation
testbed took into account the following guidelines:

• We intended to be able in the short future to make some
field testing, so pure simulation software was not an
option,

• We needed to modify easily the different software, so
limit the amount of code dealing with the kernel,

• Field proved implementation as far as practically feasible.
For the above listed reasons, we took AODV-UU implemen-

tation [19] that provides an efficient and tested implementation
of AODV and we updated it in order to work with recent
version of Linux kernel.

The SDN switch, is derived from the OFSoftSwitch13 [20]
that proved to be easily modifiable. This user mode SDN
switch provides an almost complete 1.3 OpenFlow connection
and has been used in recent research projects like BEBA.

Finally, the controller part will be based on Ryu SDN
framework [21]. It supports OpenFlow 1.3, is easily modifiable
as it is Python based and thus allows using a lot of libraries
including graphs, math and machine learning.

We implemented some specific OpenFlow interactions to
convey AODV neighborhood discovery from the switches to
the controller and included AODV daemon in the OpenFlow
dialog.

We deployed a testbed using several PCs under Linux to
act as nodes (UAVs) in our network. One of these PCs will
be the ground control station. The wireless network has not
been simulated but replaced by a wired network. Although this
limits the representativity of the physical layer, it allows for
an easy control on the visibility between the nodes and thus

gives a full freedom when it comes to defining a topology or
a dynamic scenario. Of course, delay measurement are not
considered in absolute value but only relative to the other
architecture.

The SDN controller hosts a very simple and basic SDN
application that provides the shortest path for each received
PacketIn. Proactive routing where the controller may install
flows beforehand of any network traffic and reactive repair
where active flows are repaired immediately on topology
modification, were not implemented. No backup routes were
added. The controller tries to do as good as AODV and may
shorten the path like AODV.

Finally, a simulation management station will follow the
simulation scenario, starting the different nodes, replaying
network traffic using a capture file and downloading log files,
captures and node states for offline processing. In addition,
nodes are NTP synchronized to help post-processing and
log correlation. Time synchronization allows a less than 1ms
accuracy between two nodes (relative synchronization rather
than absolute time).

C. Evaluation scenarios

After having tested static scenarios to validate our imple-
mentation, we developed a realistic dynamic scenario. We will
thus focus on the latter as it represents our goal scenario: a
swarm of mobile drones during a realistic mission.

So as to describe the scenario, we will first present the
mobility scenario and show how it represents a realistic
operational scenario. Then we will describe the network traffic
used during the tests.

Mobility scenario
The mission that we consider aims at observing a remote

location using onboard cameras. The scenario contains 3 steps
that will be played in round trip: starting on the ground,
transiting to the mission location, and finally on site for the
mission. These three steps are depicted in Figure 6. On the
ground (1), all the UAVs have connectivity with each other
and with the ground station. During the transit to the mission
location (2), some UAVs may lose connectivity with the
ground station. Once the UAVs arrive on site for the mission
(3) they are considered as being as far as possible from each
other, given the radio range provided by the wireless network.
Once the mission has ended, drones come back to the ground
station through the exact same steps.

In the above referred figure, plain lines represent radio
connectivity i.e. the two stations are in the radio range of each
other. As in a wired IP network, packets from a node to another
node with which it has radio connectivity will be sent directly.
Packets from a node to another node with which it has no radio
connectivity are sent to a third node (the next hop) which will
then forward the packet closer to the destination. Thus, routes
in a dynamic topology will have to adapt to changes in the
most efficient way.

The scenario does not consider the event of a complete loss
of connectivity for any of the UAVs. It slowly changes the
topology. As explained here below, we will focus on data



Figure 6. Dynamic scenario topology evolution

exchanges taking place between the GCS and the UAV which
will be the farthest from the GCS in order to evaluate the
worst case.

In order to ease the following description, we will number
UAVs using the distance from the GCS, when the swarm is
in the mission configuration (3). UAV1 is the only to have
connectivity with the GCS. UAV2 has connectivity with UAV1
and UAV3, thus UAV3 only has connectivity with UAV2.

As far as GCS and UAV3 nodes are concerned, our scenario
will generate four mobility events. This is slightly more than
strictly necessary given the mobility scenario that we described
here above. At the beginning, UAV3 and GCS are in visibility
of each other. The first loss of connectivity event happens
when the UAV3 flies too far away from the GCS. The second
is when this same UAV3 will be too far away from UAV1.

On the way back, we generate an ”artificial” loss of connec-
tivity, considering that UAV3 and UAV2 will fly far away from
each other. The last ”artificial” loss of connectivity is supposed
to take place when all the UAV are back to the station.
Here, UAV3 will lose connectivity with UAV2. These artificial
mobility events have been added on purpose, to stimulate the
architecture and protocols.

Network traffic scenario
We decided to simulate the network traffic by replaying real

network traffic. Thus, the data are representative by themselves
of a UAV based video capture mission. Although it may
not be representatiave of all kinds of possible mission, it is
representative of a majority of the missions where a primary
stream flows from the UAVs to the ground control station.

We made the capture between the GCS and a real UAV
that was broadcasting the video stream of its camera. We
used the open-source software Paparazzi4 for autopilot and
ground station, generating C2 and telemetry traffic. The cap-
ture contains several flows of data: a 10 images per second
UDP/RTP video stream compliant with [22], telemetry and
other traffic sent from the UAV to the ground control station
(GCS) and commands sent from the GCS to the UAV. Figure 7
shows the different streams of data between the UAV and the
GCS. It shows that video stream is about 300kbps, telemetry
is about 14kbps and C2 is about 42kbps. Most of the trans-
missions are small UDP packets, while video transmissions
are composed of 1,500 bytes packets. In total, UAV and GCS

4http://www.paparazziuav.org/

Wireshark	IO	Graphs:	single_uav_gcs

0 40 80 120 160 200 240 280 320
Time	(s)

0

60000

120000

180000

240000

300000

360000

Bi
ts
/1
	s
ec

Figure 7. Traffic characterization (from the lowest to highest: telemetry, C2,
video, moving average of total data)

generate roughly 356kbps of throughput including the protocol
overhead.

In terms of packets per second, the GCS generates about
95 tiny (less than 27 bytes of application data) packets per
second while the UAV generates 45 packets per second.

In the simulation scenario, we will play this exact same
capture for each UAV of our topology. The ground station
will thus receive the video stream of the three UAVs, along
with the three telemetry data and will send three times the
command stream.

Although it might be anticipated that a swarm of drones
may not need a command for each individual drone, we argue
that this still makes our simulation scenario representative of
a today realistic scenario.

D. Evaluation results

The results presented here below show a comparison be-
tween the performances of the two studied architectures: pure
AODV architecture and In-band SDN with AODV routing.
We conducted several measurements on the performance of
the proposed architecture in a static topology, especially for
validation.

Simulations have been made on the testbed described in
Section IV-B, using the operational scenario presented in the
previous section. Measurements were made offline by post-
processing the capture files obtained from different locations
in our network.

The comparison focuses on the performances of each archi-
tecture in a realistic and thus dynamic scenario. Due to the
implementation choices, maximum throughput proved to be
difficult to measure with any degree of reliability. We will not
consider any security benefit yet. The use of SDN in a security
context is discussed in Section V.

Route acquisition time measurements would require a ded-
icated scenario to artificially generate numerous route ac-
quisition events and will consequently not be considered in
our scenario. In addition, route acquisition time very much
depends on the kind of route to establish (e.g. from GCS to
UAV vs. UAV to UAV) in both architectures. It would be
difficult to compare in an operational context as we cannot
characterize these parameters.

As the starting point of this simulation is a dynamic
scenario with several UDP based streams, we will measure the



0.0 0.5 1.0 1.5 2.0 2.5
time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

AODVbackward.
AODVforward.
OFbackward.
OFforward.

Figure 8. CDF of delay distribution

performance difference for end-to-end delay in the worst case,
and the loss ratio due to the dynamic aspect of the topology.
The former will show the cost of providing additional services
compared to the pure AODV performance and whether or
not our architecture is usable in an operational context. The
latter will show how well our architecture deals with dynamic
topology compared to a routing protocol dedicated to dynamic
network like ad hoc nets.

In addition, we will compare the amount of data generated
by both architectures. This will provide information on the
overhead of the SDN solution in terms of bandwidth con-
sumption.

Figure 8 shows the delay distribution for our realistic
scenario in the case of pure AODV routing. AODV forwarding
uses kernel’s highly optimized standard IP protocol forwarding
functions and forwarding delays are very low. A few values
indicates negative delay, which means that we are below
the time synchronization and time measurement accuracy. In
AODV, losses are mainly due to neighborhood detection time.
AODV takes between 1 and 2 seconds to detect the absence
of AODV Hellos. During this time, AODV sends continuously
packets using the obsolete route. As soon as one loss has been
detected, a new RREQ is issued and any new transmission is
queued, until the reception of an RREP which allows sending
all the queued packets. Given the size of our network, this
takes usually a few tens of ms.

Figure 8 shows the measured delay distribution using the
AODV/SDN architecture. Synchronization between the PCs
may have changed compared to the AODV measures. The
performance difference with AODV is within a millisecond
although about 10 percent of the packets experience slightly
longer delays. These delays are mainly due to the controller
until it has installed all the necessary flow entries.

Our SDN architecture is based on AODV and relies on this
protocol for neighborhood loss detection. As a consequence,
we do not lower detection time. Once detected, the controller
will be informed as soon as the TCP OpenFlow connection
is re-established. New packets will be sent to the controller

Table I
LOSS OF COMMUNICATION DURING MOBILITY

AODV SDN
direction Event duration packets duration packets

GCS to UAV 1 1.012s 97 1.431s 136
(95pps) 2 1.149s 110 1.964s 188

3 0s 0 1.169s 112
4 0s 0 1.460s 141

UAV to GCS 1 1.008s 52 1.396s 73
(48pps) 2 0.449s 25 1.943s 96

3 1.159s 52 1.104s 60
4 0s 0 0s 0

Table II
SIZE OF CAPTURED DATA

AODV SDN
Throughput 366 kbps 374 kbps

using PacketIns through the TCP connection.
Due to the reliability of the TCP connection, new PacketIns

might be delayed if ever an upstream TCP segment has
been lost. OpenFlow suggests to use auxiliary connectionless
transport but neither Ryu nor the SDN switch of our choice
supports auxiliary connections.

In addition, the SDN switch of our choice is highly cus-
tomizable but is known to offer average performances com-
pared to other less customizable ones. Although we included
part of the improvements developed by the BEBA project in
the OFSS13 [23], the performance of our switch appeared to
be lower than production SDN switches like Open vSwitch
[24]. Especially, packet processing (matching and flow entry
processing) is done in user space and is thus more sensitive
to CPU usage variations.

Finally, controller performances have a strong impact on the
performances of the architecture on the very first packets of
a stream. Measurements of the controller and application part
show delays that may be up to 15ms.

All these considerations explain why SDN architecture may
experience some increased delays from time to time. However,
packet forwarding is still low on our testbed (i.e. without any
consideration of the physical layer) and compares with AODV.

Concerning mobility management, results are shown in table
I. The table shows, for each of the four events, and both
directions, the duration of the loss of communication and the
number of packets that have been lost during the simulation.
This happens two times for GCS to UAV traffic. When UAV3
flies closer to the GCS, it becomes successively neighbor with
UAV2 and then GCS while both are on the data path from GCS
to UAV3. These two events are thus automatically shorten by
AODV and the loss of a link on the old path is then transparent.
On the reverse path, it is only when UAV3 is back in the
neighborhood of the GCS that AODV shortens the path.

As shown, AODV is also more efficient when it deals
with mobility. Especially, routing is updated as soon as the



destination becomes a neighbor in order to use the shortest
path. This does not require a new RREQ/RREP exchange.
This explains why mobility events may not be noticeable in
some cases.

On a contrary, our basic SDN application does not try to
optimize routing on mobility events. This explains why SDN
architecture suffers of more losses of communication. This
limitation could easily be circumvented by using a smarter
SDN application.

As shown in Table II, the flexibility brought by SDN comes
with some overhead in bandwidth consumption. The difference
between the amount of data exchanged between both nodes is
increased by slightly more than 2 percent in SDN compared to
pure AODV. As a conclusion, the experimentations described
here show comparable performances in both architectures
in terms of end to end delay. Once the route or flow is
determined, forwarding is not significantly slower in SDN:
difference between SDN and AODV is below 1ms.

In the SDN architecture, the use of AODV both as routing
on the control plane and as source of mobility management
through the generation of OpenFlow events allows a good
behavior of the controller. Controller is not responsible for
the topology discovery anymore and receives updates about
the topology in a timely manner. Especially, as OpenFlow
connections are kept active, a spanning tree like routing is
put in place and allows for a node to move without having to
reestablish the route down to the destination. Except maybe in
very erratic topology changes, any neighbor will already have
a route to the destination and new routes are detected very
efficiently. However, if no route can be established with the
controller, the drone is separated from the rest of the swarm
and no application data exchange can take place.

V. HOW SDN CAN IMPROVE UAANET COMMUNICATION
SECURITY?

The challenges for improving the security in an ad hoc
network inside a swarm of drones are manifold and we do
not pretend to solve all of them. However, the proposed
architecture exposes interesting features that may become
foundations or building blocks for a security policy for the
intended scenarios.

Figure 9 illustrates the discussion below. A swarm of drones
with mission data exchanges are shown on the left part of
the figure. The implemention elements of our architecture
are depicted on the right part. Thin dashed lines show on
which hardware the software or device is hosted. Especially,
the mission control software, the SDN controller and a SDN
switch are colocated on the same host.

First of all, OpenFlow is supposed to use a secured transport
connection (i.e. Transport Layer Security TLS). Configuration
of a swarm of drones with this technique thus implies that
each node has the credentials of the controller node, and the
controller, the credentials of all the nodes. We do not need to
let all the drones know each other. But the controller is now
a trustful node and may become a source for credentials and
may serve as a building block for a PKI.

Securing AODV seems of primary importance in our ar-
chitecture, as it is the prerequisite for switch-to-controller
dialog. Especially, it is sensible to some routing attacks, like
wormhole and grey/black hole attacks. Proposed solutions for
securing AODV do not study how to implement a PKI in a
UAANET. As shown here above, the proposed architecture
may provide this features through the controller. It may either
serve nodes with credentials when requested, or verify creden-
tials on behalf of the nodes, or even push all new credential
as the nodes authenticate through the TLS secured OpenFlow
connection.

Additionally, we may note that the new architecture changes
the nature of the hijacked traffic by wormhole techniques. It
is still to be proven if the SDN applications as defined here
are made insensitive to AODV wormhole attacks or not. If it
is not, wormhole may still capture traffic but will be limited
to control data. Though these data are of high criticality, they
will be protected by TLS and their real time nature.

Then, payload applications may be isolated from the more
sensible routing parts through Linux namespace techniques
and control traffic will be filtered to only allow OpenFlow and
AODV to traverse. By doing this we lower the attack surface
of the control part and limit the contagion from the payload
applications to the control part.

Finally, each node will request flows from the controller and
will report some statistics to the controller. OpenFlow provides
some common standard statistics but also allows definition of
new statistics. Hence the controller gathers effortlessly a lot of
network information (neighborhood, network and flow graphs,
flow statistics, etc.). In addition, common UAV applications
and payload applications will provide additional information
that will be easily accessible to the SDN controller (geo-
graphical position, battery charge, etc.). Convergence of all
these data at the controller location gives us an opportunity to
apply machine learning methods with the intent to detect and
identify several attacks on the swarm of drones, and produce
a protection/prevention strategy. Our SDN based architecture
then comes handy to apply such a strategy from a network
routing point of view. In addition, it may allow a global
representation of the routing situation to a human supervisor.

Actions that our new architecture will allow include both
restricting payload application network activity by filtering
source and/or destination of part or each of the flows, and
some limitations on the control plane. Limiting network traffic
on the data plane allows stopping or limiting the impact of e.g.
DDoS attacks. Filtering on the control plane will allow limiting
the possibility of the unsafe applications to act on the control
plane e.g. by generating huge amount of unknown flows, thus
producing a lot of Packet-In events on the control plane, or
prohibiting a node to send an AODV route reply.

It may be argued that the centralized nature of SDN may
expose the central node to specific attacks like PacketIn
flooding. Obviously, SDN applications in our architecture will
have to take this threat into account. However, the ground
control station actually is a central node even without SDN.
Though our architecture increases the threat level on that node,



Figure 9. Security use case for SDN

it does not create a new risk, and security measures to be
enforced will have to be outside of the network domain.

VI. CONCLUSION AND FUTURE WORK

There are few existing solutions to improve security within
swarms of drones and they are usually able to respond only to
a given type of attack. In this paper, we have put forward dif-
ferent architectures capable of improving security and selected
two that suit the most constrained drones: the first a traditional
ad hoc routing protocol to which we would add iptables based
filtering, the second a novel in-band SDN based architecture.
The former is a well known approach for ad hoc networks.
The latter introduces SDN to the UAANET providing all the
flexibility that SDN can bring to wired networks. It can be
deployed on constrained platforms due to its simplicity, and
the use of this architecture spans several network domains.

To test both architectures, we designed a testbed consisting
of several drones and a control station capable of running
operational scenarios, which applies both architectures to
real systems. We defined a testing scenario representative of
an operational mission including mobility, and real C2 and
mission data. Our evaluation was that they have equivalent
performances in terms of delays and losses during mobility,
providing the required performances at the cost of some
bandwidth.

We propose several uses of our new architecture in the
network security domain: to enforce security rules in response
to an attack, to take advantage of the secured connection with
the ground station and to use SDN as a basis for supervising
the activity within the network.

We plan to continue improving the current AODV/SDN
implementation and especially the SDN application. So far
implementation has focused on the performance evaluation, we
intend to evaluate security application of the SDN architecture:
use of SDN flow tables for filtering, supervision and data
gathering.

We also intend to implement our AODV/SDN architecture
on a group of UAVs for field evaluations.

REFERENCES

[1] I. Bekmezci, O. K. Sahingoz, and S. Tamal, “Flying Ad-Hoc Networks
(FANETs): A survey,” Ad Hoc Networks, vol. 11, no. 3, p. 1254–1270,
2013.

[2] N. Dayal, P. Maity, S. Srivastava, and R. Khondoker, “Research trends
in security and ddos in sdn,” Security and Communication Networks,
vol. 9, no. 18, pp. 6386–6411, 2017.

[3] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, Jun 2018.

[4] J.-A. Maxa, M.-S. Ben Mahmoud, and N. Larrieu, “Survey on
UAANET Routing Protocols and Network Security Challenges,” Ad
Hoc & Sensor Wireless Networks, Mar. 2017. [Online]. Available:
https://hal-enac.archives-ouvertes.fr/hal-01465993

[5] N. Battat, H. Seba, and H. Kheddouci, “Monitoring in mobile ad hoc
networks: A survey,” Computer Networks, vol. 69, pp. 82 – 100, 2014.

[6] SDN Architecture, Open Networking Foundation, Jun. 2014.
[7] OpenFlow®Switch Specification Ver 1.3.5, Open Networking Founda-

tion, Apr. 2015.
[8] “Station and Media Access Control Connectivity Discovery,” IEEE

802.1AB, Institute of Electrical and Electronics Engineers, Sep. 2009.
[9] I. Ku, Y. Lu, M. Gerla, F. Ongaro, R. L. Gomes, and E. Cerqueira,

“Towards software-defined vanet: Architecture and services,” 2014.
[10] M. Abolhasan, J. Lipman, W. Ni, and B. Hagelstein, “Software-defined

wireless networking: Centralized, distributed, or hybrid?” vol. 29, 07
2015.

[11] G. Bianchi and A. Capone. (2014) From dumb to smarter switches in
software defined networks: an overview of data plane evolution.

[12] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-
hyastha, “Flowsense: Monitoring network utilization with zero measure-
ment cost,” in Passive and active measurement (PAM), 2013, pp. 31–41.

[13] S. Fichera, L. Galluccio, S. C. Grancagnolo, G. Morabito, and
S. Palazzo, “OPERETTA: An OPEnflow-based REmedy to mitigate TCP
SYNFLOOD Attacks against web servers,” Computer Networks, vol. 92,
pp. 89 – 100, 2015.

[14] R. J. R. Mohammadi and M. Conti, “SLICOTS: An SDN-Based
Lightweight Countermeasure for TCP SYN Flooding Attacks,” IEEE
Transactions on Network and Service Management, vol. 14, no. 2, pp.
487–497, June 2017.

[15] D. Q. Le, T. Jeong, H. E. Roman, and J. W. Hong, “Traffic dispersion
graph based anomaly detection,” in Proceedings of the 2011 Symposium
on Information and Communication Technology, SoICT 2011, Hanoi,
Viet Nam, October 13-14, 2011, 2011, pp. 36–41.

[16] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” RFC 3561, Jul. 2003. [Online].
Available: https://www.rfc-editor.org/rfc/rfc3561.txt

[17] J.-A. Maxa, G. Roudière, and N. Larrieu, “Emulation-Based Perfor-
mance Evaluation of Routing Protocols for Uaanets,” in Nets4Aircraft
2015, ser. Nets4Cars/Nets4Trains/Nets4Aircraft 2015, vol. LNCS, no.
9066. Sousse, Tunisia: Springer, May 2015, pp. 227–240.

[18] S. Khan, A. Gani, A. W. A. Wahab, M. Guizani, and M. K. Khan,
“Topology discovery in software defined networks: Threats, taxonomy,
and state-of-the-art,” IEEE Communications Surveys Tutorials, vol. 19,
no. 1, pp. 303–324, Firstquarter 2017.

[19] AODV-UU. [Online]. Available: https://github.com/erimatnor/aodv-uu
[20] Basic OpenFlow Software Switch (BOFUSS). [Online]. Available:

https://wiki.sdn.ieee.org/display/sdn/OFSS13
[21] Ryu component-based software. Ryu SDN Framework Community.

[Online]. Available: https://osrg.github.io/ryu/
[22] L. Berc, W. Fenner, R. Frederick, S. McCanne, and P. Stewart, “Rtp

payload format for jpeg-compressed video,” RFC 2435, Oct. 1998.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc2435.txt

[23] N. Bonelli, G. Procissi, D. Sanvito, and R. Bifulco, “The acceleration
of ofsoftswitch,” in 2017 IEEE Conference on Network Function Vir-
tualization and Software Defined Networks (NFV-SDN), Nov 2017, pp.
1–6.

[24] Open vSwitch (OvS). The Linux Foundation. [Online]. Available:
http://www.openvswitch.org/


