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Abstract—Departure metering has the potential to mitigate
airport surface congestion and decrease flight delays. This pa-
per considers several candidate departure metering techniques,
including a trajectory-based optimization approach using a node-
link model and three aggregate queue-based approaches (a
scheduler based on NASA’s ATD-2 logic, an optimal control
approach, and a robust control approach). The outcomes of
these different approaches are compared for two major airports:
Paris Charles De Gaulle airport (CDG) in Europe and Char-
lotte Douglas International airport (CLT) in the United States.
Stochastic simulations are used to show that the robust control
approach best accommodates operational uncertainties, while all
the approaches considered yield higher taxi-out time savings at
CLT compared to CDG.

Keywords- airport surface operations, departure metering,
trajectory-based optimization, queuing networks, robust control.

I. INTRODUCTION

Surface congestion results in excessive taxi times and delays
at major airports around the world [1]. Departure metering, in
which departures are appropriately held at the gate in order
to reduce taxi-out time, while ensuring no adverse impact
on the airport throughput, has been shown to be an effective
congestion management technique [2–4]. An aircraft saves fuel
while waiting at the gate with its engines off compared to
idling in a taxi queue with its engines on. Departure metering
is estimated to provide $5.5-9.5 billion in monetary benefits
at the top 35 airports in the US over a 20-year period [5], and
is an integral part of airport surface management programs
internationally [6–9].

Departure metering solutions can be broadly classified into
aircraft-specific trajectory-based approaches and aggregate
queue-based approaches. A trajectory-based approach uses a
detailed node-link network model for the airport surface, and
determines an optimal 4D taxi trajectory for each aircraft, ac-
counting for interactions with other flights [10]. The resulting
large-scale optimization problems have been solved using a
range of computational methods [11–17]. By contrast, a queue-
based approach determines an aggregate pushback rate at any
time, considering macroscopic factors such as surface queue

lengths or average taxi-out times, which are determined using
low-fidelity queuing models [18–20].

In this paper, we present a comparative analysis of four
departure metering techniques applied to two major airports:
Paris Charles De Gaulle Airport (CDG) and Charlotte Douglas
International Airport (CLT). The first of these techniques is
trajectory-based optimization, while the other three are queue-
based approaches. One of them reflects NASA’s Airspace
Technology Demonstration-2 (ATD-2) logic, which has been
field-tested at CLT since November 2017 [2]. Two other
queue-based approaches, an optimal control approach [20]
and a new robust control approach that explicitly handles
model uncertainties are also analyzed, using models of the
two airports that are developed and validated using operational
data.

The main contributions of this paper are as follows: We
describe two data-driven techniques for modeling the airport
surface: the first based on a node-link model, and the second
based on a queuing network. We adapt these models to both
CLT and CDG. These models are used to develop departure
metering algorithms that regulate the pushback of aircraft from
their gates during periods of congestion. The node-link models
are used for trajectory-based optimization, while the queuing
network based models are used to adapt the ATD-2 logic
as well as develop optimal and robust control policies. The
impacts of the different departure metering algorithms are then
evaluated using stochastic simulations of operations at CLT
and CDG, in order to gain insights on the effectiveness of the
different approaches, as well as the influence of airport layout
and departure demand profiles.

A. Modeling of airport surface operations

The comparison of benefits with different departure meter-
ing approaches across airports requires the modeling of airport
surface operations. This paper uses models that were built
and validated with data that included flight tracks, the actual
pushback, in-air (wheels-off), landing (wheels-on) and in-gate
times, gate assignments, and meteorological conditions at the
airports [21–23]. In particular, the data corresponded to CLT



operations in May-July 2015 and May-June 2016, and CDG
in July-August 2017, covering high-demand summer periods.

1) Overview of CDG operations: CDG is the 2nd bus-
iest airport in Europe and the 11th busiest airport in the
world in terms of aircraft movements, with 1,300 flights/day
and 66 million passengers in 2016 [25]. The airport has
four parallel runways, and operates under two broad run-
way configurations: West-flow (26L,27R|26R,27L) and East-
flow (09L,08R|09R,08L). This paper focuses on the more
frequently-used West-flow configuration (75% of operations
in July-August 2017). Fig. 1(a) shows the CDG layout along
with a snapshot of the traffic in the West-flow configuration.
Departing flights are represented by black triangles and arriv-
ing flights represented by white ones. The departure and arrival
runways are indicated using blue and red arrows, respectively.
We note the queues of aircraft near the departure runways.

2) Overview of CLT operations: CLT is the 7th busiest
airport in the world in terms of aircraft movements, with 1,400
flights/day and 44.4 million passengers in 2016 [23, 25]. It
has three parallel runways and one intersecting runway, and
operates under two broad runway configurations: North-flow
(36C, 36L, 36R | 36C, 36R) and South-Flow (18L, 18C, 18R,
23 | 18C, 18L). We focus on the North-flow configuration
which handled about 56% of the traffic in 2016 [22]. Fig. 2(a)
shows the airport layout of CLT. The leftmost runway (36L)

is used only for arrivals, whereas runways 36C and 36R are
used under mixed operations. CLT experiences congestion at
multiple locations, resulting in the formation of queues in the
ramp area and near the runway crossing, in addition to the
departure runway queues.

3) Comparison of CDG and CLT: Although the two
airports handle approximately the same number of aircraft
movements, their fleet mixes are significantly different, with
CDG handling a larger percentage of ‘heavy’ aircraft (25%)
compared to CLT (2%). CDG operates under instrument mete-
orological conditions (IMC) capacity even in visual conditions,
unlike CLT. Both airports have same number of departure
runways, but CLT has mixed operations. Consequently, the
declared departure capacities in good weather conditions are
similar at both airports. Another differentiating feature is the
nature of demand. Fig. 3 shows the number of pushbacks (per
15 mins), declared departure capacity and total runway queue
length for a typical day at the two airports. Departure demand
is significantly banked at CLT compared to CDG, resulting in
periods of increased congestion and the formation of larger
queues. One can also notice that the demand at CDG rarely
exceeds capacity since it is slot-constrained, unlike CLT. The
higher imbalance between demand and capacity at CLT leads
to higher taxi-out delays. The average taxi-out delay is 4.2
min at CDG and 9 min at CLT. We would therefore expect
higher benefits from departure metering at CLT.

(a) Airport layout with a snapshot of traffic movement.
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(b) Node-link network. (c) Queuing representation.

Fig. 1: CDG in West-flow runway configuration.

(a) Airport layout with a snapshot of traffic.
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(b) Node-link network. (c) Queuing representation.

Fig. 2: CLT in North-flow runway configuration [24].
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(a) CDG (July 10th, 2017)
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(b) CLT (May 7th, 2015)

Fig. 3: Number of pushbacks (per 15 min), declared departure
capacity and queue length for a typical good weather day.

II. TRAJECTORY-BASED OPTIMIZATION

In the trajectory-based approach, the airport surface is
represented as a node-link network (Figs. 1(b) and 2(b)). The
nodes correspond to runway entry/exit points, holding points,
and intersections of taxiways or gates. A holding point refers to
the runway threshold for departures and runway crossing point
for arrivals. Links connect two adjacent nodes. The modified
pushback times for departure metering are determined as a
solution to an optimization problem, as described below.

A. Problem formulation

1) Inputs: The inputs to the optimization problem are
the set of flights (F = A

⋃
D , A for arrivals and D for

departures); gate number for flights (G f ∀ f ∈ F ); landing
or take-off runways for flights (r f ∈R); initial off-block time
for departures or initial landing time for arrivals (I f ); holding
point (h f ∈H ); minimum allowed taxi speed (V min

f ); max-
imum allowed taxi speed (V max

f ); time-step (∆t); maximum
allowed holding time (N∆t), denoted by Na for arrivals and
Nd for departures; maximum allowed pushback delay (Np∆t);
maximum capacity at holding points (C), denoted by Ca for
arrivals and Cd for departures; speed increment (∆v); minimum
taxi separation distance (s); minimum runway separation time
between two consecutive flights f and g, denoted by s f g.

2) Decision variables: For each flight f ∈F , the decision
variables are defined as follows:

• p f : Pushback time for departures (discretized),
p f ∈ {I f , I f +∆t, · · · , I f +Np ·∆t};

• w f : Holding time (waiting time at runway threshold for
departures and time spent in runway crossing queues for
arrivals), w f ∈ {0,∆t,2 ·∆t, · · · ,N ·∆t};

• v f : Taxi speed, v f ∈ {V min
f ,V min

f +∆v, · · · ,V max
f }.

The pushback times (p f ) are the key decision variables in
departure metering. However, the holding times at the runway
(w f ) and taxi speeds (v f ) also need to be determined to ensure
conflict-free solutions. The taxi speeds are determined for the
pushback area, ramp and active movement area (AMA). The
following auxiliary variables are introduced:
• tu

f : Runway usage time (takeoff time for departures or
runway crossing time for arrivals), based on taxi paths
and speeds;

• tc
f : Completion time for flight f : tc

f = tu
f for departures,

and the in-gate time for arrivals.
3) Constraints: The maximum holding delay and pushback

delay are specified by Constraints (1) and (2), respectively.
Constraint (3) defines the possible range of taxi speeds, when
the aircraft is not stopped at a holding point.

0≤ w f ≤ N ·∆t, ∀ f ∈F , (1)
I f ≤ p f ≤ I f +Np ·∆t, ∀ f ∈D , (2)

V min
f ≤ v f ≤V max

f , ∀ f ∈F , (3)

In order to introduce the runway separation constraints, we
define the following sets to represent infeasible assignments
of runway usage times. For any two distinct flights f ,g ∈F ,
we introduce:

CR
f g =

{
1, if (tu

g − tu
f < s f g or tu

f − tu
g < sg f ) and r f = rg,

0, otherwise;
(4)

Then, the minimum runway separation requirement is guaran-
teed by Constraint (5):

∑
( f ,g)∈F×F , f 6=g,

CR
f g = 0, (5)

For any two distinct flights f ,g ∈F , we introduce:

CH
f g =

1,
if ((tu

g −wg < tu
f −w f and tu

g > tu
f )

or (tu
f −w f < tu

g −wg and tu
f > tu

g )) and h f = hg,

0, otherwise;
(6)

The first-come-first-served order is ensured at the holding
point by Constraint (7),

∑
( f ,g)∈F×F , f 6=g,

CH
f g = 0, (7)

Let T = 1,2, ..., |T | be the discretized time steps. We
define a holding capacity indicator as follows, Oh,t =
max{Card{ f |h f = h and tu

f − w f ≤ t ≤ tu
f } −C,0}. Then,

Constraint (8) ensures that the number of aircraft waiting at
the holding point does not exceed a specified limit,

Oh,t = 0,∀h ∈H ,∀t ∈T . (8)

This limit depends on the airport layout for arrivals, and is an
ATC-defined parameter (runway pressure) for departures.

We ensure a minimum taxi separation by considering three
types of separation loss (Fig. 4): node separation, link overtak-
ing separation, and bi-link head-on separation. Based on the
node-link network, we can define:



(a) Node sep-
aration

(b) Link overtaking (c) Bi-link head-on

Fig. 4: Taxi separation based on node-link network.

• Cn, the total number of conflicts at nodes. A conflict is
detected if the separation time between two successive
aircraft using the node is less than the minimum separa-
tion time, which is calculated based on the safe separation
distance, s, and the taxi speed.

• Cl , the total number of over-taking conflicts on links. The
entry and exit time of each flight passing through a link
are compared to check if the entry order of aircraft differs
from the exit order. The number of over-taking conflicts
is the rank difference between the entry and exit orders.

• Cb, the total number of head-on conflicts on links. A head-
on conflict occurs when the exit time of an aircraft using
a link is earlier than the entry time of another aircraft
using the same link but heading in the opposite direction.

• Ct = Cn +Cl +Cb = 0 ensures that there are no ground
conflicts.

4) Objective function: The objective is to minimize

αΦp +βΦd + γΦa,

where α , β and γ are weighting coefficients, and where Φp is
the average pushback delay, Φd is the average taxi-out time,
and Φa is the average taxi-in time. The conflict-avoidance
constraints are handled by penalizing conflicts in the objective
function. Once a conflict-free solution is reached, the system
continues to minimize other criteria.

B. Solution approach to trajectory-based node-link model

The solution to the optimization problem is obtained us-
ing an adapted simulated annealing (SA) algorithm [26]. At
each iteration in the algorithm, a neighboring solution to the
current solution is generated, and the neighboring solution is
accepted with a probability that depends on the difference in
objective function between the two solutions and a temperature
parameter. The temperature parameter is progressively reduced
with each iteration, thereby modulating the exploration of the
solution space.

C. Model parameters

The node-link model for CDG (Fig. 1(b)) consists of 1,185
nodes and 1,441 links with 517 gates. The model for CLT
(Fig. 2(b)) consists of 581 nodes and 506 links, with 102
gates. Aircraft are assumed to taxi with a constant speed within
each link. The links corresponding to the pushback area, ramp
area and AMA are indicated in Fig. 1(b)-2(b) using green, red
and blue, respectively. The range of taxi speeds are obtained
from operational data. The maximum taxi speeds at CDG are
assumed to be 0.3, 7.0, and 10.0 m/s for the pushback area,
ramp area, and AMA, respectively. The equivalent values for

CLT are assumed to be 0.15, 7.0, and 9.0 m/s. The minimum
speed is assumed to be half the maximum speed in the ramp
area and AMA, and 80% of the maximum taxi speed in the
gate area. The minimum taxi separation is considered to be 60
m in the AMA and 30 m in the ramp area at CDG, and 80 m
on taxiways and 30 m in the ramp area at CLT. The runway
separation time was obtained as the mean of the empirical
distribution obtained from operational data.

The other user-defined parameters in the optimization are
as follows: ∆t = 5 s and ∆v = 0.01V max

f . Since CLT is
more congested than CDG, the maximum gate-holding time is
considered to be 25 min at CLT and 10 min at CDG. Moreover,
due to the different layouts of the arrival holding areas at the
two airports, we assume that a maximum of 2 arrivals can
wait at the holding point at CDG, and 5 arrivals at CLT. The
maximum holding time for arrivals is 10 min at CLT and 5
min at CDG. The maximum holding time for departures is
20 min at CLT and 15 min at CDG, and a maximum of 5
departures can wait at the runway threshold for both airports.
The weighting coefficients for the objective function are set to
α = 2, β = 1 and γ = 1 at CLT, and α = 1, β = 1 and γ = 0.01
at CDG. These coefficients are chosen such that the average
wheels-off delay due to departure metering is minimized.

D. Expected benefits of trajectory-based optimization

The baseline taxi-times are computed with only the taxi
speeds and holding times at the runway threshold as the de-
cision variables in the optimization process. For the metering
case, the pushback time is included as an additional decision
variable. Fig. 5(a) shows the optimized taxi-times averaged
over 15-min intervals for a typical day at CLT. We can see
the taxi-out and taxi-in time reductions in the optimized case,
particularly during time intervals that have a high baseline
value. This reduction in taxi-in time arises primarily from the
better sequencing of runway crossings. Note that the reduction
in taxi-out time does not adversely impact the taxi-in time.
The reduction in taxi-out time corresponds to reduced queue
lengths on the airport surface (Fig. 5(b)).

TABLE I
TRAJECTORY-BASED DEPARTURE METERING: AGGREGATE STATISTICS.

Average values CLT CDG
Baseline taxi-out time (min) 18.4 14.2
Taxi-out time reduction with metering (min) 3.5 1.1
Baseline taxi-in time (min) 9.6 10.1
Taxi-in time reduction with metering (min) 1.7 0.0
Gate-hold time (min) 3.0 1.1
Wheels-off delay (min) -0.5 0.0
Percentage of flights held at the gate 61% 50%

Aggregate statistics over a three day period (6 AM to 10
PM local) at the two airports are presented in Table I. As one
would expect, the taxi-out time reduction is higher at CLT
(3.5 min) compared to CDG (1 min). Moreover, the average
hold time does not exceed the average taxi-out time reduction,
resulting in no additional wheels-off delay from metering. In
fact, the wheels-off delay is negative at CLT because of an
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Fig. 5: Comparison of queue length and taxi-time with
trajectory-based departure metering for a typical day at CLT
(May 7th, 2015).

increase in throughput of about 3% from better sequencing of
arrival runway crossings and takeoffs.

III. QUEUING-BASED APPROACHES

In this section, we consider a different class of departure
metering algorithms that are based on queuing network models
of the airport surface. The queuing models differ from the
microscopic trajectory-based approach presented earlier in that
they output macroscopic quantities such as queue lengths and
taxi-out times. These macroscopic models are easier to adapt
to different airports, and lend themselves to efficient model-
based control strategies for departure metering. In contrast to
the trajectory-based approach that controls both arrival and
departure trajectories, the queuing-based approaches regulate
only the times (or rate) at which aircraft depart from their
gates. However, the interactions between arrivals and depar-
tures are modeled and can be simulated.

A. Queuing network models

The main goal of a queuing network model of the airport
surface is to determine queue lengths and taxi-out times as a
function of the pushback times and other input parameters.

1) Fluid-flow model for queues: The fluid model is a
continuum approximation to the discrete queuing problem. Let
λ (t) be the arrival rate into the queue and µ(t) be the mean
service rate of the server. Then, the dynamics of the queue
length (x(t)) is given by the following equation [20]:

ẋ(t) =−µ(t)
C(t)x(t)

1+C(t)x(t)
+λ (t), (9)

where C is a positive parameter that depends on the coefficient
of variation of the service time distribution of the server [20].
The negative term in the above equation is the out-flow rate
from the queue and λ (t) is the in-flow rate into the queue.

Using the principle of flow-conservation, the model can be
extended to a network of queues, using the fact that the
output of one queue becomes the input to the next, if they
are connected.

2) Queuing network model of CDG: The runways are
the primary bottleneck at CDG, leading to the formation of
departure runway queues. The taxi-out process is represented
using a single queue, one for each departure runway as shown
in Fig. 1(c). After pushback, an aircraft enters the departure
runway queue after spending an unimpeded gate-to-runway
time. The dynamics for the evolution of the departure runway
queues are given by

ẋri =−µri (t)
Cri (t)xri (t)

Cri (t)xri (t)+1
+udi (t− τgri ), i = 1,2 (10)

where xri represents the queue length of the ith departure
runway, and τgri is the average unimpeded travel time from the
gate to the ith departure runway, udi represents the pushback
rate to the ith departure runway. The pushback rate is computed
as the number of aircraft pushing back from the gate in a
given time interval (5 min in this paper). The time delay in
the dynamics accounts for the travel time from the gate to the
departure runway.

The queue length can be predicted by integrating the dy-
namics forward in time with appropriate server parameters
and pushback rate. The wait times of aircraft entering the
queue are determined using the predictions of queue length
and time-varying mean service rates [24]. The taxi-out time is
then determined as the sum of the unimpeded gate-to-runway
time plus the waiting time in the queue. The unimpeded times
are computed as the 10th percentile of the empirical taxi-time
distribution obtained from data.

3) Queuing network model of CLT: CLT experiences signif-
icant congestion in the ramp area, in addition to queuing at the
departure runways. Therefore, the CLT model includes a ramp
queue and two departure runway queues (Fig. 2(c)). After
pushback, departures enter the ramp queue, followed by one
of the two runway queues based on the runway assignment.
We model the ramp queue as a multi-class queue, the class of
customers representing the runway assignment of the aircraft
in the queue. The service rate for a particular class is assumed
to be proportional to the number of customers of that class in
the queue. The queuing dynamics is then given by

ẋsi =−µs(t)
Cs(t)xsi (t)

Cs(t)xs(t)+1
+udi (t− τgs); xs =

2

∑
i=1

xsi (11)

ẋri =−µri (t)
Cri (t)xri (t)

Cri (t)xri (t)+1
+

µs(t− τsi)Cs(t− τsi)xsi (t− τsi)

Cs(t− τsi)xs(t− τsi)+1
, (12)

where xsi represents the number of aircraft in the ramp queue
that are bound for the ith departure runway, τgs is the average
unimpeded travel time from the gate to the spot, and τsi
represents the average unimpeded travel time from the spot
to the ith runway.

Arrivals and departures at CLT interact in the ramp area.
Therefore, the taxi-in process at CLT is represented as follows:
flights landing on the leftmost runway (36L) pass through a



runway crossing queue and a taxi-in ramp queue, whereas
flights landing on one of the other runways just pass through
the taxi-in ramp queue (see Fig. 2(c)). Additional details can
be found in our earlier work [24].

4) Service time distributions: Empirical service time dis-
tributions are obtained as the difference between successive
exit times from the queue when there is a non-zero queue
length. The service time distribution of a departure runway
server is conditioned on the number of landings and the
weather (IMC/VMC) for each 5-min window. The service time
distribution of the taxi-out ramp server is a function of the
length of the taxi-in ramp queue, and vice versa [24].

5) Predictive performance of queuing models: Fig. 6(a)
shows a comparison of the predicted and observed departure
runway queue lengths at CDG for a typical day. The data
corresponds to a time-based definition of queue length, in
which an aircraft is said to be in the runway queue if it has
spent unimpeded gate-to-runway time after pushback but is
yet to take-off. Our analysis has found that this time-based
definition is consistent with the observed physical queue. The
taxi-out times for this particular day, averaged over 15-min
windows, are shown in Figure 6(b). These figures show a good
match between the predictions and observed values. A similar
match is also observed for CLT [24].

TABLE II
ERROR STATISTICS USING ANALYTICAL QUEUE MODELS.

Airport Number of Taxi-out time (min) % of flights
departures Mean ME MAE |error| < 5 min

CDG 14,100 13.3 -0.3 3.0 82.4
CLT 7,464 20.1 -1.4 4.4 69.0

Table II shows the aggregate error statistics of taxi-out time
prediction for individual flights, computed for an independent
test set of 14,100 departures for CDG and 7,464 departures
at CLT. Flights with taxi-out times greater than 50 min were
not included while computing the statistics. The mean errors
(ME) and mean absolute errors (MAE) are found to be small
relative to the mean taxi-out times. A good overlap can be seen
between the predicted and actual taxi-out time distributions
(Fig. 6(c)). The mean error is slightly negative for both
airports. From the point of view of departure metering, positive
errors are not desirable since they correspond to an over-
prediction of taxi-out times, leading to overly-aggressive holds
and unnecessary wheels-off delays.

B. Queue-based departure metering approaches

A simple differential equation representation of the queuing
dynamics allows us to develop efficient strategies for control-
ling the pushback time at the gate to reduce queue lengths (and
taxi-out times). Three departure metering approaches based on
the queuing model are considered: NASA’s ATD-2 logic, an
optimal control method, and a robust control based technique
that explicitly accounts for model uncertainties.

1) NASA’s ATD-2 logic: The ATD-2 logic for departure
metering computes a gate-hold time for each flight based on

its predicted taxi-out time as follows [2]:

TOBT = max(EOBT,T TOT −UT T −Y ), (13)

where TOBT is the Target-Off-Block-Time or the new gate
release time decided by the controllers, T TOT is the Target
Take-Off-Time, UT T is the unimpeded time to take-off that
depends on the gate-runway pair, Y is the excess queue time
buffer and EOBT is the Earliest Off-Block Time. EOBT is the
expected push ready time published by the airlines. We use
the FAA’s Surface CDM (S-CDM) nomenclature, which differs
slightly from the Airport CDM (A-CDM) notation, for the data
elements [7, 27]. For purposes of simulation in this paper, the
actual pushback time from historical data is assumed to be
the EOBT. In other work, we have considered the accuracy
and uncertainty associated with the data elements as reported
by the airlines [28]. The target takeoff time is computed by
adding the predicted taxi-out time to the flight’s EOBT. The
queuing model presented earlier is used to obtain the predicted
taxi-out time for each flight. In other words, the hold time
assigned to each flight is the predicted wait time in queue for
that flight minus the excess queue time buffer. The underlying
idea is to transfer the predicted wait time in the queues to a
gate-hold time, thereby saving fuel. To improve operational
predictability, the hold decisions are made Tp minutes prior to
a flight’s EOBT, where Tp is the planning horizon. A timeline
diagram of the ATD-2 logic is shown in Fig. 7.

The excess queue time buffer (Y ) helps accommodate errors
in taxi-out time prediction. It is important to choose an
appropriate value for this parameter: If too high, it will lead
to decreased benefits; and if too low, it could lead to reduced
runway utilization. The optimal buffer is chosen such that it
yields the maximum reduction in taxi-out time while ensuring
that the average change is wheels-off time is less than 0.1
min. The optimal excess queue time buffer for a 20 min
planning horizon was determined to be 6 min for CDG, and 7
min for CLT, based on stochastic simulations (Section. IV-A)
of operations over a 15-day period. A larger buffer is to be
expected for CLT, since as seen in Table II, the queuing model
errors are larger for CLT than CDG.

2) Optimal control approach: The optimal control ap-
proach determines hold times by explicitly optimizing the
queue lengths on the airport surface instead of using a rule-
based heuristic (such as the ATD-2 logic).

Let x(t) ∈ Rp be a vector of taxi-out queue lengths on the
airport surface at any time instant t. Let d(t)∈Rq be the depar-
ture demand rate, with its elements representing the demand
rate to each runway. The departure demand corresponds to the
push-ready time for departures (obtained from the EOBTs),
averaged over 5-min windows. Let ud(t) be the pushback rate
that is assigned by the controllers, and h(t) be the number
of aircraft held at their gates due to departure metering. The
number of holds (h(t)) is then given by:

h(t) =
∫ t

0
d(x)dx−

∫ t

0
ud(x)dx =⇒ ḣ(t) = d(t)−ud(t) (14)

The control objective is to minimize the length of taxi-out
queues while maintaining throughput. The state variables are
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Fig. 6: Comparison between model predictions and data for CDG.

Fig. 7: A timeline diagram representing the ATD-2 logic as
simulated. UTOT refers to the unimpeded takeoff time.

the taxi-out queue lengths and the number of holds, and the
control variable is the departure pushback rate (ud(t)). The
optimal control problem formulation is then as follows:

min
ud(t)

∫ T

0

(
xTQx+hTRh

)
dt (15)

Subject to: (16)
ẋ = f(x(t),x(t− τ1), ....x(t− τm),ud(t− τm+1), ...ud(t− τw), t) (17)

ḣ = d(t)−ud(t) (18)
0≤ xi,hi; 0≤ udi ≤ um; i = 1,2,3, ...w (19)
udi(t) = gi(t), t ∈ [−τdi,0); i = 1,2,3, ...w (20)
xi(t) = φi(t), t ∈ [−τki,0], h(0) = h0; i = 1,2,3, ...w (21)

Here, T is the time horizon over which the cost needs to be
minimized, and Q∈Rp×p and R∈Rq×q are constant weighting
matrices. Equations (17) and (18) specify the dynamics for the
length of the queues and number of holds. The inequalities
in (19) impose nonnegativity constraints on the number of
holds, queue lengths, and pushback rate. The delay differential
equations also require an initial history, specified by Equations
(20)-(21). The cost function (15) penalizes a weighted sum of
the square of the queue lengths (to reduce taxi-out times) and
number of holds (to avoid having large holds and to maintain
runway throughput).

The service time distributions for the departure runway
queues depend on the landing rates and meteorological con-
ditions, which are assumed to be known. For CLT, the taxi-in
ramp queue length is pre-computed using the queuing model
with the EOBTs and arrival times, and is used to determine
the service rate for the taxi-out ramp queue.

The optimal control problem is solved in a receding horizon
framework, accounting for the current state of the airport
surface. The day is divided into 5-min intervals. At the
beginning of each interval, t, the optimal control problem is

solved for [t+Tp, t+Tp+T ] where Tp is the planning horizon,
and T is the time-period over which the cost is minimized. At
that time, the pushback rate is decided only for the next 5 min,
namely, [t +Tp, t +Tp + 5] min. The initial conditions for Tp
min into the future are obtained using the queuing network
model with the current state as the input. The number of
aircraft that can be released during each 5-min window (n) is
determined from the pushback rate. The first n aircraft in the
5-min window are released as per the optimal control decision,
and remaining aircraft are pushed to the beginning of the next
time window, awaiting decision for release. In contrast to the
ATD-2 logic which assigns and freezes the hold times for
flights that have an EOBT Tp min ahead, the optimal control
approach only specifies the flights that need to be released in
[t +Tp, t +Tp +5] time window, and postpones the remaining
flights to the next time window. Consequently, aircraft can be
postponed multiple times to the next time window. However,
a final pushback time is frozen Tp minutes ahead.

The optimal control problem is solved numerically by dis-
cretizing the state and control variables due to the challenges
posed by time delays and nonlinear dynamics. The equations
are discretized using a first-order Euler method, and the
resulting non-linear programming problem (NLP) is solved
using a standard solver in MATLAB. Appropriate weight
functions to avoid loss in runway utilization were found to be
R = 0.4I and Q = I for a 20 min planning horizon (Tp). The
time-period over which the cost is minimized (T ) is considered
to be 30 min for CLT and 60 min for CDG. The larger time-
period at CDG is due to its wider departure banks.

3) Robust control: The optimal control approach relied
on the predictions of the queuing model to determine the
pushback rate. However, these predictions can be inaccurate.
The robust control strategy regulates the pushback rate to
achieve a target departure runway queue length while explicitly
accounting for model uncertainties. Sliding mode control, a
standard technique in robust nonlinear control, is adopted to
account for model uncertainties [29]. To handle the challenges
posed by time-delays, we first ignore their effect, and then use
predictor-based feedback to account for them [30].

For illustrative purposes, we only present the methodology
for CDG. The taxi-out queue dynamics without the time-delay



is given by (Eq. (10)):

ẋri =−µri (t)
Cri (t)xri (t)

Cri (t)xri (t)+1
+udi (t) = ᾱi(xri , t)+udi (t), i = 1,2 (22)

where ᾱi(xri ,t)=−µri (t)
Cri (t)xri (t)

Cri (t)xri (t)+1 . The objective is to determine
the pushback rate (udi(t)) in order to maintain the queue length
of departure runway i (denoted xri ) at a desired value, xri,d .
We assume that the actual dynamics deviates from the model,
but has the following structure

ẋri = αi(xri , t)+udi(t), i = 1,2, (23)

where αi(.) is an unknown function that is bounded as follows:

|αi(xri , t)− ᾱi(xri , t)| ≤ Fi(xri , t), i = 1,2 (24)

Motivated by the fact that the errors arise primarily due to
uncertainties in the individual service times, we consider the
following form for Fi(xri , t) = ai

Cri (t)xri (t)
Cri (t)xri (t)+1 . Here, ais are

design parameters that need to be chosen depending on the
level of uncertainty.

The asymptotic tracking of the queue length can be achieved
using a fairly standard technique [29]. The resulting feedback
law is given by:

udi(t) = max
(

ᾱi
(
xri(t), t

)
− ki sat

(
xri(t)− xri,d

)
,0
)
.(25)

Here, the gain parameter (ki) needs to be chosen to satisfy ki >
Fi(xri , t) and sat(.) represents the saturation function, defined
as

sat(x) = x, if |x|< 1; and sgn(x), otherwise. (26)

In the control law (25), instead of the states at the current
time, t, the predicted states at time, tpred = (t +Tp + τgri) are
used to handle delay in the queuing dynamics (τgri ) and to
account for the planning horizon (Tp). The predicted queue
length (xri,p) is obtained by integrating the queuing dynamics
(10) forward in time using the current queue length as the
initial condition. The pushback rate at time t is given by:

udi (t) = max
(

ᾱi

(
xri ,p(tpred), tpred

)
− ki sat

(
xri ,p(tpred)− xri ,d

)
,0
)
. (27)

The pushback rate decisions are converted into flight-
specific holds as described earlier in the optimal control
framework. A pushback rate control law can be derived for
CLT using the same principles.

The target queue length is set to 3.25 at CDG and 3.75
at CLT based on simulations, to obtain maximum reduction
in taxi-out time while ensuring no significant loss in runway
throughput. The gain parameters (ki) are appropriately picked.

IV. COMPARISON OF DEPARTURE METERING ALGORITHMS

A. Simulation environment

The departure metering approaches are evaluated using
simulations of airport surface operations. The simulators are
based on discrete versions of the queuing network models (as
described in Section III), with the service time for each server
being sampled from an empirical distribution. The empirical
service time distributions are a function of the airport weather,

fleet mix and traffic, as discussed earlier. The service times
are randomly sampled from the empirical distributions and
the simulations repeated multiple times to obtain consistent
statistics (a Monte Carlo simulation with 10 runs). Table III
validates the simulations by comparing the taxi-out time
predictions from the simulator in the baseline case (without
any metering) to actual data over multiple days. The results
indicate that the simulations are quite accurate, and that the
errors are small relative to the mean taxi-out times.

TABLE III
ERROR STATISTICS FOR STOCHASTIC SIMULATIONS OF BASELINE.

Airport Number of Taxi-out time (min) % of flights
departures Mean ME MAE |error| < 5 min

CDG 14,202 13.3 -0.3 3.0 84.0
CLT 6,474 20.1 1.1 4.6 64.2

B. Comparison of benefits using stochastic simulations

The stochastic simulations are used to evaluate the benefits
of departure metering for three days of operations (6AM-
10PM local time). This case corresponds to 1,934 departures
at CDG set (baseline mean taxi-out time of 12.8 min) and
1,903 departures at CLT (baseline mean taxi-out time of 21.0
min). For the queue-based approaches, the departure metering
decisions are made with a planning horizon (Tp) of 20 min,
using the information about the current state of the airport. For
the trajectory-based approach, the modified pushback time is
pre-computed for the entire day based on the expected off-
block time (considered to be the actual off-block time from
historical data).

Fig. 8 shows the taxi-out time averaged over 15-min win-
dows with different departure metering approaches, and they
are compared with the baseline case for a typical day at CLT.
In general, we note that the spikes in taxi-out time seen in the
baseline case are reduced with departure metering. Table IV
shows some key statistics obtained from the simulation, com-
paring the performance of the four approaches for CLT over
the three days. The benefits in terms of taxi-out time reduction
range between 6-14% of the mean taxi-out time. Table V
shows the departure metering statistics for CDG from the three
days of simulation.

C. Discussion

Based on the results of the simulations in Sec. IV-B, we
make the following observations:
• As was expected from Fig. 3, the benefits of departure

metering at CLT are expected to be significantly larger
than those at CDG. This is in large part because the
demand at CDG only occasionally exceeds its capacity,
due to slot-constraints.

• The simulated taxi-out time savings at CLT are the high-
est for the robust control approach, followed by the ATD-
2 logic, trajectory-based, and optimal control approaches,
in that order. While the order of the last two of these is
switched for CDG, we note that this is primarily because
the baseline taxi-out times of the node-link model used by
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Fig. 8: Average taxi-out (per 15-min) with departure metering
at CLT for a typical day (May 7, 2015).

the trajectory-based approach deviate significantly from
the observed values at CDG during the most congested
bank of operations (10AM-12PM local time).

• The longest hold times are prescribed by the trajectory-
based approach, and the resulting taxi-out time savings
are less than the hold times. In other words, the unneces-
sary wheels-off delays are the largest for the trajectory-
based approach. The main reason for this is that the
trajectory-based approach assumes the ability to control
pushback times as well as the taxi routes and speeds along
every link; in reality, these are uncertain quantities. As a
result, the stochastic simulations reveal the “brittleness"
of the deterministic solution in the current operating
environment. However, it is reasonable to expect that
as trajectory-based operations are adopted on the airport
surface, the uncertainty associated with taxi times will
decrease, and the resulting taxi-out time reductions will
be closer to the solution of the trajectory-based approach.

• Fewer flights are held, but for a longer duration, with
the robust controller compared to the other approaches.
Overall, the hold time of the flights held at the gate
is relatively small for all the approaches, a desirable
performance metric so that departures on hold don’t
occupy the gate long enough to create a conflict with
the next arriving aircraft using the same gate.

• The taxi-out time reduction with departure metering leads
to significant fuel burn savings. For example, the average
fuel flow rate per flight during the taxi phase at CLT is
0.17 kg/s. Therefore, one can potentially save 29.5 kg of
fuel per flight on average at CLT using the robust control
approach for departure metering.

In general, the algorithms that account for uncertainty
perform better than those that do not, in the simulations. The
robust control approach explicitly accounts for model uncer-
tainties while determining the pushback rates. In the ATD-
2 approach, the buffer parameter is appropriately picked to
account for model uncertainties. The optimal control approach
and the trajectory-based optimization approach optimize the
pushback decisions based on deterministic models, and under-
perform in stochastic environments.

The computational times for CLT are higher compared to
CDG because of a more complex queuing network and higher

TABLE IV
COMPARISON OF SIMULATIONS OF DEPARTURE METERING APPROACHES

FOR CLT.

Mean statistics Trajectory
based

ATD-2
logic

Optimal
control

Robust
control

Taxi-out reduction (min) 2.22 2.6 1.31 2.89
Hold time (min) 3.04 2.71 1.51 2.97

Wheels-off delay (min) 0.81 0.10 0.21 0.08
Fraction of flights held 0.61 0.63 0.34 0.35

Hold time of flights held 4.96 4.33 4.50 8.40

TABLE V
COMPARISON OF SIMULATIONS OF DEPARTURE METERING APPROACHES

FOR CDG.

Mean statistics Trajectory
based

ATD-2
logic

Optimal
control

Robust
control

Taxi-out reduction (min) 0.16 0.52 0.39 0.53
Hold time (min) 1.12 0.61 0.52 0.65

Wheels-off delay (min) 0.97 0.09 0.12 0.12
Fraction of flights held 0.50 0.26 0.17 0.17

Hold time of flights held 2.2 2.36 3.09 3.96

traffic. In general, for every 5-min window receding horizon,
the computational times are the highest for trajectory-based
optimization (mean: 23 s; max 78 s at CLT), followed by
the optimal control approach (mean: 3 s; max: 39 s). The
ATD-2 logic and the robust control approach have the lowest
computation times (<30 ms). All four approaches are therefore
amenable to implementation.

V. CONCLUSIONS

This paper presented different departure metering tech-
niques for determining the pushback times to mitigate sur-
face congestion. A trajectory-based optimization approach and
three aggregate queue-based approaches were developed and
applied to Charlotte Douglas International airport and Charles
De Gaulle airport. The departure metering benefits were
evaluated using stochastic simulations of the airport surface.
The algorithms yield a mean taxi-out time reduction ranging
between 1.3 to 2.9 min per flight at CLT. Lower benefits (0.2 to
0.5 min) were observed at CDG since the airport is relatively
less congested. Out of the four approaches, the robust control
approach that explicitly accounts for model uncertainties per-
forms better in stochastic environments, yielding the highest
taxi-out time reduction, while ensuring no adverse impact on
the airport throughput.
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