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Abstract—Closest Point of Approach (CPA) is one of the main
problems in aircraft Conflict Detection (CD). It aims to find
out the minimum distance and the associated time between two
aircraft on the same altitude with crossing traffic. Conventional
CPA prediction model generally assumes that the speed and
heading of the aircraft are constant. But the uncertainties in
real operations lead to the inaccuracy of CPA prediction. In
this paper, we introduce a novel CD framework with Machine
Learning (ML) methods. It aims to improve the CPA prediction
accuracy with the help of real trajectory data. The new model
contributes to not only reduce the number of fault short-mid
term conflict alert for air traffic controllers but also support the
implementation of future free flight concept, so as to reduce fuel
consumption and emission. In our study, we firstly propose a
data processing method to generate a close-to-reality simulation
data from Mode-S observations. Then, feature engineering is
used to transform the raw data into suitable features, which
will enable the ML models to make predictions with high-
performance. Six prevailing ML methods (MLR, SVM, FFNNs,
KNN, GBM, RF) are used to predict the CPA time and distance.
Their prediction results are compared with the conventional CPA
model (baseline). The simulation results demonstrate that the
GBM is the best prediction model both in CPA prediction and
conflict detection. However, the results also prove that not all
ML models outperform the baseline CPA model. Suitable ML
methods can greatly enhance the accuracy of conflict detection.

Keywords—Air traffic management, Conflict detection, Closest
Point of Approach, Machine Learning

1. INTRODUCTION

Free flight concept is a crucial research topic in future Air
Traffic Management (ATM). Aircrafts in free flight eliminate
the needs for Air Traffic Control (ATC) by providing pilot
with the freedom to select their path and speed in real
time [1]. Nevertheless, the conflict between aircraft must be
detected and resolved before achieving this goal. By definition,
conflict occurs when the distance between two aircraft violates
the minimum allowed separation. To ensure the safety and
efficiency of free flight, automated aircraft Conflict Detection
(CD) is of great significance. The implementation of effective
CD contributes to not only reduce the number of fault short-
mid term conflict alert for Air Traffic Controllers (ATCO)

in reality, but also support the implementation of future free
flight concept, so as to reduce the fuel consumption and CO2

emission.
CD is generally studied at three different levels: long-

term, mid-term and short-term [2]. In long-term, CD involves
trajectory planning and airline scheduling, which are the
first operations to avoid unnecessary conflicts and to ensure
flight safety. Mid-Term Conflict Detection (MTCD) is usually
carried out by ATCO with the help of semi-automated tools
over a time horizon of tens of minutes. The frequently used
tools include Center TRACON Automation System (CTAS)
[3] and User Request Evaluation Tool (URET) [4], etc. In view
of short-term CD, the time scale is in seconds or minutes. The
detected conflict must be dealt with immediately, otherwise it
will cause severe accident. To assist ATCO and pilots, Short
Term Conflict Alert (STCA) and Traffic Collision Avoidance
System (TCAS) [5] are developed and applied in short-term
CD. In order to effectively improve the accuracy of CD and
ensure enough time for conflict resolution, in this paper, we
mainly focus on the MTCD with the lookahead time of 5-20
minutes.

Closest Point of Approach (CPA) is a key concept in
algorithmic aspects for 2D MTCD. It aims to determine
the minimum distance and the associated time between two
aircraft at the same altitude with crossing traffic. CPA is
firstly studied in maritime domain for vessel CD [6, 7]. Then,
plenty of research has been carried out on using CPA for
aircraft CD [8–15]. In practical use of MTCD for ATM,
CPA concept is applied in Eurocontrol’s MTCD tool, FAA
AERA-2 tool, URET, etc. [14] However, CPA is problematic in
the actual MTCD application. In conventional and theoretical
CPA calculation, it is assumed that each aircraft flies in a
straight trajectory with a constant velocity vector. Actually,
the aircraft may change or intend to change the heading
throughout the flight. Even in cruise phase, there are still
some minor changes in heading. Besides, the ground speed
is the sum of airspeed and wind speed vectors. These vector
components both have high-level uncertainties, especially for



wind speed. Due to the stochastic climate change and the
limitation of wind modelling strategy, the wind prediction bias
is large and increases with time. Therefore, the traditional CPA
calculation method frequently lacks accuracy in the real world
with high rate of false alarms and missed detects [14].

In this paper, we will develop an novel MTCD framework
with Machine Learning (ML) methods. It is able to enhance
the conflict detection accuracy in CPA problem by learning
from the real trajectory data. Firstly, we propose a simple
data processing method to generate the close-to-reality dataset
from easily accessible mode-S observations. The generated
dataset ensure that all aircraft are flying freely with no
further conflict resolution maneuvers. Unlike other fast-time
and Monte Carlo simulated dataset, our dataset is generated
based on real trajectories, so it is easy to extract the aircraft
intents, and specify the airspace, aircraft type, flight phase, etc.
Then, feature engineering is conducted to transform raw data
into suitable features for prediction models. Finally, several
prevailing ML models will be applied for CPA prediction and
conflict detection. To the best of our knowledge, Most CD
researches used non-actual data, such as simulation data and
ideal data. This study will provide a novel insight of CD based
on real trajectory data.

2. CONFLICT DETECTION WITH CLOSEST POINT OF
APPROACH

CPA refers to the positions at which two dynamically
moving objects reach their closest possible distance [16]. In
the air, conventional CPA model assumes that aircraft fly at
the same altitude with constant speeds and constant headings
[14, 15]. Figure 1 illustrates the interaction of two aircraft.
This scenario occurs from t0 to t3. Dotted lines indicate
the distance between two aircraft at various timestamps. The
timestamp is noted as tCPA, when two aircraft reach their
closest distance dCPA labelled by red dotted line.

Figure 1: CPA illustration

Conventional model uses the following procedure to com-
pute tCPA and dCPA. At first, it is assumed that two aircraft i,
j fly at the same altitude with fixed heading and ground speed
starting from common time t0. Their speed vectors are vi =
(vi cos(ϕi), vi sin(ϕi))

T and vj = (vj cos(ϕj), vj sin(ϕj))
T .

Their position vectors at initial time are pi = (xi, yi)
T and

pj = (xj , yj)
T . Thereinto, vm, ϕm, xm and ym, m ∈ {i, j}

are speed, heading and X, Y coordinates of the m-th aircraft,
respectively. Then, using basic calculation, tCPA and dCPA can
be derived as follows:

tCPA(pi,pj ,vi,vj) =
−
(
pj − pi

)
·
(
vj − vi

)∣∣vj − vi
∣∣2 (1)

=
−XdiffVsdiff − YdiffVcdiff

Vsdiff
2 + Vcdiff

2 (2)

dCPA(pi,pj ,vi,vj) =
∣∣∣tCPA ·

(
vj − vi

)
+ pj − pi

∣∣∣ (3)

=

√
(tCPAVsdiff +Xdiff)

2
+ (tCPAVcdiff + Ydiff)

2 (4)

where

Xdiff = xj − xi
Ydiff = yj − yi
Vsdiff = vj sin(ϕj)− vi sin(ϕi)

Vcdiff = vj cos(ϕj)− vi cos(ϕi)

Note that, if
∣∣vj − vi

∣∣ = 0, two aircraft are flying parallelly
at the same speed. In this case, their initial positions are
considered as the CPA, and tCPA is noted as 0. If the calculated
tCPA is inferior to 0, it means that the CPA has been passed
and two aircraft are diverging.

In this study, for convenience, aircraft is considered as a
rigid body. We will perform MTCD on aircraft pairs, with
which the tCPA is within the lookahead interval [5, 20] min.
Then, if dCPA is equal or less than the distance threshold
ds, a potential conflict is declared. According to ICAO Doc
4444 [17], the minimum horizontal separation between two
aircraft in the en-route radar control airspace is 5 Nm. This
method is referred to as fixed threshold CD, which is used in
Eurocontrol’s MTCD tool [14]. Remark that, we consider this
conventional CD approach as the CPA baseline method.

3. RAW DATA CLEANING AND PROCESSING

The data source for this study is the mode-S observa-
tions covering France on January 20, 2012. This raw dataset
contains 21,314 trajectories with 11,214,216 records. The
following information is contained in each record:
• Flight number
• Coordinated Universal Time (UTC) timestamp
• Position (longitude, latitude, altitude)
• Ground speed
• Vertical speed
• Heading
• Wind direction and speed
We will generate the close-to-reality simulated dataset with

aircraft intent information by following steps:

A. Coordinate system transformation

Conflict detection focuses on trajectory pairs, which have
relatively small scales. Therefore, we can convert Geographic
Coordinate System (GCS) into Projection Coordinate System



(PCS). Specifically, we choose the spatial reference EPSG
21541 as the PCS. The area of use for this PCS is France.
The projection method of this coordinate system is Lambert
Conformal Conic (LCC), which is widely used for aeronautical
charts. Thus, longitude, latitude and altitude are converted into
X, Y and Z coordinates.

B. Missing point estimation

Normally, the radar makes a full scan every 4 seconds.
Nevertheless, sometimes the update frequency can be 8, 16, 32
seconds, which may cause missing values in the data. Since
the trajectories consisted of discrete points are not smooth,
we use piecewise linear interpolation to estimate the missing
information.

C. Recalculation and transformation of heading

The heading in the raw dataset is magnetic heading, which is
in relation to magnetic north. After coordinate transformation,
the heading ϕ (in degrees) in the current coordinate system
need to be recalculated. ϕi,t of the i-th aircraft at time t can
be estimated by position changes:

ϕi,t =

{
ϕ̂i,t, ϕ̂i,t ≥ 0
360◦ + ϕ̂i,t, ϕ̂i,t < 0

(5)

where

ϕ̂i,t = arctan2
(
(xi,t+1 − xi,t−1), (yi,t+1 − yi,t−1)

)
(6)

The output of arctan2 is in degrees. To illustrate the heading
calculation, some specific values of heading and the output of
ϕ̂ are plotted on a circle, see Figure 2. t = 2, ...,Mi−1, where
Mi is the total number of points of the i-th trajectory. xi and
yi are respectively X, Y coordinates of the i-th aircraft.

Figure 2: Illustration of heading and the output of ϕ̂

It is noteworthy that heading is cyclical. For example,
heading 0◦ is equivalent to heading 360◦, so that heading 359◦

and heading 0◦ should be 1◦ apart. However, if we leave this
feature unencoded, the distance between heading 359◦ and
heading 0◦ will be calculated as 359◦ by subtraction, which
is undesirable.

1Detailed information can be found at https://epsg.io/2154

To solve this problem, we encode the heading using the
following transformation:

ϕ 7→
(
cos(ϕ), sin(ϕ)

)
(7)

Because sine and cosine functions are both uniformly
continuous on R, the newly constructed features of heading
become cyclical.

D. Data filtering

A research on sensitivity analysis of CPA [12] demonstrated
that the heading has a much greater impact on the CPA
calculation than the ground speed. In order to ensure the usage
of CPA calculation while considering the uncertainty in the
real-world, we leave the ground speed as it is and allow minor
changes in heading. More specifically, we will check each
trajectory and filter out the trajectories which don’t meet the
criteria below:
• The maximum change of heading should be less than 4◦.
• The consecutive change of heading over 1◦ should occur

less than 4 times.
• The total change of heading should be less than 10 times.
Figure 3 shows some violation examples of these criteria.

Figure 3: Some violation cases in terms of heading

E. Time alignment

In reality, there are very few accidents. To generate initial
cases with more conflicts, we align the initial timestamps of
all trajectories to 0. Each generated trajectory pair is designed
to ensure that two aircraft are flying freely at their speed
and heading without conflict resolution maneuvers, which is
very close to the real aircraft intent. In addition, after time
alignment, the traffics become more complicated due to large
number of potential conflicts. This fact increases the difficulty
of the CD problem and is a great challenge to CD approaches.

F. Trajectory pairs matching

For simplicity, we only consider spatially intersecting tra-
jectory pairs flying horizontally at the same optimal altitude,
although few disjoint trajectories may also contain dangerous
conditions. In this way, the trajectories for CD is in 2D space.
Because the heading of each trajectory changes slightly, we
can approximate trajectories as line segments defined by the
start and end points. A widely used algorithm is applied to
determine whether two line segments intersect [18]. Then,
we will check all trajectory pairs and keep the intersecting
trajectory pairs in the dataset. Next, we will calculate the actual
dCPA and tCPA of each intersecting trajectory pair by selecting



the minimum distance between all points of two trajectories
and the corresponding index. Note that, in this paper, we only
focus on aircraft pairs with tCPA between 5 to 20 minutes.
Hereby, trajectory pairs with 300s ≤ tCPA ≤ 1200s will be
kept. Finally, the dataset contains 88,217 trajectory pairs. The
remaining trajectories in the dataset were illustrated in Figure
4. It can be seen that most trajectories are over the French
border. The reason is that aircraft are in the cruise phase when
they are above the border, and only the aircraft flying levelly
at the optimal altitude were kept in the dataset.

Figure 4: Illustration of 2D trajectories in the dataset

4. MACHINE LEARNING APPROACH TO PREDICT CLOSEST
POINT OF APPROACH AND DETECT CONFLICT

A. Feature extraction

Feature engineering refers to the process of extracting fea-
tures from raw data using domain knowledge and transforming
them into formats which are suitable for ML models [19]. In
this study, we adopt basic features contained in the raw dataset
and the enriched additional features to build more accurate
prediction models. Here, 18 features used in this study are
presented in Table I.

TABLE I: The complete list of features

Type Feature Description

Basic

xi, yi Position of i-th aircraft
xj , yj Position of j-th aircraft
cos(ϕi), sin(ϕi) Cyclical transformation for heading of

i-th aircraft
cos(ϕj), sin(ϕj) Cyclical transformation for heading of

j-th aircraft
vi, ψi, wi Ground speed, wind direction and wind

speed of i-th aircraft
vj , ψj , wj Ground speed, wind direction and wind

speed of j-th aircraft

Enriched

xj − xi
Components of CPA formulayj − yi

vj sin(ϕj)− vi sin(ϕi)
vj cos(ϕj)− vi cos(ϕi)

B. Machine learning models

In the real world, there are minor changes in the heading
when aircraft are leveling, but the ground speed varies greatly.
These changes are stochastic and irregular, depending on
both environmental factors and human factors. They are in
violation of the assumption of the CPA formulas and bring
some difficulties to the CPA baseline model prediction.

In order to enhance the baseline CD model applied in real
conditions, we introduce ML techniques to predict tCPA and
dCPA based on real trajectory dataset generated in section
3. Note that, for each ML algorithm, we build 2 single-
target models, each trained on training set Si : (X, t(i)) =

{(x1, t
(i)
1 ), ..., (xN , t

(i)
N )}, i = 1, 2, where 2 target variables

t(1) and t(2) correspond to tCPA and dCPA, respectively.
The prediction of tCPA and dCPA belongs to regression

problem. The idea is to approximate the mapping function
from input vector x ∈ RD in the input space X to the
corresponding output vector t ∈ R in the output space Y :

t = h(x) + ε (8)

where ε is random noise.
To select the appropriate h from hypothesis space H,

Empirical Risk Minimization (ERM) [20] is introduced by
means of selecting h∗ that minimizes the empirical risk:

h∗ = arg min
h∈H

Remp(h) (9)

where Remp is the empirical risk, defined as the average of
the loss function on the training set:

Remp(h) =
1

n

N∑
i=1

L(h(xi), ti) (10)

According to No Free Lunch (NFL) theorem [21], if an
algorithm performs well on a certain class of problems then
it necessarily pays for that with degraded performance on the
set of all remaining problems. Therefore, in order to get the
best possible prediction performance for specific problem, we
propose several prevailing ML models and then conduct a
comparative study.

The ML methods applied to this study are presented in
Table II. Multiple Linear Regression (MLR) is one of the most
classical ML models. It aims to estimate the mapping function
under linear assumption. Support Vector Machine (SVM) is a
popular supervised learning model, firstly developed for clas-
sification [22]. The learning strategy of SVM is to construct
a hyperplane in a high-dimensional space. SVM can also be
used for regression, namely Support Vector Regression (SVR),
by introducing a margin of tolerance [23]. Feed-Forward
Neural Networks (FFNNs) are the first and simplest type of
Artificial Neural Network. It is said to be universal functional
approximators [24]. The feed-forward term means that the
architecture doesn’t have closed directed cycles, which ensures
that the outputs are deterministic functions of the inputs [25].
K-Nearest Neighbors (KNN) [26] is a lazy learning algorithm,
in which the prediction is made locally on the delayed dataset.



In the regression analysis, KNN approximate the target by
local interpolation of the nearest neighbors. Gradient Boost-
ing Machine (GBM) is a famous ensemble learning method
and can be viewed as iterative functional gradient descent
algorithms [27]. Random Forests (RF) [28] are popular tree-
based ensemble learning method. They are combinations of
tree predictors such that each tree in the forest depends on the
values of a random vector sampled independently and with
the same distribution. With the combination of weak learners,
a stronger learner will be generated. As an ideal candidate for
bootstrap aggregating (bagging) algorithm, the idea in RF is
to improve the variance reduction of bagging by reducing the
correlation between the trees, without increasing the variance
too much. In addition, because the law of large numbers,
overfitting is seldom seen in RF with sufficient number of
data.

TABLE II: ML methods used in this study

Type Algorithm

Linear Multiple Linear Regression (MLR)

Non-Linear
Support Vector Machine (SVM)
Feed-Forward Neural Networks (FFNNs)
K-Nearest Neighbors (KNN)

Ensemble Gradient Boosting Machine (GBM)
Random Forests (RF)

Then, CD can be achieved by comparing the minimum
separation threshold ds with the predicted dCPA, which is
a binary classification problem. It can be represented by a
function g : RD → {0, 1} defined as:

g(x) =

{
1, dCPA(x) ≤ ds
0, dCPA(x) > ds

(11)

where g(x) = 1 indicates that an alert have to be issued and
a conflict occurs, vice versa.

5. MODEL VALIDATION AND RESULTS DISCUSSION

A. Experimental setup and model selection

The experiment was run on a laptop with Intel core i7-
8750H CPU @ 2.20GHz, 16GB RAM and NVIDIA GeForce
GTX 1070 GPU. All algorithms were implemented in Python
3.6.2.

The ERM mentioned in Section 4 is used for selecting
the best model from a training set. However, the model
performance on new dataset may be disappointing. It is known
as overfitting, which should be avoided. Another possible case
is that the model is not enough to capture the underlying
relations between inputs and outputs. This fact is known as
underfitting, which is also undesirable. These conflicts are
referred to as bias-variance trade-off. To handle this problem,
we propose nested Cross Validation (CV). It consists of outer
loops and inner loops. A K1-fold CV splits the dataset S
into K1 subsets Si, i = 1, ...,K1. For each outer loop i, Si
is the test set and the remaining K1 − 1 folds S−i = S\Si
act as the training set. Then, there is another K2-fold CV,

which will further split the training sets S−i into K2 subsets
S−i,j , j = 1, ...,K2. For each inner loop j, S−i,j act as the
validation set and the remaining K2 − 1 folds S−i\S−i,j act
as the training set. The purpose of the inner loop is to select
the hyperparameters and the outer loop aims to assess the
model performance. Let K1 = 5, K2 = 5, then the proportion
of training sets, validation sets and test sets is respectively
64%/16%/20%.

We use random search algorithm for hyperparameter opti-
mization in the inner CV, considering that it is much more effi-
cient than classical grid search algorithm in high-dimensional
search space [29]. The strategy of random search is based on
independent draws from a probability distribution in the grid
or range of hyperparameters. The pseudocode is presented in
Algorithm 1. The random search will be conducted with 64

Algorithm 1 Random search on model A
Input:

V = {v1, ...,vN}: Range or grid of N hyperparameters
F = {F1(·), ..., FN (·)}: Cumulative Distribution Function

(CDF) of N hyperparameter values
SV : Validation set
K: Numbers of sampling iterations

Output:
λ∗: Selected hyperparameters

1: procedure RANDOMSEARCHCV(V, F, SV , K)
2: for i = 1 to K do
3: (r1, .., rN ) ← N uniformly distributed random

numbers generated between 0 and 1
4: Λi ← (F−1

1 (r1), ..., F−1
N (rN )) . Inverse CDF

5: end for
6: λ∗ ← arg min

λ∈Λ
Err(A, λ, SV )

7: return λ∗

8: end procedure

trials in terms of each model. The hyperparameters need to be
tuned according to their probability distributions are presented
in Table III. Other hyperparameters not in the table are set to
default values.

SVM, FFNNs and GBM were trained for 10000 epochs.
For FFNNs and GBM, reducing the learning rate as the
training progresses is useful to improve the learning ability.
To this end, we use the schedule of reducing the learning
rate when a metric stopped improving, commonly known as
ReduceLRonPlateau. In this paper, the metric is chosen as
the Mean Absolute Error (MAE) on the validation set. The
learning rate is starting from 0.1 with patience of 100 epochs
and decay factor of 0.5. The learning rate can be adaptively
adjusted by this algorithm and need not to be manually tuned.

B. Performance evaluation

We use Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) to assess the prediction performance



TABLE III: Hyperparameters optimized in random search

Method Hyperparameter Range or grid Distribution

MLR λ [10−5, 10] log-uniform

SVM

kernel {’linear’, ’poly’, ’rbf’, ’sigmoid’} uniform
degree a {2,3,4,5} uniform
γ b [10−5, 1] log-uniform
C [1, 103] log-uniform
ε [10−2, 1] log-uniform

FFNNs M {2, 3, ..., 10} ∪ {16, 32, 64, 128} uniform
loss function {’MAE’, ’MSE’} uniform
Φ {’ReLU’, ’tanh’, ’sigmoid’} uniform

KNN
K {1,2,...,20} uniform
weight function {’uniform’, ’inv distance’} uniform
p c {1,2,3,4,5,6} uniform

GBM

boosting type {’GBDT’, ’GOSS’, ’DART’} uniform
max number of leaves {10, 20, ..., 100} uniform
fraction of bagging {0.5, 0.7, 0.8, 0.9} uniform
fraction of feature {0.5, 0.7, 0.8, 0.9} uniform
loss function {’MAE’, ’MSE’} uniform

RF
number of estimators {10, 20, ..., 100} uniform
max features [1, 2, 4, 8, 16, 32, 64, 128] uniform
loss function {’MAE’, ’MSE’} uniform

a Only used when kernel is ’poly’.
b Only used when kernel is ’rbf’, ’poly’ or ’sigmoid’.
c Only used when weight function is ’inv distance’.

on dCPA and tCPA:

MAE =
1

N

N∑
i=1

|ti − yi| (12)

RMSE =

√√√√ 1

N

N∑
i=1

(ti − yi)2 (13)

where yi is the forecast value and ti is the actual value.
To evaluate the classification accuracy of CD, we introduce

the idea of confusion matrix [30]. The classification result
contains four possible cases for the predicted class and the
actual class: True Positive (TP), False Positive (FP), False
Negative (FN) and True Negative (TN). TP and TN are correct
decisions made. FP and FN are also known as type I error and
type II error, respectively. The illustration is shown in Figure
5. Furthermore, we will introduce four measures including
True Positive Rate (TPR), True Negative Rate (TNR), False
Negative Rate (FNR) and False Positive Rate (FPR), which
are respectively defined as follows:

TPR =
TP

TP + FN
(14)

TNR =
TN

TN + FP
(15)

FNR =
FN

FN + TP
(16)

FPR =
FP

FP + TN
(17)

C. Prediction results of dCPA and tCPA

Table IV depicts the prediction performance of dCPA and
tCPA for different algorithms. The best value of each metric is

Figure 5: Confusion matrix visualization

TABLE IV: Prediction results of dCPA and tCPA

Models dCPA(Nm) tCPA(s)

MAE RMSE MAE RMSE

Baseline 3.76 8.01 85.05 766.31
MLR 22.23 31.36 227.71 280.63
SVM 6.28 10.29 98.64 158.12
FFNNs 1.96 3.33 41.40 86.53
KNN 5.79 10.43 76.11 127.11
GBM 1.42 2.83 28.11 63.66
RF 2.14 4.20 34.26 72.28

marked in bold. Though rigorous assumptions have to be made
a priori while this is not always true in reality, the prediction
performance of CPA baseline model on dCPA is not too bad,
considering the mean value of actual dCPA is nearly 30 Nm.
Nevertheless, the prediction results on tCPA is not satisfying,
especially in terms of RMSE. Note that, the mean value of
actual tCPA is only about 550s. This fact indicates that the
CPA baseline model is unreliable to predict tCPA in the real
world and the results are very unstable. Compared to the CPA
baseline model, there are 3 ML models that perform better
on dCPA and 4 ML models that perform better on tCPA. The
intersection of these well-performed models includes FFNNs,
GBM and RF. GBM significantly outperforms other models
both in terms of dCPA and tCPA prediction. The MAE of the
CPA baseline model is reduced by 2.34 Nm (62.23%) and the
RMSE is reduced by 5.18 Nm (64.67%) for dCPA prediction.
In view of tCPA prediction, the performance improvement is
much more obvious: the MAE of the CPA baseline model is
reduced by 56.94 seconds (66.95%) and the RMSE is reduced
by 720.65 seconds (91.69%). MLR is completely incapable
of this problem in that the relationship between input and
output is far from linear. KNN and SVM are also inferior to
other approaches, which could be attributed to their insufficient
learning capabilities.

With less prediction error on dCPA, ATCO and pilots will
obtain more precise information about the spatial severity of
potential conflicts. Accurate tCPA will bring more reliable
temporal severity information about potential conflicts. Re-
liable spatial and temporal severities result in the increase
of situation awareness. Hereby, effective and exact conflict
resolution instructions will be delivered by ATCO, which can
avoid accidents. These are the benefits of ML models to
enhance the CD accuracy.



D. Conflict detection accuracy

TABLE V: Confusion matrix

Models TP FN TN FP

Num Rate Num Rate Num Rate Num Rate

Baseline 6359 92.15% 542 7.85% 10293 95.81% 450 4.19%
SVM 5323 84.78% 956 15.22% 9787 86.12% 1578 13.88%
FFNNs 6551 94.93% 350 5.07% 10377 96.59% 366 3.41%
KNN 5729 83.02% 1172 16.98% 9852 91.71% 891 8.29%
GBM 6673 96.70% 228 3.30% 10517 97.90% 226 2.10%
RF 6514 94.39% 387 5.61% 10418 96.97% 325 3.02%

To evaluate the effectiveness of our models for CD, we
conduct CD by comparing the predicted dCPA with the mini-
mum horizontal separation ds = 5 Nm. This assignment of ds
has a better understanding for ATC through raising the safety
margin. The classification results are summarized in Table V.
The best value of each metric is highlighted. As for the CPA
baseline model, The TNP and FPR are acceptable. 95.81%
TNR indicates that most negative classes can be correctly
classified. However, TPR and FNR are not satisfying: 7.85%
actual conflict cases are not correctly identified. It should be
noted that FN is arguably more serious than FP, because FN
incorrectly identifies conflict case as conflict-free, which may
let ATCO underestimate the danger and ignore it rather than
deliver conflict resolution instructions. In view of ML models,
we do not mention MLR due to its low performance. It is
observed that 3 ML models outperform the CPA baseline
model. They are still FFNNs, GBM and RF. GBM is the best
one among these models with 4.55% improvement in conflict
case identification and 2.09% improvement in non-conflict
case identification. Although results of GBM contain 3.30%
FN that miss actual conflicts, note that, all conflicts occur in
the dataset are assumed that there are no conflict resolution
maneuvers made by aircraft. Besides, through analysis, we find
that most FN cases have long tCPA. The longer the tCPA, the
higher the uncertainty. Therefore, Such results are capable of
proving the CD capability. Furthermore, GBM not only can
improve the performance of the CPA baseline model but also
can be used for collision detection in reality.

6. CONCLUSION AND PERSPECTIVES

This paper presents a novel ML approach to enhance the CD
performance in CPA problem by learning from real trajectory
data. Unlike a vast majority of models which assume that
aircraft fly horizontally with uniform speed and heading, the
proposed model is capable of dealing with level flights in
reality with minor change in heading and great variation in
ground speed.

We firstly introduce a data processing method to generate
the dataset from mode-S observations. This dataset represents
all aircraft intents in reality. Then, feature engineering is
conducted to transform raw data into suitable features for
prediction models. To validate the effectiveness of the ML
approach for CPA prediction, six ML models are used to
predict tCPA and dCPA with comparing to baseline CPA

model. The numerical experiment demonstrates that three
ML models outperform the CPA baseline model in terms of
accuracy and stability. In particular, GBM is the best model
and greatly improve the CPA baseline model. Furthermore,
we conduct CD by comparing the predicted dCPA with the
minimum horizontal separation. The classification result is
presented using the idea of confusion matrix, which proves
that GBM still achieve the highest accuracy in CD. However,
the result also demonstrates that not all ML models outperform
the CPA baseline model. Suitable ML methods are capable of
enhancing the accuracy of MTCD.

In the future work, we will go deeper into feature engi-
neering by extracting more meaningful features to improve
the prediction performance. Additional factors (such as ATC
and AOC data) will be involved, as they are influencing
the trajectories. Furthermore, A confirmation that the results
still stand with more complex and realistic trajectories will
be performed. In addition, the probability of conflict is also
important to the ATCO. Thus, we will calculate the conflict
probability according to the dCPA, tCPA and uncertainties of
error.
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[24] B. C. Csáji, “Approximation with artificial neural networks,”
Faculty of Sciences, Etvs Lornd University, Hungary, vol. 24,
p. 48, 2001.

[25] C. M. Bishop, “Pattern recognition and machine learning (in-
formation science and statistics),” no. 4, p. 049901, 2006.

[26] N. S. Altman, “An introduction to kernel and nearest-neighbor
nonparametric regression,” The American Statistician, vol. 46,
no. 3, pp. 175–185, 1992.

[27] J. H. Friedman, “Greedy function approximation: a gradient
boosting machine,” Annals of statistics, pp. 1189–1232, 2001.

[28] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp. 5–32, 2001.

[29] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13,
no. Feb, pp. 281–305, 2012.

[30] T. Fawcett, “An introduction to roc analysis,” Pattern recogni-
tion letters, vol. 27, no. 8, pp. 861–874, 2006.

AUTHORS BIOGRAPHY

Zhengyi Wang received the B.E. degree in Aviation Engineering
from Civil Aviation University of China (CAUC) in 2016, and
the M.Sc. degree in Operational Research from École Nationale
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APPENDIX

A. Speed change illustration

Figure I: Some examples of ground speed changes over time


