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Abstract: The most relevant SESAR 2020 solutions dealing with future Capacity Management
processes are Dynamic Airspace Configuration (DAC) and Flight Centric ATC (FCA). Both concepts,
DAC and FCA, rely on traffic flow complexity assessment. For this reason, complexity assessments
processes, methods and metrics, become one of the main constraints to deal with the growing demand
and increasing airspace capacity. The aim of this work is to identify the influence of trajectories’
uncertainty in the quality of the predictions of complexity of traffic demand and the effectiveness
of Demand Capacity Balance (DCB) airspace management processes, in order to overcome the
limitations of existing complexity assessment approaches to support Capacity Management processes
in a Trajectory-Based Operations (TBO) environment. This paper presents research conducted within
COTTON project, sponsored by the SESAR Joint Undertaking and EU’s Horizon 2020 research
and innovation program. The main objective is to deliver innovative solutions to maximize the
performance of the Capacity Management procedures based on information in a TBO environment.

Keywords: complexity; DAC; DCB; FCA; SESAR capacity management; TBO; uncertainty

1. Introduction

Capacity Management processes are being developed in SESAR industrial research projects to
address the need to adapt future airspace to the expected high traffic diversity and the Trajectory Based
Operations (TBO) [1] philosophy.

The most relevant SESAR 2020 solutions [2,3] dealing with future Capacity Management processes
are Dynamic Airspace Configuration (DAC) [4,5] and Flight Centric ATC (FCA) [6]. DAC concept
accommodates sector design, opening schemes and configurations, to optimize the usage of the ATC
capacity and counterpoise controller’s workload. Flight Centric ATC (FCA) concept—or sector-less
ATM—proposes that controllers are not anymore responsible for managing all the aircraft within a
sector. In its place, they are in charge of a set of aircraft throughout their trajectory a given airspace (or
from TMA to TMA), while at the same time different controllers manage another set of aircraft sharing
the same airspace.

Both solutions, DAC and FCA, rely on traffic flow complexity assessment processes [7],
methods [8–15] and metrics [16–32], and integrate predicted workload function and confidence index.
Despite the number of methodologies and metrics developed to measure complexity, there is no single
agreed definition and several definitions of complexity could be used. SESAR conceived complexity as
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“ . . . measure of the difficulty that a particular traffic situation will present to an air traffic controller
. . . ” [8]. On top of the lack of agreement on its definition, current methods and metrics for complexity
evaluation are not adapted to the particular needs of DAC and FCA, as they do not properly account
for trajectory uncertainty. Uncertainty affects in a different manner each methodology and assessment;
however, its influence is relevant in all of them, that is why its inclusion in metrics is so important [9].

Moreover, despite the fact that TBO provides trustworthy information about to trajectory
uncertainty thanks to more reliable trajectory data, the impact of TBO and uncertainties in the
trajectory on complexity calculation has not been properly studied yet [10]. Proper integration of the
uncertainty information about the trajectory in the Capacity Management procedures will enhance its
performance. Capacity Management improvement can be achieved by a twofold approach combining:
(a) the integration of trajectory uncertainty in the demand/capacity balance, and (b) the development of
trajectory-based complexity metrics compatible with the most demanding features of DAC and FCA.

Thus, the main objective of COTTON project is to maximize the performance of the Capacity
Management procedures in a TBO environment maximizing the exploitation of reliable information
about the traffic trajectories. This paper address these two research questions as part of the work
developed by COTTON Project. COTTON will achieve the optimisation of these processes not only
incorporating the trajectory uncertainty into an advanced model for demand and capacity balancing,
but also integrating complexity and workload algorithms more appropriate to the most demanding
characteristics of the SESAR 2020 solutions dealing with future airspace management—Dynamic
Airspace Configuration (DAC) and Flight Centric ATC (FCA).

In this context, this paper is addressing the challenge of exploring how the uncertainties associated
with the agreed trajectory will influence the quality of the predictions of complexity of traffic demand
and the effectiveness of DCB processes regarding airspace management.

2. Materials and Methods

This research stands up on a nine steps methodology, summarized in Figure 1, and
outlined hereafter:
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Figure 1. Cotton Methodology.

Step 1: The first step focuses on the analysis of the TBO environment, describing the operating
conditions and the trajectory information available per time horizon. Its aim is to determine what TBO
information may be available and useful for complexity management.
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Step 2: It consists of the study of the sources originating trajectory uncertainty; the different
techniques to model it; and the evaluation of how trajectory uncertainty can affect the prediction of
traffic demand.

Step 3: It analyses the DAC solution in order to contextualize what should be the purposes of
the complexity metrics; and how DAC context would affect the management of complexity in each
time horizon.

Step 4: It analyses the FCA solution with the same goal as in step 3. Being a concept in process of
definition, different hypotheses are made, taking into account the latest results of SESAR2020 and the
inputs from FCA experts.

Step 5: It implies the analysis of the main processes and phases of the “Complexity Management
Process” as developed in SESAR. In this step, we extract requisites for the development of complexity
metrics to support Capacity Management.

Step 6: It tackles in detail the analysis of current complexity metrics, i.e.,: the parameters in which
they are set (inputs and outputs); the advantages and drawbacks of each metric; and how they could
be adapted to a TBO environment, for both DAC and FCA.

Step 7: Based on the previous analysis, in this step we propose a set of “Complexity Generators”
(CGs), appropriate for the different time horizons of each solution. The concept of Complexity
Generators is underlying behind a certain variable considered by a mathematical model for computing
complexity. Complexity Generators are identified from literature and from the studies carried out in
the previous steps of the methodology; and they are tuned and validated by expert’s opinion gathered
at the COTTON First Workshop. Complexity Generators are characterized in terms of their uncertainty,
variability and impact on complexity metrics for each time horizon and DCB concept (DAC and FCA).

Step 8: In this step, all the previous information is used to develop and validate a Bayesian
Network (BN) structure that permits to evaluate the influence of the Complexity Generators in the
complexity metrics for each concept and time horizon. In particular, the network allow evaluating
the impact on complexity of different levels of uncertainty in any complexity generator. In total 7 BN
models are elicited covering each concept and time horizon. The networks permit also, when the
required level for the uncertainty of complexity is set, to identify the complexity generators that must
be used by a complexity metric to improve its degree of uncertainty to achieve that level.

Step 9: Finally, main conclusions and recommendations are obtained. Depending on the time
horizon and the DCB concept, the results of the research work are:

(1) the set of complexity generators recommended as inputs in the complexity metrics and algorithms
for each application and time horizon;

(2) the list of that would require further reduction in uncertainty; and
(3) an evaluation of the adaptability of current complexity metrics for DAC and FCA environment.

3. Step 1. TBO Environment Analysis

In this step, the Trajectory-Based Operations (TBO) [1] concept is analysed to identify available
flight information for complexity calculation and management. TBO is the based for consistent aircraft
trajectory and flight information in collaborative decision-making process regarding the flight. TBO
relies on the 4D trajectory concept [9].

The 4D trajectory concept implies that, long time before the departure, Estimated Elapsed Times
(EET) of all waypoints along the routes are provided in the flight plan. EETs are calculated by the
airline Flight Operations Centre (FOC) and the Flight Management System (FMS) considering aircraft
performance, as well as weather forecast, known airspace restrictions, altitude constraints, among
others. Information sharing provides a more accurate EET calculation. Tolerance Windows are
associated to each EET. If EETs are added to planned take-off time, the result is a list of planned times
over waypoints to landing time at the destination airport. These define the trajectory in the time
dimension. After agreement by stakeholders this becomes the agreed Business Trajectory. When a
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flight deviates from its Business Trajectory, or planned EETs tolerance windows are not respected, the
agreed Business Trajectory has to be amended requiring a recalculation of estimates over all waypoints
(or part of trajectory still to be flown). The Required Time of Arrival function could be used by airspace
users to comply with adherence requirements. Tolerance level can vary from the ±10 s of adherence
associated with Controlled Times (CTO/CTA) to tolerance levels around a few minutes associated
with Target Times (TTO/TTA). The width of the target time window is a significant element to balance
flexibility versus predictability and should be carefully selected. In addition, the timing for freezing
the target time plays a role in this balancing; therefore, it would equally be a parameter requiring
careful selection.

Because of the previously described processes, the information available in the different phases of
the planning process improves consistently the trajectories data managed by different stakeholders
and decreases flight data inconsistencies. Therefore, available information need to be considered when
calculating complexity. Table 1 presents an overview of the available information in each time horizon
of the Network Operation Plan: Long Term planning (including airspace/route design), Medium Term
planning and Short Term planning and execution.

Table 1. Information available per time horizon.

Trajectory Based Operations

LONG-TERM MEDIUM-TERM SHORT-TERM EXECUTION PHASE

From 5 years up to 6 months 6 months until one week One week to 24 h Day of operations
DATA DATA DATA DATA

Routing Preference (historical
data) and Priorities

Shared Business Trajectory (SBT)
Scheduling Phase

4D trajectory planning phase. ATM
Short-term

Reference Business
Trajectory (RBT)

Agreed performance targets for
capacity and flight efficiency at

network and local level
Scheduled data

� IATA flight Identification
� ADEP
� ADES
� Schedule time of departure
� Schedule time of arrival
� Aircraft type
� Period of operations
� Days of operations

ICAO Flight Plan Data Global Unique Flight
Identifier (GUFI)

Existing Airspace Structure Global Unique Flight Identifier
(GUFI) Extended FPL Data

Airspace Availability/Conditions
of Use Departure runway Real time constraints or

ATC constraints

Default Airspace Availability Arrival runway DCB measures and
tolerances

Identified capacity bottlenecks DCB measures and tolerances TSAT/TTOT
Coordination of airspace design

plans (local/sub-regional)
4D Trajectory

� Taxi-time
� Air trajectory
� Location
� Latitude and longitude
� Previous route segment
� Level
� Elapse time from take-off up

to the location
� Distance
� Total weight
� True air speed
� Target Time applied (if has

been published.)
� Minimum Altitude
� Maximum altitude
� Probability Sigma

ANSP: Plans for local or FAB
development Nominal Preferred Route (NPR)

Airport slots

4. Step 2: Trajectory Uncertainty Analysis

Trajectory prediction accuracy is key to get the best quality of the trajectory information and the
traffic demand. However, tools and trajectory prediction models will always have certain level of
uncertainty. This section overviews (i) the main sources of uncertainty in the trajectory prediction
(ii) the main techniques for trajectory prediction; and finally (iii) it quantifies the impact of trajectory
uncertainty on the traffic demand.
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4.1. Uncertaitny Sources

When modelling aircraft trajectory, there are several factors introducing uncertainty to the
trajectory computation model. Identification and characterization of the main sources of trajectory
uncertainty, hereafter referred as influencing factors, will allow building an uncertainty model for
complexity calculations. The latest and most advanced works in this domain have been used to drawn
the main influencing factors [11,12], as illustrated in Figure 2.
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4.2. Modellign Techniques

More advanced modelling techniques for incorporation of uncertainty in the trajectory prediction
have been reviewed. The COPTRA project [11] considers the inputs to the trajectory prediction
process as probabilistic distributions that define the nominal value of a variable and its associated
uncertainty. These uncertainty distributions are estimated by analysing trajectory data with data-driven
analytics methods.

The Polynomial Chaos Expansion [12] method determines the evolution of probabilistic uncertainty
in a dynamical system. It characterises stochastic random variables—such as position and time—by
means of polynomials of another random variables (representing the probability distributions of the
uncertainty sources). Mixed-integer Linear Programming [13] methods search to minimise a linear
function combination of uncertainty sources vectors, subject to constraints.

Linear Regression Approach [14] has been used to estimate the uncertainty in trajectory crossing
time at a sector boundary (entry or exit) and the uncertainty in sector traffic load [15]. The technique
analyses a sufficient wide data set (such as six months of operations) by comparing real data of crossing
times with flight planned estimates. Monte Carlo Simulations [16] have been used to estimate the
probability of compliance with tolerance windows; the generate a map of the space where aircraft can
fly while avoiding conflicts with other aircraft and meeting the Target Window constraints.

In ellipsoid trajectory uncertainty modelling [17] uncertainty on trajectory is modelled by
3-dimensional ellipsoids, that represents all future aircraft locations at a certain moment in time. This
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method relies then on the direct characterisation of trajectory uncertainty, from real statistical aircraft
data, without analysing the uncertainty sources parameters generating that final trajectory uncertainty.

Queuing models [18] characterize aircraft operations by probability distributions of service times in
a queuing system. The output is the uncertainty or probability distribution of a number of pre-defined
times along the trajectory/route. Aircraft and navigation performance, meteorological conditions, or
ATC procedures can be mathematically modelled as queuing parameters and service time distribution.
These mathematical models are then used as input to the trajectory uncertainty.

4.3. Impact of Trajectory Uncertainty on the Traffic Demand

Finally, the impact of uncertainty sources and techniques to quantify trajectory uncertainty on
the traffic demand has been evaluated on the bases of SESAR PJ09 Predictive Demand Model [16]
that provides a Flight Demand Forecast and identifies a Flight Demand, a Count Forecast, Imbalance
Forecast, Solution Forecast and a Network Impact Forecast. Two main impacts have been identified:
(i) As the time approaches to the prediction period, the accuracy of the traffic demand and occupancy
prediction improves with the probabilistic traffic. The smoothing effect reduces the number of hotspot
false alarms [17]; (ii) however, when the prediction time window is very far away the probabilistic
traffic introduces a smoothing effect that affects negatively the hotspot detection.

5. SEPT 3: Analysis of the DAC Solution

Dynamic Airspace Configuration state of the art is studied in this section to understand how DAC
context would affect the management of complexity. To that aim, the general concept and the different
phases of DAC have been drawn according to SESAR1 [4] and SESAR2020 [5].

In DAC, the number and configuration of ATC sectors will adapt to the traffic pattern. The DAC
process aims at identifying an optimised airspace configuration based on the complexity predicted,
ATCO availability and defined performance targets. It comprises two types of processes: i) Sector
Design processes supported by automation to delineate airspace structures and elementary sectors
according to DAC local implementation. ii) Sector Management processes for producing the sector
configuration to match the traffic for a given period. Sector Management considers multiple criteria
and constraints in the search for an optimal solution: sector overload, control workload balance, traffic
transfer workload, number of active sectors, etc. [19]

In DAC, complexity is used to support the selection of the designed sectors as well as the optimal
airspace configuration. Conclusions of the complexity assessment will steer the sectors configuration,
as well as the redistribution and allocation of human resources into sectors, to avoid an excessive
workload. Table 2 highlights the four time horizons of complexity assessment in DAC solution. In the
Long-term, the uncertainty of most of the input parameters is very high. Main inputs available to
estimate complexity at this stage are traffic flows, demand and capacity forecasts, intentions of airspace
users, etc. Long term workload evaluation can help to identify crowded areas, supporting airspace
design. In the medium-term, the uncertainty of the data available is still high although decreases as the
day of the operation approaches. Complexity uncertainty at this phase will be progressively reduced to
better support the DAC iterative process. In the medium-term to short-term, workload evaluation will
be used to update airspace configuration plan based on the available traffic information (uncertainty).
DAC environment distinguishes between short-term and execution, whereas, in terms of complexity,
the uncertainty of the parameters available in each of the phases is coincident.
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Table 2. Dynamic airspace configuration description in ATM processes.

ATM Process Time Line Specific Processes Description

Long Term Process From years to 3 days

Analyze Network performance and
airspace organization/configuration
needs, particularly those concerned
with airspace design and resources

Airspaces is designed to enable
dynamic configurations to be used,
and the ATM resources are made

available to use the requires
airspace configuration

Medium Term Process From 6 month to 3 days

Collaboratively update and publish
airspace configuration plan and
develop an optimum airspace

configuration

Short Term Process From 3 days to hours

The processes in medium and short
term are broadly similar (although
the data available particularly for

estimated demand, within the
short-term is more reliable/certain)

ANSPs make plans for airspace
configurations according to the

expected traffic pattern (via CDM
process where appropriate). The

processes in medium and short-term
is that the data available within the

short term process is more
reliable/certain- particularly for the

estimated demand)

Execution process

From approximately 3–4
hours before real flight

through to the time that the
relevant flights are airborne

Implement DCB plan with airspace
configurations, coordinate airspace
solution and implement airspace

solution

Airspace configurations are
implemented and fine-tuned if
appropriate according to the

running traffic pattern

6. SETP 4: Analysis of the FCA Solution

Similarly, Flight Centric ATC state of the art is studied to understand how FCA context would
affect the management of complexity. Table 3 presents a summary of the FCA processes deconstructed.

Table 3. Flight centric airspace configuration description in ATM processes.

ATM Process Time Line Specific Processes Description

Long Medium Term
Process From years to 3 days

Available information will support to
identify Airspace Users’ preferences;

used routes, main flows and potential
conflict points among others.

Latest medium-term assessments
based on more precise shared

information can address preliminary
complexity evaluation.

Uncertainty levels are higher the more
time is left up to operation. That will
lead to lower precision in forecasts

and in complexity assessment.
Unreal complexity assessment will

affect decision-making and resources
distribution.

Short Term Execution
Process

From 3 days to
approximately 3–4 h

before real flight through
to the time that the
relevant flights are

airborne

Within the FCA concept, it is
important to detect potential conflict,
even conflict about to happen in real

time for Execution Phase.
Apart from allocation, both

complexity levels and workload will
also define the best resolution

performances in order to reduce their
effect on surrounding traffic and the

modified trajectory itself.

Information used at these stages has
low uncertainty level as all

trajectories, airspace structure related
measures and external parameters are

well known.
Besides conflicts, complexity

parameters will take into account
more precisely complexity levels and

its linked controllers’ workload,
which is crucial to determinate

allocations.

In the FCA concept controllers are not anymore responsible for all the aircraft inside a sector;
instead of that, controllers will be in charge of a set of aircraft flying within the airspace under his/her
responsibility. FCA will dissolve sector boundaries in order to obtain large size airspace such as
Functional Airspace Blocks (FABs), which will be designed for a suitable distribution through all
European airspace.

In FCA jurisdiction, the airspace will be shared among several controllers as within the same
airspace there will be more than a controller in charge of the aircraft flying through the airspace under
responsibility. As each controller will be in charge of a certain number of aircraft, there have been
defined two different operational environments regarding traffic allocation: dynamic allocation and
static allocation. Those allocation systems will be based on the information available in each moment
as well as the complexity level. In the FCA concept, traffic allocation is one of the key points related
to complexity as it will determine how high controllers’ workload will be. Furthermore, a correct
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allocation is essential to evenly distribute workload among all active controllers. The main use of
complexity metric in FCA would be for the role of Allocator and Supervisor, the first one as a tool to
support flight allocation and the second to monitor the demand and capacity balancing of the whole
FCA area. The workload of the flight centric executive controller is the main criteria to allocate an
entering flight to FCA and secondly the potential conflicts inside FCA, then the complexity metric
shall take into account these two aspects.

7. Step 5: Analysis of the SESAR Complexity Management

Figure 3 represents a cycle of the current SESAR traffic complexity management process, from
the identification of the problem to the implementation and monitoring of the determined solution.
Its analysis will allow establishing requirements and conditions that may affect the complexity
methodologies and metrics for each time horizon.
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Figure 3. Manage Traffic Complexity.

After analysing the different services [7,8], processes, tools and operational environment, the
main limitations for the development of metrics for complexity management can be extracted. The
resolutions to air traffic complexity problems are constrained by:

• Availability of airspace (e.g., due to weather, airspace reservation);
• Availability of ATC sector capacity;
• Airspace users’ preferences;
• Air Traffic target times as results of AMAN, DMAN and Extended AMAN processes);
• The Network stability requirements; and
• iRBT (initial Reference Business Trajectory) and iRMT (Initial Reference Mission Trajectory)

update rules.

The main constrains for the Complexity Resolution SErvice (CORSE) and (Integrated Network
Management and extended ATC planning (INAP), which take place namely between 2 h and 20 min
before sector entry time, are:

• Accuracy of the input Flight Data Processing (FDP) data to be used for complexity prediction, due
to the required time horizon and quality characteristics of that data;

• Human Factors (HF) constrains related to frequent sector configuration changes;
• Additional co-ordination procedures required by introducing of additional layer of planning

without adequate automated support.
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Additionally the design of adaptable complexity metrics for longer lead times (days, months)
will require coarser metrics for the workload assessment, such as entry counts. It will be necessary to
develop the complexity metrics that allow workload to be balanced within the DCB solutions as well.

8. STEP 6: Analysis of Current Complexity Metrics

In this step, the most promising complexity metrics are analysed to determine up to what
extent their evolution and/or combination might become a solution for assessing complexity in DAC
and FCA. The assessments accounts for their main characteristics, advantages, inefficiencies and
limitations considering DAC and FCA solutions. In total 13 metrics have been analysed in ATM
domian: 1. PHARE [20,21], 2. Fractal dimension [22], 3. Cognitive complexity metric [23], 4. Solution
Space Metric [24,25], 5. Trajectory Flexibility [26], 6. Trajectory Based Complexity [27], 7. Input-Output
approach [28], 8. Dynamic Density [29], 9. Geometrical approach [30], 10. Approach based on
dynamical system modelling [31], 11. Trajectory uncertainty [32], 12. Probabilistic approach [33],
13. Algorithm approach [34]. Additionally complexity metrics in other industries have also been
analyzed, particularly latest applications of AHP method to a multi-criteria importance analysis of
complex system, as those at [35,36]. The analyses allow us to identify the most important limitations of
the existing metrics:

• They are usually not generalized and are linked to the studied sector, highly dependent on the
type of algorithm used to resolve conflicts, and on specific system used to process trajectories.
Whereas, in the DAC solution there will be no pre-defined sectors, and in FCA solution there will
be co-existence of several controllers operating in the same airspace;

• They are subjective and sensitive to the controllers used to infer the model since most of them
focus on the opinion, behaviour, habits and subjective performance of the controller;

• Traffic is usually managed at tactical level in the current system. However, in the new ATM system
traffic complexity should support Capacity Management processes. Thus, complexity assessment
should be examined to support in managing controllers’ workload;

• They are sensitive to minor fluctuation in the traffic demand. This is more expressed with
instantaneous metrics, but aggregated metrics are unstable and depend on the aggregation period
(20 min, 1 h, etc.) as well. This means that uncertainty in the prediction of traffic demand have
high influence at the resulting complexity level;

• Beside the need for the complexity assessment methodology that takes into account trajectory
uncertainty, there is also a need for traffic complexity metrics that takes into account system
robustness. That will allow to determine how much system solution is invariant to changes in the
initial conditions and external (random) influences, and be more representative of the expected
traffic load and stable over the prediction time horizon;

• Some of them are adapted for the post-operational performance evaluation or macroscopic
(strategic) system evaluation, whereas, to support capacity management, metrics need to be used
operationally for the real-time decision support;

Some complexity metrics provides abstract numbers that may serve for relative comparison of
different solutions but are not comprehensive in expressing workload in a meaningful way to human
operator. Furthermore, they are not very helpful in resolving high-workload situations, since solution
for the existing problem is not obvious. It is strongly required that new metrics are comprehensible to
human operator and provides indications to decision maker about the factors causing the problem and
thus supporting its resolution. This requires establishing clear link between complexity and workload,
and in line with this work, defining workload threshold for the new operational environments DAC
and FCA.
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9. STEP 7: Extracting the Complexity Generators

As seen from previous sections, all complexity metrics are based on many variables to estimate
the complexity associated to a specific air traffic situation. These variables catch different aspects of the
air traffic or airspace from data inputs such as aircraft trajectories and sector geometry. The underlying
concept behind a certain variable considered by a mathematical model for computing complexity is
called a Complexity Generator (CGs). Complexity Generators are concepts instead of specific variables,
which are more easily considered by ATM experts and can be adapted to any complexity metric.
An example of complexity generator related to traffic distribution in a given airspace at a given time is
the distribution of crossing points and their proximity to airspace boundaries. A possible associated
variable would be the mean distance of all crossing points in the given airspace to the closest boundary
for each crossing point.

COTTON project approach for the identification of CGs is a top-down review of existing complexity
metrics (see Step 6) combined with a bottom-up analysis of complexity generators in the context of
DAC and FCA. In support of this bottom-up approach, a workshop was organised with attendance of
experts on complexity, trajectory optimisation, DAC and FCA concepts. The workshop addressed the
identification of the CGs that have strong influence in the complexity value for each time horizon and
operational concept, DAC and FCA. The selection of the most influential CGs was based on expert
judgments following the method described below and summarised in Figure 4.

• Initial identification of complexity generators. The first step for the CGs selection was to determine
what variables are more used in the complexity metrics studied in step 6. Variables were translated
into complexity generators, and a table was built, as shown in Figure 4, accounting for the
CATEGORY (such as airspace, conflicts, flow organization . . . ), the COMPLEXITY GENERATOR
(such as airspace geometry, weather conditions, number of conflicts predicted . . . ) and the
COUNT, which indicate frequency with a colour code. This analysis doesn’t indicate what CGs
are most influential to complexity but only the frequency in studied metrics. The complexity
generators initial list was made up of 55 CGs.

• Complexity Generators Selection: expert review. The aim of the first COTTON workshop was to
reduce the list of 55 complexity generators up to a number that can reflect in the best possible
way the evaluation of complexity applicable in DAC and FCA. A final table (see Figure 4)
was produced by the experts indicating: Complexity Generators selected (green), Complexity
Generators discarded (orange); Complexity Generators merged with other cgs (blue); and new
Complexity Generators (white).

• Complexity Generators Clustering. Two levels of clustering have been established: (i) category
and (ii) main component. Category groups the complexity generators that may be related to
specific elements in an ATM scenario. Main components symbolize states that determinate the
complexity value, that is: airspace or static state, air traffic or dynamic state, and cognitive or
human factors. Accordingly, the three main components of complexity have been called ATC
tasks and human performance, Traffic and airspace and Traffic flows.

• Level of Influence of the CGs in the DAC/FCA complexity value. This step aims to evaluate
level of influence of complexity generators on the complexity value. Complexity generators were
categorized into three levels of influence in the complexity value, i.e., High, Medium and Low,
for each time horizon corresponding to both DCB environments. For the sake of illustration,
Table 4 shows the level of impact of each CG in complexity value for each time horizon in the
DAC concept being High influence (H), Medium influence (M) or Low influence (L).

• Uncertainty of Complexity Generators. Uncertainty is high, medium or low, depending on the
level of knowledge and confidence of the associated information at each time horizon. When
approaching to the time of operation, available data will be more accurate and therefore uncertainty
will be lower. Table 5 illustrates the uncertainty of each CGs at each time horizon in DAC.
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Table 4. CGs influence for DAC at each time horizon.

Complexity Generator LONG MEDIUM SHORT

Flows distribution H H H
Number of interaction points H H H

Number of main flows H H M
Presence/proximity of restricted airspace H H M

Airspace uses M M M
Distribution of crossing points and their proximity to airspace

boundaries L M M

Airspace volume L M H
Airspace Geometry L M H

Altitude AC distribution M M H
Speed AC distribution L L H
Altitude AC changes L M H

Occupancy H H H
Traffic Entry H H H

Distribution of flight time per aircraft under ATCO responsibility in the
given timeframe H H H

Number of conflicts predicted L M H
Time difference at crossing points L M H

Vertical and horizontal convergence L M H
Coordination procedures L L M

Vectoring and operational restrictions L M H
Transition and changes in configuration L H H

Degrees of freedom of the controller in the resolution strategy of the
conflict L L H

CDR Support and monitoring System L M H
Coordination support tools L M H

System failure L M H
Weather conditions L H H
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Table 5. Uncertainty of CGs at each Time Horizon in DAC.

Complexity Generator LONG MEDIUM SHORT

Flows distribution
Demand forecast ANSP:

Plans for local or FAB
development

More granularity and more
accurate and update data

4D Trajectory
ICAO Flight Plan Data

Extended FPL Data

Number of interaction points
Parameters such as flight
level are not included in

demand forecast

Airports slots and aircraft type
are defined. More granularity in

required parameters

Real time constraints
Climb/Descent performance

profile

Number of main flows
Demand forecast ANSP:

Plans for local or FAB
development

More granularity and more
accurate and update data

4D Trajectory
ICAO Flight Plan Data

Extended FPL Data

Presence/proximity of
restricted airspace

Military Airspace
Requirements, it needs to be

coordinated

Temporary Airspace
Reorganisation. Revised

Airspace Structure

Actual situation and
knowledge of Airspace

Users’ needs

Airspace uses
Demand forecast ANSP:

Plans for local or FAB
development

More granularity and more
accurate and update data Extended FPL data

Distribution of crossing
points and their proximity to

airspace boundaries

Demand forecast
ANSP: Plans for local or FAB

development

More granularity and more
accurate and update data

4D Trajectory
ICAO Flight Plan Data

Extended FPL Data

Airspace volume Uncertainty of suitable
configuration

Updated data. Less uncertainty
of suitable configuration Available data

Airspace Geometry Uncertainty of suitable
configuration

Updated data. Less uncertainty
of suitable configuration Available data

Altitude AC distribution Analysis of flows not specific
trajectories

Schedule data (aircraft type,
ADES, ADEP) Extended FPL data

Speed AC distribution Analysis of flows, not
specific trajectories

Schedule data (aircraft type,
ADES, ADEP) Extended FPL data

Altitude AC changes Analysis of flows, not
specific trajectories

Airports slots and aircraft type
are defined. More granularity in

required parameters
Extended FPL data

Occupancy

Demand forecast.
Uncertainty of suitable

configuration
ANSP: Plans for local or FAB

development

More granularity in required
parameters. Less uncertainty of

suitable configuration

Extended FPL data
Available data

Traffic Entry

Demand forecast.
Uncertainty of suitable

configuration
ANSP: Plans for local or FAB

development

More granularity in required
parameters. Less uncertainty of

suitable configuration

Extended FPL data
Available data

Distribution of flight time
per aircraft under ATCO

responsibility in the given
timeframe

Demand forecast.
Uncertainty of suitable

configuration
ANSP: Plans for local or FAB

development

More granularity in required
parameters. Less uncertainty of

suitable configuration

Extended FPL data
Available data

Number of conflicts
predicted Predictions based on flows

Seasonal schedule
Temporary Airspace

Reorganisation

Extended FPL data
Uncertainty of wind

direction

Time difference at crossing
points Predictions based on flows

Seasonal schedule
Temporary Airspace

Reorganisation

Extended FPL data
Uncertainty of wind

direction

Vertical and horizontal
convergence

Demand forecast
ANSP: Plans for local or FAB

development

More granularity and more
accurate and update data

4D Trajectory
ICAO Flight Plan Data

Extended FPL Data

Coordination procedures
Analysis of the collateral
sector, uncertainty of the
adopted configuration

Updated data Available data and
procedures

10. STEP 8: Bayesian Network Modelling

Most research up to now has approached uncertainty in TBO from the optics of uncertainty
propagation methodologies (e.g., Monte Carlo simulations). This approaches construct probability
distributions of the system’s outputs with numerical models that propagates probability distributions
of system’s input parameters. This unidirectional propagation of uncertainties is appropriate for
sensitivity analysis, although presents some limitations for backward analysis. Limitations are even
greater when data are not available for the characterisation of the uncertainty of a variable, and all
the information can only be elicited from expert knowledge. In such cases, the consequent backward
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propagation of information ought to be taken into consideration and properly modelled when using
the given data to fine-tune the analysis. Limitations are not surmountable when there is no detail
knowledge of the phenomena to construct a mathematical model of the process outcomes. Therefore,
an alternative robust technique is proposed in this work: Bayesian Network (BN) modelling of the
uncertainty propagation in the calculation of ATM complexity.

The Bayesian models relate complexity generators and their influence in ATM complexity for
the two operational concepts, DAC and FCA, and the various timeframe horizons. The aim of the
networks is to help to identify the relevant variables in the process, and to understand the causal
relationships and interdependences between factors influencing the complexity and the uncertainties
associated to those factors [37–40]. The outcome of these models is double:

• On one side, they will help to identify what complexity generators need to be properly taken
into account and analysed by the complexity algorithms and metrics adapted to the DAC and
FCA concepts. Among the set of current variables considered complexity generators, the BN
will help to highlight which ones are expected to have a High (H), Medium (M), or Low (L)
influence in the complexity outcome itself, depending on the concept and timeframe considered.
The future complexity algorithms and metrics might take this outcome as an indication of which
variables, because of their influence on complexity, need to be carefully addressed by the metrics
and algorithms.

• At the same time, the networks will help to identify whether the a-priori uncertainty probability
distribution of each of those variables (considering the various timeframe horizons) will be
compatible with maintaining the uncertainty of complexity outcome at a LOW or MEDIUM
state, or which ones will need further improvements reducing its level of uncertainty. The future
complexity algorithms and metrics might take this outcome as an indication of the uncertainty
they might expect for each complexity generator (High, Medium or Low), and according to that
decide the best approach to characterize and measure this variable in each scenario.

A Bayesian network is a Directed Acyclic Graph (DAG), where the nodes represent random variables
and the arcs describe the relationship or dependence among nodes in terms of probability [41,42].
Every node presents as set of unique and reciprocally excluding discrete or continuous values or
states. Each random variable is characterized by a probability distribution. The direction of each
node-to-node connection indicates a parent-child relationship. Not connected nodes accounts for
conditional independence. The states of each root node are defined by marginal probabilities. Every
link represents a conditional probability distribution describing the “likelihood of each value of the
down-arrow node, conditional on every possible combination of values of the parent nodes” [43].

BN are build up either learning from or form knowledge and experiences. Our model aims to
capture the main complexity generators as well as the relationships between them, and to explain
how the level of uncertainty about the values of each complexity generator propagates and generates
uncertainty in the final value of complexity. Initially, a generic model was built based on the variables
and causal relationship identified from the literature survey and by the experts participating in the
project. The generic Bayesian model was further adapted to each one of the operational concepts
consider in the project, DAC and FCA, and to each one of its time horizons, long, medium and short
term. In total seven Bayesian models were elicited using the tool GeNIe [44]. Figure 5 summarises the
main steps followed for building a Bayesian Network.
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Identification of relevant variables and causal relationships. The first step in the Bayesian
networks construction is the identification of the relevant variables in the process to be analysed, and
the assessment of the causal relationships among the variables in the. Each variable corresponds
to a node in the network. The list of nodes contains the “complexity generators” identified and
discussed in previous section of this paper (see Step 7), as well as some “intermediate variables” used
to aggregate and integrate the effects of the complexity generators and to show how they contribute to
the uncertainty in complexity. It also contains the “outcome” of the network, i.e., the “complexity”.

• State space of each node. Next step is the construction of a state space of the described nodes, i.e.,
the definition of the variable states and the full joint probability of all parent nodes in the network.
The state space of each parent node represents the level of uncertainty that affects a particular
variable or complexity generator. The uncertainty affecting each variable has been discretised
into three different states: (i) low uncertainty, (ii) medium uncertainty, and (iii) high uncertainty.
Therefore, all the nodes have these three states.

• Specification of conditional probabilities. In the following step, conditional probabilities at non-root
nodes are defined, considering every potential mixture of parent nodes’ values. Conditional
Probability Tables (CPTs) or distributions are employed depending whether variables are discrete
and continuous. Child nodes conditional probabilities can be derived either from statistical
learning or from expert knowledge elicitation [45]. In our network, conditional probabilities are
derived considering the influence of each variable into its child’s specified in Step 7.

• Reasoning and analysis. Four different case studies or inferences have been analysed for each of
the Bayesian networks.

# Case study 1: Forward scenario (sometimes referred also as inter-causal analysis). The
model is used to predict the effects, i.e., the uncertainty level in the complexity metric by
setting the uncertainties level in the complexity generators, i.e., by setting the probability
distribution of the parent-input nodes. This case study is useful to answer the following
research question: Given the probability distribution of the uncertainty of the various
complexity generators, how these uncertainties propagate through the network causing a
probability distribution for the uncertainty (% of high uncertainty, % of medium uncertainty
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or % of low uncertainty) in the outcome of the network, “complexity”? This is a typical
prediction scenario.

# Case study 2: Backward inference. The model is used to deliver the parent’s node
configuration by setting the outcome node (uncertainty level of the complexity metric) to
a target value. In this analysis complexity uncertainty is successively settled to a high,
medium or low value. Then, the network identify the main contributors to the value of
complexity uncertainty, or what configuration of uncertainty might be admitted at the
various complexity generators to provide the target outcome uncertainty. This case study
is useful to answer the following questions: how much will it be necessary to improve
uncertainty in the inputs nodes to achieve a certain uncertainty level in the outcome node?;
or what will be the probability of any fault (uncertainty level of the input nodes) given
a set of symptoms or results (uncertainty level of the outcome)? This is a typical fault
diagnosis scenario.

# Case study 3: Sensitivity analysis. It is used to investigate the impact of small variations in
input parameters probabilities eon the posterior probabilities of the output parameters.

# Case study 4: Evidences observation. As far as detailed characterization of the uncertainty
of a variable is observed (high, medium or low uncertainty), the evidence can be pictured
as propagated through the network. Then the network can be updated with such evidence,
and the conditional probabilities of the rest of the variables, including the outcome are
recalculated. These new values allow us to evaluate how much improvement can be
achieving in reducing the uncertainty of the network outcome by improving the uncertainty
related to one or some of the complexity generators.

11. Step 9: Discussion of Results

Figures 6 and 7 summarise, in a multidimensional diagram, the conclusions derived from the
previous analysis, particularly from the BN case studies. They present for each application the pool
of preferred/recommended candidates to be used as complexity generators in each time horizon.
Rationale behind both of them is explained hereafter:

• First, the complexity generators have been classified according to: (i) their level of influence on
global complexity, in the horizontal dimension of the diagram; and (ii) their degree of uncertainty
of the information, in the vertical dimension of the diagram.

• Following these criteria, the diagram is divided into nine regions of different influence on
complexity and degree of uncertainty. For example, complexity generators placed on the bottom
right corner of the diagram have high influence on complexity and a low degree of uncertainty
associated to its information.

• Once the complexity generators have been classified, a colour code has been defined to reflect
the results of the analysis. Red: Requires an improvement in the level of uncertainty of the
information estimated for this generator, in the considered time horizon. Green: The estimated level
of uncertainty may be acceptable to maintain final objectives of uncertainty in complexity. Grey:
The uncertainty level does not impact the final result due to the low influence of the parameter.

• Finally, in the figure, each one of the time horizons considered is reflected with a different symbol:
� Short Term,

√
Medium Term, and * Long Term.
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Figure 7. Overall situation for Complexity Generators. FCA application.

Table 6 shows the acronyms code used in the figure to represent each Complexity Generator.
Complexity generators that have high influence on “complexity”, should conform the pool

of preferred candidates to be measured, quantified, and evaluated by the complexity metrics and
algorithms. These ones are placed in the right hand side column of the multidimensional diagram.
Complexity generators with low influence are considered a priori less suitable parameters for the
complexity metrics and algorithms. These ones are placed in the left hand side column of the
multidimensional diagram. Finally, those with medium influence might deserve detailed and
individual consideration to evaluate up to what extent they contribute to the complexity algorithms
and metrics, depending upon the demand and capacity balance application and timeframe, and the
uncertainty with which each variable is known. These ones are located in the central column of the
multidimensional diagram.
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Table 6. Codes for Complexity Generators.

Complexity Generator Code Complexity Generator Code

Flows distribution FD
Distribution of flight time per aircraft

under ATCO responsibility in the
given timeframe

FT

Number of interaction points IP Number of conflicts predicted NC
Number of main flows MF Time difference at crossing points TD

Presence/proximity of restricted airspace RA Vertical and horizontal convergence VHC
Airspace uses AU Coordination procedures CoP

Distribution of crossing points and their
proximity to airspace boundaries CrP Vectoring and operational restrictions VR

Airspace volume AV Transition and changes in
configuration TC

Airspace Geometry AG Degrees of freedom of the controller in
the resolution strategy of the conflict DF

Altitude AC distribution AD CDR Support and monitoring System CDR
Speed AC distribution SD Coordination support tools CST
Altitude AC changes AC System failure SF

Occupancy (per ATCO position) OC Weather conditions WC
Traffic Entry (per ATCO position) TE

In relation to the results established in Figure 6, the following conclusions are drawn for the DAC
application: a close look at the high influence complexity generators shows that the pool of preferred
candidates is bigger in the short term. In the long term, most complexity generators have a low
influence on the complexity assessment (those 16 located in the left column of the multidimensional
diagram), complemented mostly by a high associated uncertainty, with 8 out of the 25 complexity
generators placed on the top left corner of the diagram. It can also be seen in the multidimensional
diagram, that some of the complexity generators which have a high influence in the long term, either
have a high associated uncertainty (two out of seven) or need to improve their uncertainty probability
distribution (three out of seven). Therefore, the range of options for preferred candidates in the long
term is small. Whereas, in the short term, 19 out of the 25 variables are well placed in the bottom-right
corner of the diagram, constituting a bigger pool of recommendable candidates a priori. In the DAC
diagram, a progressive migration of the variables towards higher influences and lower uncertainties
is observed through the time horizons, from the long to the short time frame. Most of the variables
are qualified either as low or high uncertainty, and only a few are considered with a medium level of
uncertainty, particularly in the medium time frame. This can be easily observed in the central raw of
the diagram.

For complexity metrics and algorithms that focus on the medium term of the DAC application,
the pool of preferred candidates is bigger than in the long term. In addition, in the medium term, nine
complexity generators are characterised by an acceptable probability distribution, low uncertainty
and medium influence. These variables should be carefully considered by the complexity metrics and
algorithms, since they could be a useful complement to those parameters selected in the first place
because to their high influence.

In the short term, there are no parameters in the low influence column, because the impact of
Complexity Generators in the short term is mostly high and there is more precise information about
them due to the proximity to operation, so the majority of the complexity generators are located in the
lower right box of the diagram.

Regarding the overall DAC application, it can be observed that two variables, Flows Distribution
and Number of Interaction Points, are important through the three time horizons, but both need to
reduce their uncertainty. This fact suggests that one of the recommended lines of work could be to
improve the information regarding these parameters in all time horizons.
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Other variables, which are important in all time horizons and should be taken into account
throughout the entire process, are: Occupancy, Traffic Entries and Distribution of flight time per aircraft
under ATCO responsibility in the given timeframe. However, it will be important to bear in mind that
these generators have greater associated uncertainty in the long term, so it is recommendable reduce
the uncertainty associated to this variable in the long term, so that this variable could be considered an
acceptable parameter for all the time horizons.

Following equivalent principles, overall conclusions and recommendations for the FCA application
are drawn hereafter. A first look to Figure 7 corroborates that there are certain trends common to both
applications, DAC and FCA:

• A big set of the complexity indicators in the long term have a low influence on the complexity
assessment, and at the same time high uncertainty, and consequently the range of options for
preferred candidates in the long term is also small for FCA.

• The pool of preferred candidates, those having high influence and low uncertainty, is also bigger
in the short.

• Most of the variables are qualified either as low or high uncertainty, and only a few are considered
with a medium level of uncertainty, although in the FCA case, the few ones with medium
uncertainty are considered mostly of high influence.

There are also some facts that differs in the FCA case:

• In the FCA diagram only a few number of variables is considered with medium influence,
maximum two out of 25. The distribution of variables between low and high influence is more
extreme that for the DAC. This can be easily noticed as the intermediate column in the diagram is
almost empty.

• The number of variables requiring uncertainty reduction is lower in the short time frame for the
FCA application.

For the medium and long time horizons the split of variables with high influence according to its
uncertainty level, is more homogeneous than for the DAC case. The number of variables with low
influence and high uncertainty is considerable for both time horizons, medium and long. The higher
the effort on reducing the uncertainty associated to these variables, the higher the number of preferred
candidates will be.

In the short term, the majority of the complexity generators are located in the lower right box of
the diagram (high influence and low uncertainty), and just a few (five of 25) are considered of low
influence. The pool of preferred candidates for FCA in the medium term is also bigger than in the
long term.

As an overall issue also for the FCA application, Flows Distribution and Number of Interaction
Points, are important through the three time horizons and both need to reduce their uncertainty.
Therefore, the recommendation made for DAC, to improve the information regarding these parameters
in all time horizons, is also valid for the FCA application.

As a final summary, Table 7 presents the set of complexity generators recommended as inputs in
the complexity metrics and algorithms for each application and time horizon. Those highlighted in
bold would require further reduction in uncertainty before being used in complexity metrics.
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Table 7. Complexity Generators (CGs) recommended as inputs in the complexity metrics and algorithms
for each application and time horizon. CGs in bold black requires further reduction in uncertainty.

Time Horizon DAC Recommendation FCA Recommendation)

Long Term

• Flows distribution
• Number of interaction points
• Number of main flows
• Presence/proximity of restricted airspace
• Distribution of flight time per aircraft under ATCO

responsibility in the given timeframe Airspace uses

• Flows distribution
• Number of interaction points
• Presence/proximity of restricted airspace
• Altitude AC distribution
• Distribution of flight time per aircraft under

ATCO responsibility in the given timeframe
Airspace uses

• Coordination support tools.

Medium Term

• Flows distribution
• Number of interaction points
• Number of main flows
• Presence/proximity of restricted airspace
• Occupancy (per ATCO position)
• Traffic Entry (per ATCO position)
• Transition and changes in configuration

• Flows distribution
• Number of interaction points
• Presence/proximity of restricted airspace
• Distribution of flight time per aircraft under

ATCO responsibility in the given timeframe
Airspace uses

• Altitude AC distribution
• Altitude AC changes
• Vertical and horizontal convergence
• Coordination support tools.
• CDR Support and monitoring System

Short Term

• Flows distribution
• Number of interaction points
• Airspace volume
• Airspace Geometry
• Distribution of flight time per aircraft under

ATCO responsibility in the given timeframe
• Number of conflicts predicted
• Time difference at crossing points
• Weather conditions
• Altitude AC distribution
• Speed AC distribution
• Altitude AC changes
• Occupancy (per ATCO position)
• Traffic Entry (per ATCO position)
• Vertical and horizontal convergence
• Vectoring and operational restrictions
• Transition and changes in configuration
• Degrees of freedom of the controller in the

resolution strategy of the conflict
• CDR Support and monitoring System
• Coordination support tools
• System failure

• Flows distribution
• Number of interaction points
• Weather conditions
• Altitude AC distribution
• Speed AC distribution
• Altitude AC changes
• Occupancy (per ATCO position)
• Traffic Entry (per ATCO position)
• Distribution of flight time per aircraft under

ATCO responsibility in the given timeframe
• Number of conflicts predicted
• Time difference at crossing points
• Vertical and horizontal convergence
• Coordination procedures
• Vectoring and operational restrictions
• Transition and changes in configuration
• Degrees of freedom of the controller in the

resolution strategy of the conflict
• CDR Support and monitoring System
• Coordination support tools
• System failure

Taking into account these recommendations and the Complexity Generators that use each of the
analysed metrics, three levels of difficulty are presented in Table 8, that imply a greater or lesser facility
to adapt each of the metrics to the indicated scenario.
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Table 8. Level of difficulty to adapt a metric.

METRIC
DAC FCA

Long
Term

Medium
Term

Short
Term

Long
Term

Medium
Term

Short
Term

TBX

INPUT-OUTPUT

PROBABILISTIC APPROACH

GEOMETRIC APPROACH

DYNAMIC SYSTEM APPROACH

DYNAMIC DENSITY

PHARE

TRAJECTORY UNCERTAINTY

SOLUTION SPACE

TRAJECTORY FLEXIBILITY

FRACTAL

ALGORITHM EUROCONTROL

COGNITIVE

The three levels of difficulty are indicated with a color code:

- Cells marked in green stand for the metrics that can be easily adapted to the conditions of that
time horizon.

- Cells marked in yellow represent the intermediate level of difficulty.
- Cells marked in orange corresponds to those whose adaptation to the temporal horizon would

require a greater level of effort, taking into account the recommendations made previously.

Therefore, project efforts will focus on adapting metrics that can deliver results with less effort in
the identified scenarios.

12. Conclusions

The main objective of the COTTON project is to deliver innovative solutions to maximize the
performance of the Capacity Management exploiting the trajectory information available in a TBO
environment. In this context, the principal aim of this work was to address the challenge of exploring
how the uncertainties associated with the agreed trajectory will influence the quality of the predictions
of complexity of traffic demand and the effectiveness of DCB processes regarding airspace management.

To achieve this aim we have developed and implemented an ad-hoc methodology combining
qualitative and quantitative approaches that integrates the state of the art of SESAR works on complexity,
experts’ knowledge and advanced causal and predictive BN models. Instead of starting from scratch,
research has taken full advantage of existing complexity methodologies as well as innovative models
for the prediction of trajectories’ uncertainty, focusing its effort on researching how these models
and methodologies can integrate the delivery of uncertainty-based complexity assessment as part
of an advanced demand/capacity model. This approach has been feasible as COTTON has full
access to existing SESAR complexity methodologies (Algorithm approach, Cognitive approach and
Convergence-Lyapunov approach) and trajectories’ uncertainty models thanks to the composition of its
Consortium. This has allowed us to explore the opportunities to refine these models introducing new
trajectory-based complexity metrics for supporting the most demanding features of DAC and FCA.

The characteristics of the operational concept TBO that will influence the uncertainty of the
trajectory have been identified. The analysis of the TBO environment highlighted available information
need to be considered when calculating complexity in each time horizon of the Network Operation Plan.
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Likewise, the characteristics of the DAC and FCA applications that can affect complexity
management processes have been analysed to contextualize: (i) what should be the purposes of
the complexity metrics; and (ii) how DAC context would affect the management of complexity in each
time horizon. A deep look at the cycle of the current SESAR traffic complexity management process
has allowed establishing requirements and conditions that may affect the complexity methodologies
and metrics for each time horizon.

We have also performed a detailed survey of current complexity methods and metrics in order to
identify the parameters in which they are set (inputs and outputs); the advantages and drawbacks
of each metric; and how they could be adapted to a TBO environment, for both DAC and FCA. This
analyses allowed also to identify the most important limitations of the existing metrics:

From the trajectory uncertainty analysis, we have identified the main sources of uncertainty in the
trajectory prediction and the main techniques for trajectory prediction; and finally we have quantified
the impact of trajectory uncertainty on the traffic demand.

Main research outcomes includes the identification of the key elements for the definition of
complexity in the Capacity Management applications (called Complexity Generators). The concept of
Complexity Generators is underlying behind a certain variable considered by a mathematical model
for computing complexity. Complexity Generators are identified from literature and from the studies
carried out in the previous steps of the methodology; and they are tuned and validated by expert’s
opinion gathered at the COTTON First Workshop. Complexity generators have been characterised in
terms of their uncertainty, variability and impact on complexity metrics for each time horizon and
DCB concept (DAC and FCA).

Then, causal predictive models have been developed, using Bayesian Networks, to evaluate the
effect of trajectory uncertainty on complexity assessment. The aim of the networks is to help to identify
the relevant variables in the process, and to understand the causal relationships and interdependences
between factors influencing the complexity and the uncertainties associated to those factors. In total 7
BN models have been elicited covering each concept and time horizon.

The outcome of these BN models was double. On the one hand, they will help to identify
what Complexity Generators need to be properly taken into account and analysed by the complexity
algorithms and metrics adapted to the DAC and FCA concepts. Among the set of current variables
considered complexity generators, the BN will help to highlight which ones are expected to have a High
(H), Medium (M), or Low (L) influence in the complexity outcome itself, depending on the concept and
timeframe considered. The future complexity algorithms and metrics might take this outcome as an
indication of which variables, because of their influence on complexity, need to be carefully addressed
by the metrics and algorithms. At the same time, the networks will help to identify whether the a-priori
uncertainty probability distribution of each of those variables (considering the various timeframe
horizons) will be compatible with maintaining the uncertainty of complexity outcome at a LOW or
MEDIUM state, or which ones will need further improvements reducing its level of uncertainty. The
future complexity algorithms and metrics might take this outcome as an indication of the uncertainty
they might expect for each complexity generator (High, Medium or Low), and according to that decide
the best approach to characterize and measure this variable in each scenario.
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Nomenclature

List of Symbols
FD Flows Distribution
IP Number of interaction points
MF Number of main flows
RA Presence/proximity of restricted airspace
AU Airspace uses
CrP Distribution of crossing points and their proximity to airspace boundaries
AV Airspace volume
AG Airspace Geometry
AD Altitude AC distribution
SD Speed AC distribution
AC Altitude AC changes
OC Occupancy (per ATCO position)
TE Traffic Entry (per ATCO position)
H High influence
M Medium influence
L Low influence
FT Distribution of flight time per aircraft under ATCO responsibility in the given timeframe
NC Number of conflicts predicted
TD Time difference at crossing points
VHC Vertical and horizontal convergence
CoP Coordination procedures
VR Vectoring and operational restrictions
TC Transition and changes in configuration
DF Degrees of freedom of the controller in the resolution strategy of the conflict
CDR CDR Support and monitoring System
CST Coordination support tools
SF System failure
WC Weather conditions
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FDP Flight Data Processing
FMS Flight Management System
FPL Flight Plan Level
FOC Flight Operations Centre
GUFI Global Unique Flight Identifier
HF Human Factors
IATA International Airline Traffic Association
INAP Integrated Network Management and extended ATC planning
iRBT initial Reference Business Trajectory
iRMT Initial Reference Mission Trajectory
NPR Nominal Preferred Route
TTA=/TTA Target Times Over/At
SESAR 2020 Single European Sky ATM Research
SBT Shared Business Trajectory
RBT Reference Business Trajectory
TBO Trajectory Based Operations
TMA Terminal Area Manoeuvring
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