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Arrival Manager operational horizon, in Europe, is foreseen to be extended up to 500

nautical miles around destination airports. In this context, arrivals need to be sequenced and

scheduled a few hours before landing, when uncertainty is still significant. A computational

study, based on a two-stage stochastic program, is presented and discussed to address the

arrival sequencing and scheduling problem under uncertainty. This preliminary study focuses

on a single Initial Approach Fix and a single runway. Different problem characteristics,

optimization parameters as well as fast solution methods for real-time implementation are

analyzed in order to evaluate the viability of our approach. Paris Charles-De-Gaulle airport is

taken as a case study. A simulation-based validation experiment shows that our approach can

decrease the number of expected conflicts near the terminal area by up to 70%. Moreover, in

a high-density traffic situation, the total time-to-lose inside the terminal area can be decreased

by more than 71%, while the expected landing rate can be increased by 7.7%, compared to

the first-come first-served policy. This computational study demonstrates that sequencing and

scheduling arrivals under uncertainty, a few hours before landing, can successfully diminish

the need for holding stacks by relying more on upstream linear holding.

I. Introduction

Air traffic world-wide growth puts more and more pressure on major airports to better use their infrastructure

in order to meet the required levels of safety and efficiency. Since the early 90’s in the USA and Europe, air traffic

controllers (ATCs) around major airports have been using decision support tools that compute “optimal” sequences and

schedules of landings at the available runways. In Europe, such tools are called Arrival Managers (AMANs). AMAN
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typically captures inbound aircraft at a distance of 100-200 nautical miles (NM) around the destination airport (30-45

minutes before landing). In the last few years, extending AMAN operational horizon up to 500 NM (2 to 3 hours

before landing) has been identified as one key measure to limit delays and to enhance punctuality and eco-efficiency

[1]. In fact, starting the sequencing and scheduling process earlier will help aircraft fly more fuel-efficient trajectories

and avoid congestion in the terminal area. The foreseen European tool is often referred to as Extended AMAN

(E-AMAN). This new decision support tool is expected to diminish the need for holding patterns near the terminal area,

a stressful ATC technique for both controllers and pilots in top of being extremely eco-inefficient. However, when the

sequencing-and-scheduling horizons are extended, uncertainties about predicted times of arrival get large and cannot

be overlooked. A possible technique to hedge against uncertainty is to re-optimize as soon as input data is updated.

However, under large uncertainty, re-optimizing a deterministic model each time input data is updated, will deliver

unstable solutions, making their implementation impractical. Instead of frequently re-optimizing deterministic models,

uncertainties can be embedded within the optimization model in order to obtain more stable solutions. In this paper, we

present a computational study based on a two-stage stochastic program addressing the problem of arrival sequencing

and scheduling under uncertainty, two to three hours look-ahead time. Numerical tests on realistic instances from Paris

Charles-De-Gaulle airport (CDG) are presented and discussed. In the following, the related literature is briefly reviewed

before giving the paper outline.

Literature review

The problem of sequencing and scheduling arrivals on a given destination airport has been studied for several decades

[2, 3]. Sequencing consists in finding an order among the considered aircraft, while scheduling is related to the timing

of aircraft landings. Optimality criteria usually include maximizing runway throughput and/or minimizing aircraft

delay. Operational constraints, mainly minimum separations called final approach separations, have to be satisfied

between aircraft near the runway threshold. Variants of this problem may consider a single or multiple runways [4–6].

Also, when more operations (departures, runway crossings, etc) are included, the problem is often called the Aircraft

Sequencing and Scheduling problem (ASSP). The case in which predicted operations times are known with certainty,

called the deterministic case, has been thoroughly studied in the literature [4, 7, 8], while the case under uncertainty has

less often been addressed. So far in the related literature, three main approaches to optimization under uncertainty

were applied to ASSP: probabilistic [9, 10], stochastic [11–13] and robust [14–16] approaches. Pioneer studies such

as [9, 10] mainly enriched deterministic models by probability constraints and/or by a probability objective-value

function. Stochastic programming models, including two-stage and multi-stage models, were proposed in [11–13].

Finally, [14–16] proposed and studied several robust programming models for the runway scheduling problem. Apart

from Kapolke et al. [16], all of the aforementioned studies concentrated on variants of ASSP involving a short planning

horizon of around 45 minutes. Kapolke et al. [16] addressed the pre-tactical aircraft landing problem under uncertainty,
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where aircraft are captured a few hours before landing.

Contribution and paper outline

In the context of the present paper, we seek to optimally sequence and schedule aircraft over the same Initial

Approach Fix (IAF), two to three hours before landing. We propose a computational study based on a two-stage

stochastic programming model. In the first stage, an aircraft sequence and a schedule at the IAF are found so as to

maximize the expected runway throughput under uncertain arrival times at the IAF. In the second stage, uncertainty

is assumed to be revealed and the landing times are computed so as to minimize a time-deviation impact cost in the

terminal area. Focusing on realistic instances from CDG airport, we study the compromise between flexibility and

punctuality when scheduling at the IAF as well as the effect of uncertainty amplitude. We examine fast solution methods

from the literature and compare them to a different proposed approach under a limited computing-time budget. The

aim of our computational study is to evaluate various model and optimization-method parameters as well as different

resolution approaches, within the framework of two-stage stochastic programming, in order to design an efficient

algorithm for real-time implementation. Also, since the first-come first-served (FCFS) policy is widely used in practice

to schedule arrivals from the IAF to the runway threshold, we evaluate the benefit of our approach (sequencing and

scheduling arrivals at the IAF with few hours look-ahead time) for the FCFS policy performance in the terminal area.

The remaining of this paper is organized as follows. First, the problem is described in Section II. The solution method

is explained in Section III. The computational study is presented and discussed in Section IV. Finally, conclusions are

drawn in Section V.

II. Problem statement
We consider a set of n aircraft planning to land at a given destination airport in two to three hours look-ahead time.

Let A = {1, . . . , n} be the set of their indices. We make the following two operational assumptions. Firstly, all aircraft

will fly to the same IAF before entering the airport terminal area. Secondly, all aircraft will land on the same runway of

the considered airport. We are given a predicted time at the IAF for each aircraft. We seek to sequence and schedule

these aircraft to the IAF so as to maximize the expected landing rate as well as to minimize a time-deviation impact cost

in the terminal area. To that aim, we first introduce the continuous decision variable xi as the target time at the IAF for

aircraft i ∈ A. Target times at the IAF must satisfy two types of constraints detailed below: minimum-time separation

at the IAF, and time-windows constraints.

Minimum-time separation at the IAF

We assume that all aircraft pass over the IAF at the same altitude (i.e. the same flight level) so that only longitudinal

separation between aircraft matters. Aircraft successively passing over the IAF have to be separated by a distance-based
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minimum separation. For modeling and optimization purposes, this minimum separation at the IAF is converted to time.

Let us note SI the time-based minimum separation at the IAF expressed in seconds. Assuming all aircraft speeds over

the IAF are equal to 250 knots and a distance-based minimum separation at the IAF of 5 NM, SI may then be set to

72 seconds [9].

Time windows at the IAF

Imposing a time window constraint at some point of an aircraft trajectory either reflects its physical limitations

(mainly its lowest and highest eligible speeds) or acceptable deviations with respect to some reference time as may be

expressed by airlines or in order to ensure some level of air traffic punctuality. In our context, a target time at the IAF for

each aircraft has to be found within a predefined time window, noted TW I , around the predicted arrival time at the IAF.

We assume that actual times at the IAF will randomly deviate from the target times following a normal distribution

with mean µ and standard deviation σ. In order to define the aircraft sequence over the IAF, we then introduce binary

decision variables δi j for each pair of aircraft (i, j) such that i , j:

δi j =




1 if aircraft i directly precedes aircraft j

0 otherwise

From the ATC perspective, aircraft will ideally pass over the IAF in the same sequence that maximizes the landing

rate so that ATCs in the terminal area will only have to “compress” the sequence, without shifting any aircraft position

inside the terminal area. This may be achieved by enforcing the target sequence over the IAF to be an optimal landing

sequence. An optimal landing sequence is one that has a minimal length in terms of final-approach separations. Let us

note Si j the minimum time-based final approach separation in seconds between a leading aircraft i and a following

aircraft j. Final-approach separations are defined in terms of distance in NM according to the wake-turbulence categories

(Heavy (H), Medium (M) and Light (L)) set by the International Civil Aviation Organization (ICAO). Final-approach

separations applicable in CDG airport and converted into seconds are given in Table 1.

Table 1 Final-approach separations (seconds) according to ICAO wake-turbulence categories [17]

Following aircraft
H M L

H 96 157 207
Leading aircraft M 60 69 123

L 60 69 82

Given the binary decision variables introduced above, the landing sequence length may be computed using the
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following expression: ∑
(i, j)∈A×A

i,j

δi jSi j

Besides anticipating the optimal landing sequence, making aircraft arrive as early as possible at the IAF is equivalent

to minimizing their average flight time during the en-route and descent phases, prior to the IAF. Such an objective

may help flights catch up with their upstream delay, if any, in an attempt to improve punctuality. For that reason, we

may try to minimize the sum of target times at the IAF,
∑
i∈A

xi . Overall, we seek to minimize the following objective

function, where x denotes the vector whose ith component is xi for i ∈ A, δ stands for the matrix whose ij-entry is δi j

for (i, j) ∈ A × A such that i , j and λ is a user-defined weighting parameter:

f1 (x, δ) =
∑

(i, j)∈A×A
i,j

δi jSi j + λ
∑
i∈A

xi (1)

In order to account for the expected air traffic situation in the terminal area, we consider a hypothetical second-stage

problem in which actual arrival times at the IAF are assumed to be known with certainty. The beginning of the second

stage can be set to the entry time of the last considered aircraft to the en-route sector neighbouring the terminal area.

Defined as such, the second-stage problem corresponds to a deterministic aircraft sequencing-and-scheduling problem

with a short operational horizon. In this second-stage problem, we schedule aircraft to the runway threshold so as

to minimize the total time-deviation impact cost during the approach phase in view of eliminating congestion in the

terminal area and improving punctuality.

The landing sequence is enforced to be the same as the already-found target sequence over the IAF, although the

actual sequence over the IAF may be different once uncertainty is revealed. This is due to the fact that deviations of

actual times at the IAF with respect to the target times may change the actual sequence over the IAF with respect to the

target sequence. Since the landing sequence is already found in the first stage, no sequencing variables are needed in

the second stage. Hence, we introduce the continuous decision variable yi as the target landing time of aircraft i ∈ A.

Similarly to the target arrival times at the IAF, target landing times should satisfy two types of constraints: minimum

time-based final-approach separation and time-windows constraints for landing. We define Ui the unconstrained landing

time of aircraft i corresponding to the landing time of aircraft i as if it were alone in the terminal area flying its preferred

trajectory at its preferred speed. For each aircraft i ∈ A, Ui is computed as the sum of its actual arrival time at the IAF

and an unconstrained flight time from the IAF to the runway threshold. Remark that the unconstrained landing time,

computed at the beginning of the second stage, can be seen as the latest up-to-date estimated landing time available

at around 30-minute look-ahead time. This unconstrained landing time is defined so that aircraft i flies its preferred

trajectory at its preferred speed in the terminal area until landing, thereby saving fuel, and landing with no extra delay
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incurred during the approach phase. Hence, |yi −Ui | quantifies the (unweighted) impact cost of time deviation from the

unconstrained landing time of aircraft i during the approach phase. In this paper, we assume that deviating from the

unconstrained landing time in either directions is equally undesirable. For a study with weighted time-deviation impact

costs during the approach phase, see [18]. In the context of AMAN, a time deviation from the unconstrained landing

time of a given aircraft can be seen as the time-to-gain or the time-to-lose as computed by AMAN, and then displayed to

the approach controller. The controller has, then, to apply adequate control actions in order to satisfy this time deviation.

Remark that if all inbound flights are able to follow their preferred trajectories at their preferred speed in the terminal

area, then such a traffic situation should generate a low workload for both terminal-area controllers and pilots. Such an

ideal situation is necessarily, but not sufficiently, described by the equation
∑
i∈A

|yi −Ui | = 0. Indeed, an aircraft may

succeed to land at its unconstrained time (i.e., yi = Ui), after stretching its path, speeding up, and then slowing down,

generating thereby a significant workload for both pilots and controllers.

We define a second-stage scenario s as a possible realization of actual arrival times at the IAF of all aircraft in A.

For example, consider a set of 3 aircraft with IAF target times 6:00:00 AM, 6:01:30 AM and 6:03:00 AM for aircraft

1, 2 and 3 respectively. One possible realization of their IAF actual times, i.e. one possible scenario, is 6:00:32 AM,

6:01:10 AM and 6:03:55 AM respectively. In this scenario, the first and the third aircraft arrive at the IAF later than

their target times (by 32 and 55 seconds respectively), while the second aircraft arrives 20 seconds earlier than its target

time. Assuming 11 minutes of unconstrained flight time from the IAF to the runway threshold for any of the three

aircraft, their unconstrained landing times in this scenario are 6:11:32 AM, 6:12:10 AM and 6:14:55 AM respectively.

Remark that unconstrained landing times and target landing times depend on the scenario s. Hence, unconstrained

landing time and target landing time of aircraft i in scenario s will be noted Us
i and ysi respectively. Therefore, given a

scenario s, the second-stage problem reads:

Q (x, δ, s) := min
ys

∑
i∈A

���y
s
i −Us

i
��� (2)

subject to final-approach separation constraints

and time-windows constraints for landing

Note that, in our second-stage problem, we do not adjust the first-stage solution but we make new decisions (target

landing times) based on the revealed uncertainty.

Since we need to account for all possible scenarios in the second-stage, the objective-function of the entire two-stage

stochastic programming model reads:

min
x,δ

f1 (x, δ) + E [Q (x, δ, .)] (3)
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where E [.] is the expectation operator. In the sequel, we shall need the following notation. Let v? be the optimal value

of the two-stage stochastic problem. The output of the two-stage model is then an optimal sequence (described by δi j

for all (i, j) ∈ A × A such that i , j) and optimal target times at the IAF (xi for all i ∈ A) that maximize the expected

landing rate and minimize the expected second-stage cost function.

We remark that the above model can be extended to the case of multiple IAFs at the expense of adding extra binary

variables and associated constraints for the newly considered IAFs. A similar extension can be envisaged for the case of

multiple runways.

The solution method proposed to address the two-stage stochastic program is explained in the next section.

III. Solution method
Two-stage stochastic programming models are usually intractable if all possible scenarios are taken into account.

Nevertheless, the Sample Average Approximation (SAA) method [19] offers a framework to approximate the solutions

of such problems, through solving an approximate problem, called the SAA problem, instead of the original problem. In

the approximate problem, the expectation term in the objective function is estimated through a sample average computed

over a finite set of scenarios. Given a set S (called “training set”) of nS equiprobable scenarios, the objective function

of the SAA problem reads:

min
x,δ

f1 (x, δ) +
1

nS

∑
s∈S

Q (x, δ, s) (4)

Let v̂ (S) be the optimal value of the SAA problem. Since v̂ (S) depends on the scenarios set S, v̂ (S) is, itself, a

random variable. The SAA method [19] guarantees that for any given nS , E [v̂ (S)] ≤ v?, i.e. the optimal value of the

SAA problem is negatively biased. Moreover, under mild conditions, as nS → ∞, v̂ (S) converges towards v? with

probability one. However, in practice, the required computing time grows rapidly with nS . One difficulty with the SAA

method is to decide whether a given number of scenarios, nS , is large enough to correctly approximate the original

problem, i.e. to ensure that the solution obtained is a satisfying approximation of an optimal solution of the original

problem. v̂ (S) is not necessarily a good-quality indicator with respect to the original problem due to the SAA bias and

variance of the SAA optimal value. Hence, a post-optimization validation step is needed to evaluate the quality of any

SAA solution. In our study, we rely on the so-called out-of-sample validation, that consists in re-evaluating an SAA

solution,
(
x̂, δ̂

)
, with a validation set containing much more scenarios than the training set used to find

(
x̂, δ̂

)
. The

validation set is believed to represent the complete set of all possible scenarios. An out-of-sample validation provides a

new quality indicator for the considered solution, called the validation score. When the gap between the SAA optimal

value v̂ (S) and the validation score of
(
x̂, δ̂

)
is small, the SAA problem can be considered as stable and the training set

used may be considered as large enough. Accordingly, in our exploratory computational study detailed in Section IV,

we investigate solving a sequence of SAA problems involving increasing numbers of scenarios (nS) under a limited,
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although large, solving time. As we mentioned earlier, SAA solutions depend on the random set S of scenarios used for

optimization. Therefore, to illustrate better the average behavior of SAA problems with a given number of scenarios nS ,

we build nR replicated SAA problems with nS scenarios each. Let v̄ (nS, nR ) be the average optimal value obtained

over nR such replications. It can be expressed as follows, where Sr is a scenario set such that |Sr | = nS :

v̄ (nS, nR ) =
1

nR

nR∑
r=1

v̂ (Sr ) (5)

Although a well-applied SAA method can guarantee good-quality solutions for the original problem, computing

times are very often inappropriate for real-time implementation. Consequently, fast solution methods based on SAA

were proposed in the literature related to aircraft scheduling using stochastic programming [11, 13].

Real-time solution methods

For real-time implementation, mainly two approaches can be built on the SAA method: replication-based and

scenario-based approaches.

Replication-based approach

Since solving a single SAA problem with a large scenario set may be time-consuming, [11, 13] opt for solving

several replications of an SAA problem with a limited number of scenarios. Upon optimization, they are left with a pool

of near-optimal solutions to the original problem (as many solutions as replications). Distinct solutions are kept in a

pool from which only one solution need to be selected at the end. On one hand, Bosson and Sun [13] simply select the

solution with the minimum objective function value. Hence, no post-optimization validation is performed. On the other

hand, Sölveling et al. [11] re-evaluate all distinct solutions from the pool using as a validation set, the complete set of

scenarios of their original problem. Then, they select from the pool the solution with the best validation score. Let us

note that increasing the number of replications may enlarge the solutions’ pool. However, it does not guarantee better

solutions.

Scenario-based approach

Unlike replication-based approach, in a scenario-based approach, only one SAA problem with a large enough number

of scenarios is solved. Hence, no replications are made. The quality of the obtained solution can be estimated through

out-of-sample validation. Let us note that increasing the number of scenarios often leads to better quality solutions.

IV. Computational study
We rely on a two-stage stochastic program implemented in Julia programming language [20] and on CPLEX 12.6.3

solver. Results are obtained on a Linux platform with 8 x 2.66 GHz Xeon processors and 32 GB of RAM. As a
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study case, we select the arrivals that planned to enter the terminal area around CDG airport on May 15th, 2015 from

6:00 AM to 6:30 AM and that landed on the north runway (27R). Two realistic instances, involving n =10 and 14 aircraft

respectively, are extracted. To conduct our computational study, we consider different problem characteristics and

optimization parameters. First, we try to find the best combination of these characteristics and parameters by intensive

empirical experiments on the first instance (n =10 aircraft). Once the best combination is identified, we compare two

real-time solution methods under a fixed solving-time budget. Using our best setting, we apply it to the second instance

(n =14 aircraft). Finally, we evaluate the benefit of our approach (sequencing and scheduling arrivals at the IAF under

uncertainty) for the expected performance of a FCFS policy in the terminal area. To that end, different performance

indicators are computed through simulation-based experiments.

The two instances and the different problem characteristics are described in Subsection IV.A. The optimization

parameters along with their tested values are presented in Subsection IV.B. The main results for the first instance are

reported and discussed in Subsection IV.C. To select an effective real-time solution method, we compare the performance

of the scenario-based and the replication-based approaches on the first instance in Subsection IV.D. Results for the

second instance (n =14 aircraft) are presented in Subsection IV.E. Finally, the benefit of our approach on the FCFS

policy in the terminal area is discussed in Subsection IV.F.

IV.A Instances and problem characteristics

The terminal area around CDG has four IAF named: MOPAR, LORNI, OKIPA and BALOX. CDG has four runways:

two for landings (27R and 26L) and two for departures (27L and 26R). A simplified scheme of CDG runways with the

surrounding IAFs is displayed in Figure 1.

Fig. 1 CDG runways scheme with the four surrounding IAFs (not to scale)

On May 15th 2015, looking only at aircraft that finally landed on CDG runway 27R, 10 of these aircraft were planned
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to enter the terminal area between 6:00 AM and 6:20 AM, while 14 were planned to do so between 6:10 AM and

6:30 AM. All of these aircraft entered the terminal area from three different IAFs (MOPAR, LORNI and OKIPA). For

the sake of simplification, we merge all these arrivals as if they were planned to pass over a single IAF. We are then

left with two realistic instances satisfying our operational context (a single IAF and a single runway). Details of these

instances are summarized in Table 2.

Table 2 The two considered instances

instance 1 instance 2
Planned time span
at the IAF

6:00 – 6:20 6:10 – 6:30

Number of aircraft
per original IAF

MOPAR
LORNI
OKIPA

7
2
1

8
5
1

Total number of aircraft 10 14

Wake-turbulence category mix
H : 70%
M : 30%

H : 50%
M : 50%

Next, two problem characteristics are explored: the width of time windows at the IAF and the uncertainty amplitude.

Time windows at the IAF

The width of the time windows at the IAF may reflect different desired levels of flexibility and punctuality. Wide

time windows offer more flexibility to optimize the sequence and the schedule at the IAF, whereas narrow time windows

yield more punctuality. From an operational perspective, if an aircraft with a ground speed of 450 kts increases its

speed by 3%, it will only save 1 minute with respect to its planned time over a distance of 300 NM. Therefore, in our

study, we limit the acceptable time advance with respect to the IAF planned times to 1 minute. However, different levels

of acceptable delays can be defined. For example, in [7], delays are allowed to reach one hour, while time advances

are limited to 1 minute. Following the XMAN concept (a first operational step towards E-AMAN implementation),

5 minutes of delay can be achieved in the en-route and descent phases using only speed reduction over 300 NM. This

defines a narrow IAF time window. For wide IAF time windows, we assume 10 minutes of feasible additional delay

using path stretching. To summarize, in our study, the tested time windows are: [-1 min, +5 min] (narrow) and [-1 min,

+15 min] (wide).

Uncertainty

Following the literature ([9, 21]), deviations of the actual times with respect to the target times at the IAF are

assumed to follow a normal distribution with mean 0 and some standard deviation σ. To assess the impact of uncertainty,

we test two values for σ: 30 seconds (small) and 60 seconds (large).
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Other problem characteristics relevant to the second stage (time windows for landing and unconstrained flight time

from the IAF to the runway threshold) are kept constant. For every aircraft, we opt for [-1 min, +19 min] time windows

for landing, and 11 minutes for the unconstrained flight time from the IAF to the runway threshold (regardless of the

aircraft type). This time window is constructed based on the minimum flight time observed in our data (10 minutes) and

a maximum flight time of 30 minutes, where the extra 20 minutes can be spent in a holding stack for example. Assuming

one minute as the longest time advance within the terminal area, we set the unconstrained flight time to 11 minutes.

IV.B Optimization parameters

Two main optimization parameters are studied: the weighting parameter in the first-stage objective function, λ, and

the number of second-stage scenarios, nS .

First-stage objective-function weight

In addition to minimizing the landing sequence length, different weights λ in the first-stage objective function are

tested in order to evaluate the effect of minimizing the sum of target times at the IAF. Two weighting parameters values

are defined (λ = 0, and λ = 0.01). With λ = 0, only the landing sequence length is minimized. With λ = 0.01, a

compromise is considered between the landing sequence length and the sum of target times at the IAF, such that both

quantities have comparable amplitudes.

Number of second-stage scenarios

Since we follow an exploratory approach that successively increases the number of scenarios, we solve SAA

problems with nS = 10, 50, 100, 200, 500 and 1000.

IV.C Results for instance 1

Instance 1 is solved with all the 48 possible combinations (6 different numbers of scenarios, 2 IAF time-window

widths, 2 uncertainty amplitudes, and 2 values for the weight λ). For each setting combination, nR = 10 replications

are performed. Far each replication, the time limit in CPLEX solver is set to one hour. Although this time limit is

inappropriate for real-time implementation, it was selected for exploration and study purposes as explained in Section

III.

The main results for instance 1 are shown on Tables 3 to 6. “CPU” stands for CPLEX solving time expressed

in seconds, averaged on all the replications. When the time limit is reached for all replications, “Tilim” is indicated

instead of the exact time value. “Status” tells whether CPLEX proved the optimality of the feasible solutions found.

Note that feasible solutions are found for all replications and under all settings. When solutions for all replications are

proved optimal by CPLEX then “Opt.” is reported, while “r Opt.” or “Feas.” are reported if only r (1 ≤ r < nR) or no

solutions are proved optimal, respectively. “Gap” stands for the average (over all replications) percentage error of the
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Table 3 Results for instance 1 with narrow IAF time windows and λ = 0

TW I Narrow
nS σ Small Large

10

CPU (s) 0.3 0.5
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 934.8 ± 8.0 1028.3 ± 19.3
Validation 950.8 1060.9

50
CPU (s) 1.3 2.2
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 938.9 ± 3.1 1034.9 ± 6.6
Validation 944.2 1046.4

10
0

CPU (s) 3.2 6.4
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 940.4 ± 2.2 1040.3 ± 4.8
Validation 943.8 1045.6

20
0

CPU (s) 9.6 18.5
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 940.3 ± 2.0 1039.6 ± 4.8
Validation 942.6 1045.1

50
0

CPU (s) 75.1 144.3
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 941.6 ± 0.9 1042.8 ± 1.9
Validation 942.0 1044.1

10
00

CPU (s) 358.6 812.0
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 941.5 ± 0.8 1042.8 ± 1.8
Validation 941.9 1043.7

best bound with respect to the value of the best feasible solutions returned by CPLEX. Here, v̄ stands for the average

objective value over the replications solved to optimality, noted v̄ (nS, nR ) in Section III. For each computed value of

v̄ (nS, nR ), a 95%-confidence interval is computed, thanks to the central limit theorem, its radius is noted “I95%”. In our

context, a 95%-confidence interval indicates that we are 95% sure that the true value of E [v̂ (S)] lies within this interval.

“Validation” stands for the out-of-sample validation score, introduced in Section III, averaged on all the replications.

The validation set is made of 10,000 scenarios. Figures 2 to 5 plot v̄, “Validation” and CPU as functions of nS from

Tables 3 and 5. Box-plots around v̄ and validation scores are also shown in order to give some insight on the distribution

of replication-specific values.

Effect of the number of scenarios, nS

As expected, the solving time increases rapidly with nS . In 18 out of 480 runs, CPLEX is not able to prove optimality

within 1 hour. These runs correspond to tests on instance 1 with wide IAF time windows, under large uncertainty and

nS = 1000 scenarios. Nevertheless, we observe that, in 6 out of 8 cases, we can solve replications with up to nS = 500

12
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Fig. 2 Average objective-function values and validation scores (upper figure) and average CPU times (lower
figure) for instance 1 with narrow IAF time windows, λ = 0 and small uncertainty.
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Fig. 3 Average objective-function values and validation scores (upper figure) and average CPU times (lower
figure) for instance 1 with narrow IAF time windows, λ = 0 and large uncertainty.

scenarios in less than 3 minutes, on average. In the two remaining cases (corresponding to instance 1 with wide IAF

time windows, under large uncertainty), we can solve replications with up to nS = 200 scenarios in less than 4 minutes.
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Table 4 Results for instance 1 with narrow IAF time windows and λ = 0.01

TW I Narrow
nS σ Small Large

10

CPU (s) 0.3 0.5
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1730.9 ± 8.0 1823.5 ± 18.5
Validation 1745.9 1852.7

50
CPU (s) 1.5 2.5
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1733.5 ± 3.2 1829.6 ± 6.8
Validation 1737.9 1841.1

10
0

CPU (s) 3.8 6.8
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1735.2 ± 2.2 1835.2 ± 4.8
Validation 1737.7 1840.5

20
0

CPU (s) 11.1 20.7
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1734.8 ± 2.0 1834.4 ± 4.8
Validation 1737.1 1839.9

50
0

CPU (s) 80.6 159.3
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1736.2 ± 0.9 1837.5 ± 1.9
Validation 1736.5 1838.6

10
00

CPU (s) 372.3 837.4
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1736.0 ± 0.7 1837.6 ± 1.8
Validation 1736.4 1838.3

We observe that as the number of scenarios increases, average objective-function values, v̄, clearly increase while the

spread of objective-function values around the average decreases. These two facts correctly illustrate the behavior of

SAA problems’ objective-function values when increasing the number of scenarios. On the other hand, as expected,

average validation scores decrease with the number of scenarios. This reveals that increasing the number of scenarios

leads to better-quality solutions. Remark that, for any given number of scenarios nS , the average validation score is

greater than the average objective-function value. This demonstrates that the value of an optimal solution obtained with

a limited number of scenarios is often underestimated.

For any given test setting, we do not observe any change of the landing sequence length when increasing the number

of scenarios, while slight modifications of IAF target times occur. However, a significant increase is observed in terms

of second-stage cost (as the number of scenarios increases). We conclude that, under our test settings, increasing the

number of scenarios helps estimating more accurately the second-stage cost, and eventually adjusting IAF target times.
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Table 5 Results for instance 1 with wide IAF time windows and λ = 0

TW I Wide
nS σ Small Large

10

CPU (s) 0.3 1.9
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 826.3 ± 0.7 876.8 ± 12.4
Validation 840.2 929.7

50
CPU (s) 3.1 20.8
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 829.9 ± 1.1 894.2 ± 5.0
Validation 834.3 907.8

10
0

CPU (s) 7.5 52.5
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 830.8 ± 0.8 897.7 ± 2.9
Validation 833.7 906.9

20
0

CPU (s) 23.1 182.6
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 831.6 ± 0.6 899.4 ± 2.9
Validation 833.4 906.3

50
0

CPU (s) 122.3 1023.2
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 832.3 ± 0.2 902.3 ± 1.4
Validation 833.1 904.9

10
00

CPU (s) 472.7 3557.9
Status (Gap) Opt. (0.0%) 2 Opt. (2.9%)
v̄ ± I95% 832.3 ± 0.1 902.2 ± 0.8
Validation 833.0 904.7

Effect of time-window width at the IAF

For both values of the weighting parameter λ, it is clear that the problem with narrow time windows is easier to

solve to optimality than with wide time windows. With relatively wide time windows, too much flexibility is left to the

solver to find an optimal solution. More precisely, the maximum number of positions to which aircraft can be shifted

grows with the width of the time windows. The additional sequences offered by wide time windows may achieve better

values of the objective function, as it is the case when comparing Tables 3 and 5 (both with λ = 0) for example. In

fact, the minimum sequence length (not shown in the tables) found with narrow time windows (for any values for the

remaining test settings) is 887 seconds, while with wide time windows (for any values for the remaining test settings),

optimal sequences have a length of 826 seconds. This can be explained by looking closer at the first three aircraft in

instance 1, where the first and the third aircraft belong to the heavy turbulence category, while the second aircraft is a

medium-turbulence jet. Due to narrow time windows, the first two aircraft cannot be shifted, which results in the partial

sequence “H-M-H” whose length is 217 seconds. With wide time windows, the medium-turbulence-category aircraft

can be shifted to the first position so that the partial sequence becomes “M-H-H”, whose length is only 156 seconds.
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Fig. 4 Average objective-function values and validation scores (upper figure) and average CPU times (lower
figure) for instance 1 with wide IAF time windows, λ = 0, small uncertainty.

Better values of the objective function come at the expense of relatively longer solving times, especially under large

uncertainty. For example, while with narrow time windows and under large uncertainty SAA problems with nS = 500

scenarios can be solved in less than 3 minutes on average, more than 17 minutes on average are needed to solve the same

problems with wide time windows. On the other hand, in this example, using wide time windows improves the average

objective-function value by 13%, and more precisely the expected landing sequence length is shortened by 61 seconds,

compared to the case with narrow time windows.

In terms of second-stage cost, for nS = 1000 scenarios, we remark that, with wide IAF time windows, the average

second-stage cost is decreased when compared to the test with narrow IAF time windows. In fact, wide IAF time

windows allow more spaced IAF target times, which help absorbing the effect of uncertainty when revealed.

Finally, in our context, narrow time windows may be preferred to wide ones because they are likely to boost flight

on-time performance and to reduce fuel consumption.

Effect of uncertainty amplitude

Throughout all the results, as uncertainty gets larger, more time is needed to solve the problem. Concerning runs

with narrow time windows and different numbers of scenarios nS , the average CPU time may increase up to 2 times

when the uncertainty standard deviation is doubled. The increase factor is more important when we switch from narrow
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Fig. 5 Average objective-function values and validation scores (upper figure) and average CPU times (lower
figure) for instance 1 with wide IAF time windows, λ = 0, large uncertainty.

to wide time windows. For example, with wide time windows and nS = 500, regardless of the value of λ, average CPU

times increase by more than 8 times from small to large uncertainty.

Also, we observe that the gap between v̄ and the validation score, called “validation” gap, decreases less rapidly under

large uncertainty than under small uncertainty, as the number of scenarios increases. Consequently, we may conclude

that as the uncertainty increases a larger number of scenarios is needed to correctly represent the original problem.

Since computation times increase as uncertainty and the number of scenarios increase, real-time implementation of a

stochastic programming approach based on scenario sampling may be very challenging.

Tested values of uncertainty standard deviation reveal no effect of uncertainty amplitude on the landing sequence

length. However, larger uncertainty amplitudes are worthwhile to be tested. On the other hand, second-stage cost

significantly increases as uncertainty increases. Figure 6 shows the effect of uncertainty amplitude and IAF time

windows on the average second-stage cost, with λ = 0, nS = 1000 scenarios, and both narrow and large IAF time

windows.

Effect of minimizing the sum of target times at the IAF in the first stage

We observe that, when the weighted sum of target times at the IAF is also minimized in the first stage, average

solving times slightly increase. The increase factor is greater with wide time windows than with narrow ones. For
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Table 6 Results for instance 1 with wide IAF time windows and λ = 0.01

TW I Wide
nS σ Small Large

10

CPU (s) 0.7 2.6
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1637.4 ± 2.4 1691.6 ± 12.1
Validation 1657.6 1743.4

50
CPU (s) 5.0 23.9
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1643.9 ± 1.3 1709.1 ± 5.2
Validation 1648.9 1723.2

10
0

CPU (s) 13.8 65.3
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1645.0 ± 1.1 1712.5 ± 2.8
Validation 1647.9 1721.9

20
0

CPU (s) 33.9 217.7
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1646.0 ± 0.9 1714.3 ± 2.9
Validation 1647.8 1720.9

50
0

CPU (s) 164.9 1351.4
Status (Gap) Opt. (0.0%) Opt. (0.0%)
v̄ ± I95% 1646.5 ± 0.3 1717.1 ± 1.5
Validation 1647.3 1719.8

10
00

CPU (s) 661.6 Tilim
Status (Gap) Opt. (0.0%) Feas. (2.8%)
v̄ ± I95% 1646.7 ± 0.2 1717.2 ± 0.9
Validation 1647.3 1719.5

example, with wide time windows under small uncertainty and for nS = 1000 scenarios, the average solving time

increases by 40% when increasing λ from 0 to 0.01. Figure 7 summarizes the effect of uncertainty amplitude, IAF

time-window width, and λ on the average CPU time. In terms of objective-function values, large differences are obvious

between results with λ = 0 and those with λ = 0.01.

As expected, since the objective-function value with λ = 0.01 is increased by the term 0.01 ×
∑

i∈A xi (called

weighted total completion time), it is not directly comparable to the objective-function value with λ = 0. However,

we still can extract and compare separately the values of the three criteria: weighted total completion time, landing

sequence length and second-stage cost, displayed on Figure 8 for narrow time windows at the IAF and small uncertainty.

Although, the weighted total completion time is not included in the objective function with λ = 0, it was recomputed

separately after the optimization and plotted on Figure 8. Figure 8 reveals that minimizing the sum of target times at the

IAF in the first stage in addition to the landing sequence length has no effect on the obtained landing sequence length,

whereas it decreases the weighted total completion time, as expected. However, this decrease comes at the expense of

increasing the second-stage cost. Therefore, to save computing time and decrease the second-stage terminal-area impact
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Fig. 6 Effect of uncertainty amplitude and IAF time-window width on the second-stage cost, for λ = 0 and
nS = 1000.

Fig. 7 Effect of uncertainty amplitude, IAF time-window width, and λ on the average CPU time for nS = 200.

cost, we shall in the sequel focus only on minimizing the landing sequence length in the first stage (λ = 0).

Table 7 Scenario-based approach results: instance 1, narrow IAF time windows, λ = 0

σ Small Large
nS 400 600
nR 1 1

CPU (s) 47.7 (+ 12.8) 228.2 (+ 13.3)
v? 940.7 1040.3
Validation 941.7 1043.2
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Fig. 8 Average landing sequence length, weighted total completion time and second-stage cost for instance 1,
narrow IAF time windows, small uncertainty and λ = 0 and 0.01.

IV.D Comparison of real-time solution methods: scenario-based versus replication-based approaches

Based on the numerical study reported in the previous subsection, we retain the following two settings: narrow time

windows at the IAF and minimizing only the landing sequence length in the first stage (λ = 0). Uncertainty is expected

to be smaller in a shorter time horizon, as shown in [1, 11]. This leads us to consider, in a real-time context, a small

CPU time budget for optimization under small uncertainty, and a relatively larger time budget under large uncertainty.

More precisely, we consider 1 and 5 minutes as time budgets for small and large uncertainty, respectively.

Table 8 Replication-based approach results: instance 1, narrow IAF time windows, λ = 0, small uncertainty

nR solution min-Obj min-Val
CPU (s) 15.8 (+ 62.8)

5 v? 936.7 937.3
Validation 942.6 942.3
CPU (s) 31.7 (+ 127.3)

10 v? 936.7 938.1
Validation 942.6 941.9
CPU (s) 62.8 (+ 247.5)

20 v? 931.3 938.3
Validation 942.5 941.5
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Table 9 Replication-based approach results: instance 1, narrow IAF time windows, λ = 0, large uncertainty

nR solution min-Obj min-Val
CPU (s) 91.0 (+ 63.7)

5 v? 1032.7 1036.3
Validation 1043.7 1043.6
CPU (s) 185.2 (+ 128.3)

10 v? 1031.2 1031.2
Validation 1043.5 1043.5
CPU (s) 281.8 (+ 194.4)

15 v? 1029.1 1044.6
Validation 1045.2 1043.1

Fig. 9 Solution characteristics from replication-based approach under small uncertainty
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In this subsection, we compare scenario-based and replication-based approaches, introduced in Section III, to solve

the SAA problem. Given the average CPLEX solving time reported in Subsection IV.C, we select nS = 100 scenarios

for the replication-based approach under small uncertainty and nS = 200 scenarios under large uncertainty, while the

number of replications is adjusted to fit the time budget. In the scenario-based approach, only one SAA problem is solved

with a relatively large number of scenarios ( 400 and 600 scenarios under small and large uncertainty, respectively).

On the one hand, a scenario-based approach naturally returns a unique solution. On the other hand, at the end of the

solving process using a replication-based approach, we are left with a pool of solutions. To select a unique solution

from this pool, we may either directly choose the minimum-objective-function-value solution (called min-Obj) as in

[13], or re-evaluate all distinct solutions from the pool on a validation set and choose the minimum-validation-score

solution (called min-Val) as in [11]. Results of the replication-based approach for both small and large uncertainties
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Fig. 10 Solution characteristics from replication-based approach under large uncertainty
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are summarized in Tables 8 and 9. Results of the scenario-based approach for both small and large uncertainty are

summarized in Table 7. In these Tables, “CPU” stands for the solving time from CPLEX expressed in seconds, while the

added time between brackets stands for the total validation time (for one solution from the scenario-based approach and

for all solutions from the replication-based approach). For each retained solution, v? represents the objective-function

value, while “Validation” refers to its out-of-sample validation score, computed over 10, 000 scenarios. Figures 9 and

10 plot validation scores and computing times (solving and validation) for replication-based solutions (min-Obj and

min-Val) in terms of the number of replications, under small and large uncertainty respectively. The performance of the

scenario-based solution is shown in black thick line.

Regardless the uncertainty amplitude and the number of replications, the min-Obj solution clearly performs worse

than the min-Val and the scenario-based solutions, as expected. Under small uncertainty, the scenario-based approach

can be applied with a large number of scenarios (nS = 400) within the time budget of 1 minute. The min-Val solution

from the replication-based approach for nR = 20 replications outperforms the scenario-based solution. However, it can

only be obtained with around 5 minutes computing time. Consequently, if the time budget is limited to 1 minute, the

scenario-based approach is recommended. Similar observations can be made for the case under large uncertainty.

As a conclusion, regardless the uncertainty amplitude, a fast solution method should be built on a scenario-based

approach using a large enough number of scenarios, subject to the time budget. If a fast out-of-sample validation

procedure is available, then any replication-based approach should follow the validation-score criterion to select a

solution from the solution pool, while the minimum-objective-value-function criterion should be avoided.
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IV.E Results for instance 2

As narrow time windows at the IAF and λ = 0 were identified as a suitable setting for instance 1 (n =10 aircraft),

we keep them for our tests on instance 2 (n =14 aircraft). For each uncertainty amplitude, small and large, we solve a

single SAA problem with 10 minutes as a time limit for CPLEX. We use 100 scenarios for small uncertainty and 200

scenarios for large uncertainty. Out-of-sample validation is performed using 10,000 scenarios. Results under small and

large uncertainties, given in Table 10, show that instance 2 is much harder to solve than instance 1. Although CPLEX

is unable to prove optimality within 10 minutes for 200 scenarios under large uncertainty, validation scores are not

dramatically larger than the objective-function values. Nevertheless, an efficient solving algorithm is clearly needed to

handle large numbers of aircraft.

Table 10 Scenario-based approach results: instance 2, narrow IAF time windows, and λ = 0

σ Small Large
nS 100 200

CPU (s) 444.1 Tilim
Status (Gap) Opt. (0.0%) Feas. (19.9%)
v? 1292.3 1513.2
Validation 1297.6 1519.6

IV.F Effect on FCFS policy performance in the terminal area

In this subsection, we consider a complete sequencing-and-scheduling process of aircraft arrivals from the time they

are captured (two to three hours before landing) to the time they land. We consider two sequencing-and-scheduling

points: the IAF, and the runway threshold. Firstly, captured aircraft are sequenced and scheduled for the IAF according

to some policy, called the pre-IAF sequencing-and-scheduling policy. Due to uncertainties, actual aircraft IAF times are

different from the IAF target times. Subsequently, when aircraft actually arrive at the IAF, some other policy is applied in

order to sequence and schedule approaching aircraft to the runway threshold. Here, we assume that ATCs in the terminal

area sequence aircraft for landing in the same order in which they actually pass over the IAF. This air traffic control policy

will be referred to as FCFS policy in the terminal area. We aim at evaluating the effect of our retained solutions from

fast solution methods, reported in Table 7, on the expected performance of the FCFS policy in the terminal area. For that

purpose, we compare the expected performance of the FCFS policy in the terminal area in different upstream situations

i.e, when different pre-IAF sequencing-and-scheduling policies are applied. The baseline upstream situation consists

in scheduling aircraft at the IAF in a FCFS fashion according to their planned times at the IAF. The minimum time

separation enforced over the IAF is simply SI (72 seconds). This baseline pre-IAF sequencing-and-scheduling policy

is called the pre-IAF FCFS policy. Enforcing a minimum separation between aircraft that is larger than operational

requirements is a common technique to hedge against uncertainty [9]. When the pre-IAF FCFS policy is applied with an
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enlarged minimum separation over the IAF, we call it a pre-IAF buffered FCFS policy. Since the minimum separation

over the IAF is commonly expressed in NM, we consider two values for the distance buffer, 1 NM and 2 NM, resulting

in time buffers of 14 and 28 seconds respectively. The two resulting pre-IAF sequencing-and-scheduling policies are

called pre-IAF 1-buffered FCFS policy and pre-IAF 2-buffered FCFS policy. These last two policies define the second

and the third upstream situations respectively. The fourth upstream situation relies on our stochastic-optimization

approach to pre-sequence and pre-schedule aircraft over the IAF. The four pre-IAF policies will be noted “FCFS-0”,

“FCFS-1”, “FCFS-2”, and “StochOpt” respectively. For each upstream situation, 10,000 scenarios are simulated and

various performance measures of the FCFS policy in the terminal area, described below, are computed.

Performance measures:

• Average number of conflicts at the IAF, noted “IAF conflicts”, computed as the average number of separation

violations over the IAF between any pair of aircraft

• Average landing rate per hour, noted “landing rate”

• Average last landing time, noted “last landing”

• Average total time-to-lose in the terminal area, noted “TMA total time-to-lose”, the time-to-lose for a single

aircraft in the terminal area being computed as the (positive) deviation from the aircraft target landing time with

respect to its unconstrained landing time

• Average maximum time-to-lose in the terminal area, noted “TMA max time-to-lose”

Tables 11 and 12 report values of these performance measures respectively for instance 1 and a compressed version

of instance 1, under the four upstream situations. The modified version of instance 1 was obtained by compressing the

planned IAF schedule of instance 1 by a factor two. Hence, the time span over the IAF is contracted from 6:00 - 6:20 AM

to 6:00 - 6:10 AM, while the number of aircraft, n = 10, is conserved. We computed our solutions for the compressed

version of instance 1 using nS = 100 scenarios for both small and large uncertainties. Solving times are respectively

59.1 and 71.6 seconds. The target sequence and IAF target times, for each pre-IAF policy, are illustrated in Figures 11

and 12 for the original instance 1 and its compressed version, respectively. In each of the two figures, “StochOpt-30” and

“StochOpt-60” refer to our stochastic programming policy under small and large uncertainty respectively. IAF target

times of a given aircraft that has the same position in the sequence across the different pre-IAF policies are linked with a

continuous line, while dashed lines are used for aircraft whose position changes at least under one pre-IAF policy.

In moderate-density traffic, as in instance 1 (Table 11), solutions from our stochastic-optimization approach decrease

the expected number of conflicts over the IAF, e.g, down to −70% under small uncertainty, and the time-to-lose within

the terminal area, e.g, down to −86% in terms of total time-to-lose in the terminal area under small uncertainty, compared

to the pre-IAF FCFS policy. On the other hand, average landing rates and last landing times using our approach are
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Table 11 FCFS performance in the terminal area: instance 1 with narrow IAF time windows

TMA time-to-lose
uncertainty pre-IAF policy IAF conflicts landing rate last landing total max

Small

FCFS - 0 3.1 26.9 06:33:29 8 min 23 s 2 min 35 s
FCFS - 1 2.2 26.8 06:33:35 6 min 01 s 2 min 01 s
FCFS - 2 1.5 26.6 06:33:43 4 min 09 s 1 min 35 s
StochOpt 0.9 25.0 06:34:13 1 min 08 s 0 min 41 s

Large

FCFS - 0 3.6 26.9 06:33:42 9 min 02 s 2 min 48 s
FCFS - 1 3.0 26.6 06:33:55 7 min 25 s 2 min 24 s
FCFS - 2 2.5 26.3 06:34:11 6 min 11 s 2 min 07 s
StochOpt 1.8 24.7 06:34:39 2 min 47 s 1 min 22 s

Table 12 FCFS performance in the terminal area: compressed instance 1 with narrow IAF time windows

TMA time-to-lose
uncertainty pre-IAF policy IAF conflicts landing rate last landing total max

Small

FCFS - 0 3.9 34.8 06:28:24 16 min 09 s 4 min 20 s
FCFS - 1 2.7 34.6 06:28:32 10 min 24 s 2 min 51 s
FCFS - 2 1.8 33.9 06:28:52 5 min 35 s 1 min 44 s
StochOpt 2.9 37.5 06:26:10 5 min 10 s 1 min 24 s

Large

FCFS - 0 5.0 34.6 06:28:42 18 min 05 s 4 min 27 s
FCFS - 1 3.9 34.1 06:28:57 12 min 51 s 3 min 14 s
FCFS - 2 3.2 33.2 06:29:25 8 min 31 s 2 min 23 s
StochOpt 2.8 37.5 06:26:10 5 min 12 s 1 min 24 s

slightly worse than the pre-IAF FCFS policy. This may be due to the fact that our stochastically-optimized schedules at

the IAF are too sparse (see Figure 11). With regard to the two pre-IAF buffered FCFS policies with 1 NM or 2 NM, they

can be an interesting compromise in moderate traffic since they perform close to our approach while impacting less the

landing rate and the average last landing time.

In high-density traffic, as in the compressed instance 1 (Table 12), our stochastic sequencing-and-scheduling policy

outperforms the pre-IAF FCFS policy almost in all measures. In terms of expected number of IAF conflicts, under large

uncertainty, 44% less separation violations are likely to occur on average compared to the unbuffered pre-IAF FCFS

policy. The time-to-lose inside the terminal area dramatically decreases as well, e.g, down to −71% in terms of total

time-to-lose in the terminal area under large uncertainty. Also, the average last landing time is earlier by more than 2

minutes, which increases the average landing rate, e.g, by 7.7% under large uncertainty. In high-density traffic, pre-IAF

buffered FCFS policies may efficiently decrease the expected number of IAF conflicts and the time-to-lose inside the
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Fig. 11 IAF target times and sequences for instance 1 with different pre-IAF policies.

terminal area. However, average landing rates slightly decline, most likely because of too sparse IAF target times (due

to the enlarged IAF separation requirements).

To study further the effect of uncertainty, we test our approach with a standard deviation of σ = 200 seconds.

Remark that under this “very large” uncertainty, more than 93% of random IAF time deviations fall within ±5 minutes

and more than 99% within ±10 minutes. Results in moderate-density traffic (instance 1) confirm the trend observed

under small and large uncertainties. In high-density traffic (compressed instance 1), average landing rates are maintained

compared to the unbuffered pre-IAF FCFS policy, while significant improvements are made on all of the remaining

performance measures.

Finally, recall that a single tour in a holding stack is usually flown in 4 minutes. Measures of time-to-lose in the

terminal area, especially in high-density traffic, show that our stochastic-optimization approach may avoid resorting

to such holding stacks. Under a FCFS policy in the terminal area, we may conclude that our optimization approach

over the IAF successfully transforms a circular holding (holding patterns at the entry of the terminal area) into a linear

holding applied when aircraft are still a few hours away from landing, while increasing the landing rate, as expected

from an efficient E-AMAN.

V Conclusions
In this paper, we have presented a computational study on the problem of sequencing and scheduling arrivals

over a single IAF under uncertain times at the IAF. Such a problem is relevant due to the foreseen extension of

AMAN operational horizon up to a few hours before landing. We relied on a two-stage stochastic programming

approach exploiting CPLEX solver. The SAA method was used to make the problem tractable and to find satisfying

approximate solutions. The effect of different problem characteristics (narrow vs. wide time windows at the IAF, small
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Fig. 12 IAF target times and sequences for the compressed version of instance 1 with different pre-IAF policies.

vs. large uncertainty) as well as different optimization parameters (first-stage objective function, number of second-stage

scenarios) were analyzed in order to evaluate the viability of our approach. Scenario-based and replication-based

approaches were tested and compared as potential solution methods for real-time implementation. Realistic instances

involving 10 and 14 arrivals on CDG were used as a case study. For 10 aircraft with narrow time windows at the IAF,

our approach returns good-quality solutions in a short solving time (less than 1 minute for small uncertainty and less

than 5 minutes for large uncertainty). Simulation-based validation experiments show that our retained solutions can

decrease the number of expected conflicts over the IAF by more than 70% and the total time-to-lose inside the terminal

area by 86% over a FCFS policy, at the expense of a slight decrease of the landing rate in moderate-density traffic under

small uncertainty. In high-density traffic, besides alleviating traffic complexity near the terminal area, our solutions

enhance the expected landing rate by more than 7% under large uncertainty.
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