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Abstract: This paper addresses the resolution of combinatorial optimization problems presenting some kind of recurrent
structure, coupled with machine learning techniques. Stemming from the assumption that such recurrent
problems are the realization of an unknown generative probabilistic model, data is collected from previous
resolutions of such problems and used to train a supervised learning model for multi-label classification. This
model is exploited to predict a subset of decision variables to be set heuristically to a certain reference value,
thus becoming fixed parameters in the original problem. The remaining variables then form a smaller sub-
problem whose solution, while not guaranteed to be optimal for the original problem, can be obtained faster,
offering an advantageous tool for tackling time-sensitive tasks.

1 INTRODUCTION

In combinatorial optimization, some problems are re-
current in nature and similar instances need to be
solved repeatedly over time, with some modifications
in the model parameters. We aim at extracting knowl-
edge from the solutions of past instances and learn
how to speed-up the resolution process of future in-
stances. When solving a mixed integer linear pro-
gramming (MILP) problem, for example, one can be
faced with a non-negligible computational task. For
large instances, resolution methods based on standard
Branch-and-Bound (BB) (Schrijver, 1998) techniques
or metaheuristics such as genetic algorithms (GA)
may fail to deliver a good solution within a restricted
time window.

We start by assuming the existence of a reference
model, that can be thought of as a system under nomi-
nal values, and a corresponding reference optimal so-
lution. If a variation in the reference problem is de-
tected, we may have interest in changing the value of
some decision variables. What if we could have an
oracle telling us exactly what variable needs to have
its value changed, with respect to the reference prob-
lem? We try to approximate such an oracle via ma-
chine learning. We proceed predicting which of the
parts of the reference solution can be left unchanged
and which others need to be re-optimized. We obtain

a sub-problem that can deliver a good, approximate
solution in a fraction of the time necessary to solve
the full instance.

We do not aim at predicting the assignment of de-
cision variables directly, but rather at providing some
hints to the solver by imposing additional constraints
on the search space. The decision variables of the
full problem P, individually or in clusters, are seen as
the targets in a classification problem whose outcome
would be the choice of whether to exclude them or not
from the resolution of the new instance of the model.
We thus define the subproblem SP as what is left of P
after a certain number of its variables are selected and
fixed to a reference value, also referred to as blocked
variables. These variables become parameters of SP
and thus do not affect its resolution, being invisible to
the solver. The variable selection can be framed as a
multi-label classification (MLC) problem, where one
wants to associate a set of labels (variables) from a set
of available choices, to an observation P. To accom-
plish this, we introduce the SuSPen meta-algorithm,
a procedure that uses MLC to generate sub-problems
via a select-and-block step.

1.1 Unit Commitment Example

To better illustrate our framework, let us introduce a
practical example. In the context of energy produc-



tion, the operator has to choose how to satisfy the
electricity demand with the technology at their dis-
posal. They must decide, among other things, which
power units to activate, how to set the output levels
for each generator or decide whether it is worth to
overproduce and export energy or under-produce and
rely on other operators to buy energy at a better price.
As the network of units can be assumed to remain
mostly unchanged from one period to another, this
problem, also known as the unit-commitment prob-
lem (UC) (Padhy, 2004), requires the resolution of
similar instances over time: to minimize the power
generation costs under demand satisfaction and op-
erational constraints like network capacity or techni-
cal and regulatory limitations. This can be cast as a
problem of MILP optimization (Carrión and Arroyo,
2006) where each daily instance can be considered as
a random variation on the parameters of the model
(demand, scheduled/unscheduled maintenance, etc.).

We consider a reference daily production problem
Pre f . All daily instances P to be solved are varia-
tions of the coefficients defining Pre f , due to, for ex-
ample, some deviations from the expected national or
regional energy demand constraints. Solving these in-
stances would require the operator to re-run the opti-
mization performed on Pre f which, if given a small
notice, may not be achievable within an limited time
window.

The idea we develop is to apply a machine learn-
ing (ML) procedure that maps a random event that
perturbates Pre f to a subset of variables more likely
to be affected by the variation. We will assume the
solution x?re f of Pre f to be feasible for P. Some of the
values will be set heuristically as in the original plan
x?re f while the remaining problem is fed to a solver.
This is what we refer to as sub-problem generation.

1.2 Our Contribution

We propose an approach based on MLC algorithms
and the meta-algorithm SuSPen for blocking decision
variables. After some of the variables in a problem
are blocked to a certain value, the remaining prob-
lem is processed via a standard solver as if it were
a black box. With our work, we want to provide a
way to speed up the resolution of hard combinatorial
problems independently of the technology employed
to solve them, be it an exact or approximate method.

2 RELATED WORK

Combinatorial optimization is a fundamental tool in
many fields so it comes at no surprise that contribu-

tions originate from the Machine Learning, Artificial
Intelligence, or Operations Research communities.

Among the first works explicitly mentioning the
concept of combining ML and combinatorial opti-
mization (CO) is that of (Zupanič, 1999), who pro-
posed to couple constraint logic programming with
BB algorithms to obtain value suggestions for deci-
sion variables. One can learn from data how to gen-
erate additional constraints to the original problem,
restricting the search space and averaging faster reso-
lution time at the cost of losing the optimality guaran-
tee.

The application of ML to solve CO problems has
recently seen a surge in interest. Promising results
(Kruber et al., 2017) were obtained by learning if
and which decomposition method is to be applied to
MILP problems, a task that is usually carried out ad-
hoc with expert domain knowledge for each prob-
lem (Vanderbeck and Wolsey, 2010). The authors
attempt to automate the task of decomposition iden-
tification via classification algorithms, determining
whether a decomposition is worth doing and, if that
is the case, they then select the most appropriate al-
gorithm. On the same line, recent research (Basso
et al., 2017) dealt with clarifying whether such an ap-
proach makes sense, that is, whether decomposition
can be determined by examining the static properties
of a MILP instance, such as the number of continuous
and/or binary and/or integer variables, the number of
(in)equality constraints or the number of decomposi-
tion blocks and their characteristics. In the case of
Mixed Integer Quadratic Programming (MIQP), the
available solvers offer the user the possibility to lin-
earize the problem. This apparently simple decision
problem however, is inherently hard and no method
exist to take this decision rapidly. While not defini-
tive, their conclusion is that, on average, this ap-
proach can yield good results and is well founded. In
(Bonami et al., 2018) the authors deploy ML classi-
fication to build a system taking such decisions auto-
matically, adding a prediction step to resolution via
the CPLEX solver, obtaining promising results.

In (Fischetti and Fraccaro, 2018) we can find
an interesting potential real-world application, in the
case of the wind park layout problem. Because of
complex interactions among the wind turbines, many
different configurations would have to be simulated
and evaluated, which would be considerably compu-
tationally expensive. As in practice an extensive com-
putational simulation may not be viable, the authors
tried to approximate these optimization Via ML, pre-
dicting the output of a series of unseen layouts with-
out going thourgh the optimization process, thanks to
a dataset built a priori. The work of (Larsen et al.,



2018) is of similar nature. Where the problem of
choosing the optimal load planning for containers on
freight trains cannot be solved online because of time
constraints and insufficient information about the in-
stance, a set of offline cases can be collected and ex-
ploited to obtain a decription of the solution of a par-
ticular instance, at an aggregate level. Such descrip-
tion, the authors affirm, can provide meaningful in-
sights to decision makers in a real-time contexts.

The most prolific field so far has been that of
learning to branch in BB. While branching rules were
proposed in the past, such as strong branching, pseu-
docost branching or hybrid branching (Achterberg
et al., 2005), these involved no use of learned rules,
but rather relied on a set of reasonably good assump-
tions. Some of the most promising results (Alvarez
et al., 2017; Khalil et al., 2016) move towards the su-
pervised approximation of branching rules within the
BB procedure. Imitation learning (He et al., 2014),
worked on finding a node ordering to guide the ex-
ploration of promising branches in the BB tree. A re-
cent article by (Lodi and Zarpellon, 2017) provides a
thorough overview on the state-of-the-art of machine
learning for branching rules.

Departing from the exact resolutions based on
BB, (Dai et al., 2017) propose a greedy algorithm
to solve or approximate hard combinatorial problems
over graphs, based on a reinforcement learning (RL)
paradigm. They are, to the best of our knowledge, the
only authors so far focusing explicitly on recurrent
combinatorial optimization problems.

The main methodological difference between our
approach and theirs is the integration of the learned
rules in the solver: while they build a greedy algo-
rithm around their learning structure, we build the
learning around the solver (BB, metaheuristics, etc.).

In the field of energy production, (Cornelusse
et al., 2009) has proposed a method for reacting to
deviations in forecasted electricity demand, modeled
as a random perturbation of some base case. After
running simulations on a set of possible scenarios,
the results of re-optimization of such scenarios will
form a database to be exploited by the learning algo-
rithm, mapping the current state of the system to a set
of time-series describing the adjustments to be oper-
ated on each generating unit to respond to the mutated
conditions. The problem of responding quickly to a
change in the parameters of a model (energy demand)
was addressed by (Rachelson et al., 2010) by learning
from resolutions of problems within the same family.
The aim is to infer the values of some binary variables
in a MILP, thus reducing the size of the problem to be
solved, via a so-called boolean variable assignment
method.

Unlike their approach, we do not work towards
finding an assignment for a decision variable via ML,
but rather we aim at localizing uninteresting variables
in a new instance, the ones that we think will be un-
affected by the perturbation in our reference prob-
lem Pre f . Once the interesting zones of our search
space are found, we block the non relevant ones to
some heuristic value and let the solver optimize the
restricted problem.

(Loubière et al., 2017) have worked to integrate
sensitivity analysis (Saltelli et al., 2008) into the res-
olution of nonlinear continuous optimization. After
successfully computing a weight for each decision
variable and ranking their influence, this piece of in-
formation is integrated into a metaheuristic, improv-
ing the overall performance. We point out the sim-
ilarities between their approach and ML-based ones,
not in the algorithms but rather in the philosophy of
injecting prior knowledge into the resolution of opti-
mization problems.

3 MULTI-LABEL
CLASSIFICATION

We will provide a brief introduction to the concepts of
multi-label classification (MLC), the ML paradigm of
choice in our hybrid approach.

Given a set of targets L , referred to as labels,
MLC algorithms aim at mapping elements of a fea-
ture space X to a subset of L , as h : X −→ P (L). The
two typical approaches for such problems are known
as binary relevance (BR) and label powerset (LP). The
first considers each label in L as a binary classifi-
cation problem, transforming the main problem into
hi : X −→ li, li ∈ {0,1}, i = 1, ..., |L |. The latter trans-
forms a problem of MLC into one of multiclass clas-
sification, mapping elements x ∈ X directly to sub-
sets of labels s ∈ P (L). Its practical use is limited to
cases with only a few labels because of the exponen-
tial growth of the cardinality of P (L). In the litera-
ture many variations on these two approaches exist,
where different classifiers are explored (support vec-
tor machines, classification trees, etc.). The funda-
mental concepts, variations, recent trends and state-
of-the-art of MLC have been the object of a recent
review by (Zhang and Zhou, 2014). Among the most
interesting and effective models we point out to the
work on classifiers chains (CC) by (Read et al., 2011)
and (Dembczynski et al., 2010) and on the RAndom
k-labELsets (RAkEL) algorithm by (Tsoumakas and
Vlahavas, 2007), respectively a variation on BR and
on LP. Departing from these approaches is the work of
(Mossina and Rachelson, 2017), who proposed an ex-



tension of naive Bayes classification (NBC) into the
domain of MLC that can handle problems of high
cardinality in the feature and label space L ; we will
adopt this algorithm for our MLC tasks. Predictions
are made following a two-step procedure, first by es-
timating the size of the target vector, then by incre-
mentally filling up the vector conditioning on the pre-
vious elements included in the vector (see Algorithm
1), employing a multiclass naive Bayes classifier. For
problems of many labels, one thus does not need to
train a model for each label, as in BR for instance.

Algorithm 1: NaiBX, Prediction Step.

predict subset(xnew):
m̂← predict size(xnew)
ypred ← /0
while length(ypred)≤ m̂ do

ypred ← ypred ∪
predict label(xnew, m̂,ypred)

end
return ypred

predict size(xnew):
m̂← argmax

d∈{0,1,...,L}
P(md)×∏n

i=1P(Xi | md)

return m̂

predict label(xnew, m̂,{y1,y2, ...,yi}):
yi+1← argmax

yi+1∈{L}
P(yi+1) ×P(m̂ | yi+1)

×∏n
i=1P(xi | yi+1)

×∏i
j=1P(y j | yi+1)

return {y1,y2, ...,yi}∪{yi+1}

xnew is the features vector of a new observation; n is
the number of features;

L is number of labels available.

Combinatorial optimization can suffer from problems
in symmetry, that is, many optimal solutions exist and
they cannot be easily spotted. Generally, when doing
MLC, there is only one correct label vector and we
want to ideally predict exactly each one its elements.
In our context, this is less of a concern. We know
that there could possibly more than one correct vector
of labels, depending on the desired SP size, because
of this symmetry issue. Not only is this not a major
problem, but it would guide the search in a specific
direction, preventing us from spending computation
time in breaking symmetries.

4 COMBINATORIAL
OPTIMIZATION

In this section we discuss the formulation of MILP
problems and present the model for our case study.
We present an application to the domain of mathe-
matical programming (MILP) solved via BB. The UC
case introduced in Section 1.1 will serve as a bench-
mark for MILP, while for the GA we present the well
known problem of the traveling salesman (TSP).

4.1 Mixed Integer Linear Programming
Modeling

MILP are defined simply as linear programs (LP)
with integrality constraints on some of the decision
variables, which include binary variables as a spe-
cial case. These constraints transform linear programs
from efficiently solvable problems (polynomial time)
into hard combinatorial ones.
Definition 1 Mixed Integer Linear Program (MILP)

min
xR,xI

ct
RxR + ct

IxI

subject to ARxR +AIxI = b
xR ∈ RnR

+ ;xI ∈ NnI ;

where [cR,cI ] = c ∈ RnR+nI , [AR,AI ] = A ∈
Rm×(nR+nI), b ∈ Rm with nR and nI respectively the
number of real and integer variables, and m the num-
ber of constraints.

MILP is a flexible modeling tool and finds ap-
plications in a wide variety of problems. For UC,
many refined MILP formulation are available in the
literature (Padhy, 2004; Carrión and Arroyo, 2006).
We adapted the energy production model proposed by
(Williams, 2013) and developed an instance genera-
tor. One of the key factors behind our work is that in
the industry, recurrent problems are solved continu-
ously and great amounts of data are readily available.

4.2 Genetic Algorithms

For some classes of problems, specialized formula-
tions exist that guarantee very fast resolution times.
When no special formulations are available and exact
methods are not efficient, heuristics and randomized
search heuristics (RSH) (Auger and Doerr, 2011) can
prove to be very competitive methods. Genetic algo-
rithms (GA) are a form of randomized exploration of
the solution space of a combinatorial problem and can
handle linear or nonlinear objective functions; many
variations and applications are available in the litera-
ture (Gendreau and Potvin, 2010).



We apply this to the traveling salesman problem
(TSP), one of the most studied problems in combina-
torial optimization (Dantzig et al., 1954) (Applegate
et al., 2011). A desirable property of this problem is
the existence of the Concorde TSP solver (Applegate
et al., 2006), the state-of-the-art solver that has been
capable of solving instances of up to tens of thousands
of nodes. An instance generated by a completely con-
nected 3D graph of 500 cities can be solved in under 7
seconds on a standard laptop computer. We can easily
compute exact solutions for our benchmarks instances
to better evaluate our experiments.

5 THE SuSPen
META-ALGORITHM

Given a problem P to solve and its reference problem
Pre f , we want to detect the differences between the
two and detect which parts of the reference solution
are more likely to be affected by these differences.
The parts predicted to be affected will be run through
the optimization process while those thought to be un-
affected will be left at their reference value. The de-
cision variables xB not affected by the optimization
process will be blocked while the remaining ones xSP
will form the sub-problem SP fed to the solver (see
Meta-algorithm 2).

Meta-Algorithm 2: SuSPen, Supervised Learning for
Sub-problem Generation

(1) Simulate or collect data from past
resolutions

(2) Train a MLC classification model on data
from (1)

(3) For a new Problem P’:
(3.1) Predict {xB,xSP}
(3.2) Generate SP
(3.3) Solve SP via external solver

The result of this resolution is not guaranteed to
be optimal, although it is highly likely to be of faster
resolution (see Section VII). This approach is interest-
ing, for example, in problems that need to be solved
repeatedly under random perturbations of the param-
eters, where one is expected to react promptly to
changes in a system. In UC, for example, the search
for a feasible solution is hardly ever the core of the
problem, as the network of units itself is dimensioned
specifically to respond to the demand of the territory
on which it operates and one can expect to have re-
dundancy built-in into the grid. The focus, thus, is
more on finding a way to react promptly to unex-
pected problems and limit losses as much as possible.

While most of our efforts and the cases reported in the
literature have been so far focused on exact methods,
working directly with decision variable assignments
allows to easily switch from one optimization method
to another, while retaining the machine-driven explo-
ration of the search space. When applying our hy-
brid paradigm, the classification and the optimization
steps are carried out by independent pieces of soft-
ware integrated together, allowing the user to take ad-
vantage of state-of-the-art solvers and the computa-
tional speed-up granted by the MLC step.

5.1 Building the Classification Model

In our approach, we assume it is possible to ac-
cess some historical or simulated data on instances
of which a problem P is related to. We furthermore
assume a reference problem Pre f exists, which will
serve as the basis to heuristically set the values of the
blocked variables.

5.1.1 Feature and Label Engineering

The MLC algorithm will need a representation of our
problem in terms of features and labels, depending on
the instance and the resolution method, and each fam-
ily of problems requires specific features and labels
engineering. In the case of UC, as in our example, if
the only source of variation of interest is the demand,
one could use directly the difference between the ref-
erence demand and the observed demand as predic-
tors in the MLC model. For the labels, one could
use directly binary decision variables as the targets
of MLC, thus predicting whether some of the labels
could need changing value. For problems with many
thousands of variables, a variables-to-labels associa-
tion can be too hard to handle. We can, however, think
of labels as clusters of decision variables with some
meaningful structure behind, as for instance with de-
cision variables related to a particular unit in the UC
case.

5.2 Generating the Sub-problem: How
to Block Variables

Once it has been decided how to formulate the prob-
lem, the classification algorithm will be trained on the
historical data and employed to predict the set of vari-
ables to be blocked. Blocking variables in our ap-
proach corresponds to mimicking an expert and ex-
ploit some knowledge of the problem to solve it. One
could think of SuSPen as an evaluation tool for ex-
pert supervised blocking, that is, to compare the per-
formance of decisions are taken by a human agent to



those where an automated (ML) procedure is adopted.

5.2.1 Blocking Variables in Mathematical
Programming

Blocking a variable corresponds to turning it into a
fixed parameter of the model. In our implementation,
for instance, we achieved this by adding constraints
of the type x j :=Valuere f

j to the original problem.
Let us consider for example binary decision vari-

ables as the targets of our supervised procedure.
Blocking x j and xk will imply retrieving their val-
ues from the solution x?re f to the reference prob-
lem Pre f and imposing them as new constraints, say
x j := xre f

j = 1 and xk := xre f
k = 0. In this case

we would end up adding the constant term c jx j +
ckxk = c j × 1+ ck× 0 to the objective function, z =
∑i6={ j,k}, j=1..p ciXi + c j. The same applies for all the
occurences of x j and xk in the constraints, where the
columns [A j,Ak] of the coefficient matrix A will be
moved to the right-hand-side and considered as the
constants A jx j and Akxk.

Generalizing, denoting by xB the selection of vari-
ables to be blocked and by xSP the variables to be
let free to form our sub-problem, we observe that
xSP ∪ xB = xR ∪ xI . What was seen above will apply
to all the elements of xB and we thus get:

min
xSP

ct
SP xSP + ct

BxB

subject to ASPxSP = b−ABxB,

In the end, to accomplish blocking variables, we
only need to be able to either assign an arbitrary value
to the specified blocked variables or to add trivial con-
straints to the problem.

5.2.2 Blocking Variables in Metaheuristics

Unlike in mathematical programming, genetic algo-
rithms and metaheuristics operate as a black-box,
handling directly a vector of solutions and an objec-
tive function to be evaluated and optimized. In this
case, we will simply fix some of the decision variables
via dummy variables, by encoding segments of a TSP
path as dummy nodes to be treated by the algorithm
as a regular node.

6 EXPERIMENTS

In this section we describe our framework for the nu-
merical experiments carried out, including the sources
of data and the feature and label engineering for
MLC.

Reference:
Dre f → Pre f

u,t
(...)

(...)

Pbi(∆Di)→ Pi
u,t

∆Di = Di−Dre f

{X4, . . .}

{. . .}

{. . .}

xi = changed value

Figure 1: Processing of historical UC data to generate a
training dataset.

6.1 Unit Commitment Experiments

We set our reference demand values on a randomly
selected calendar day from publicly available demand
data1, for the year 2016. The focus is on the variations
of the demand D at the 48 time periods of the day,
all the other parameters are held fixed. The labels in
our MLC problem were the 1632 binary variables of
our MILP formulation, letting free the remaining 576
integer variables and 384 real variables.

We then computed the features (∆D j in Figure 1)
as the difference between the reference demand Dre f

and perturbations on it. The MLC step yielded the
subset XSP of binary labels affected by the random
perturbation, that is, hMLC : ∆D→ XSP ∈ {0,1}1632.
XSP are to be let free in the SP resolution, while all
the other binary variables will be blocked to the values
found when solving Pre f . To test our meta-algorithm,
we generated 10 perturbed instances on the reference
demand. The 10 instances yielded 10 full problems
{P}10

i=1. After running the MLC we produce their rel-
ative sub-problems {SP}10

i=1.
The 10 instances were solved in their full formula-

tion P, using the solvers CPLEX2 and the open source
Coin-OR CBC3 (Forrest, 2012). We then generated
the 10 sub-problems SP associated to each new in-
stance and compared the results in terms of relative
resolution times and objective values. The results are
reported in Table 1.

We observed the SP generation caused a loss of
about 2% in terms of objective function, that is, at the
end of the minimization the objective value was on av-
erage 2.24% greater (i.e. worse) then the true optimal
value. As for resolution times, we observed average
speed-ups respectively in the order of ×5 and ×6.1

1http://www2.nationalgrid.com/uk/Industry-
information/Electricity-transmission-operational-data/
Data-Explorer/

2IBM ILOG CPLEX Optimizer. Version 12.6.3.0.
https://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/

3CBC MILP Solver. Version: 2.9.7.
https://projects.coin-or.org/Cbc



Table 1: SuSPen on the Unit Commitment problem.
Measure Speed-up Objective Loss∗

SP is [×times] faster (SP is worse by [Loss%])

CPLEX † CPLEX ‡ CBC †

Min ×1.8 ×2.1 ×3.3 +2.10%
Average ×5.0 ×6.1 ×11.9 +2.24%
Max ×8.3 ×10.7 ×28.7 +2.38%

∗ : CPLEX and CBC converged to the same objective value on all instances.
† : Default values for solver.
‡ : Limited pre-solver, no multi-threading, no dynamic search

when using CPLEX with respectively default parame-
ters and when “tuned down” to limit its heuristic pow-
ers. When running CBC the gains were more relevant,
on average twice as much as with CPLEX.

6.2 TSP Experiments

We picked a standard problem (Berlin52) from the
TSPLIB4. We selected 10% of nodes at random from
the TSP instance berlin52 and perturbed the weights
of the nodes within a certain radius ( 50% of the high-
est distance between any two nodes) by a factor de-
creasing the further apart the nodes are. That is, once
a node is picked, the weights within a certain dis-
tance are scaled up. If contiguous nodes are selected,
then the perturbations will sum up. We produced a
dataset of 500 entries, each with comprising the dis-
tance matrix and the relative optimal path computed
with the Concorde TSP solver. The difference matrix
between the reference distance matrix and the new in-
stance matrix form the features. For the labels, we
started from the reference optimal solution x?re f , taken
to be the actual optimum of berlin52. For each entry
in the training data, the corresponding optimal TSP
path was compared with x?re f , extracting the nodes that
were affected by the perturbation. The target predic-
tion vectors contains {0,1}52 binary labels, or flags,
indicating whether the modifications in the weights of
the graph resulted in the optimal solution to change at
each node.

For example, if a solution contained:

(· · · → 22→ 31→ 35 → 12 → 14 . . .),

but in x?re f we observed:

(· · · → 22→ 31→ 12 → 35 → 14 . . .),

then our binary labels vector will take value “1” for
label “12” and “35” and zero for the others.

On average, for the optimal solutions of the per-
turbed graphs, 17.2 nodes out of 52 turned out to be
affected. On average the predicted label vector should
contain 17 non-zero elements, indicating those that

4http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/

Figure 2: Evolution of the objective function over the
200000 iterations (%-completed vs fitness).

deserve the attention of the optimizer and need be re-
optimized. After the prediction is obtained, we map
these labels back to the x?re f and find the subsequences
of solution not affected by the perturbations. These
subsequences are the “blocked” variables in our SP,
that is, the portions of x?re f we assume are still good
for our SP. We encode these subsequences as “fake
nodes” deleting from the problem the blocked nodes
that become invisible to the solver, yielding a problem
SP smaller than the original P.

Figure 2 reports the typical behaviour registered
with our approach: solving SP allows us to obtain
a good solution rapidly at the cost of some bias (re-
lated to the amount of variation in the particular in-
stance). In the case of TSP, the underlying assump-
tion is that after some perturbation is added to a refer-
ence instance, the original solution is a good starting
point. This is not always the case, and the long-term
difference between SP and P can diverge sensibly, as
when we block some variables we inevitably intro-
duce some error. It would be interesting to further
expand this approach by freeing previously blocked
variables, allowing SP to continue diving towards a
better solution (see the Conclusion for more on this
topic).

7 CONCLUSION

This work proposed a meta-algorithm to speed-up the
resolution of recurrent combinatorial problems based
on available historical data, working under a time bud-
get. Although our approach is highly likely to re-
sult in sub-optimal solutions, we have shown that it
can yield good approximate solutions within a lim-
ited time window. It is also interesting both for
exact approaches based on mathematical program-
ming (MILP) and approximate stochastic algorithms
treated as black-box solvers. Avenues for future re-



search includes the extension of our methodology
to Mixed Integer Nonlinear Programming (MINLP),
where an effective variable selection would possibly
grant even more sizeable computational gains. Also
of interest is the generalization of the blocking phase
to an iterative block/unblock step, thus taking full ad-
vantage of the time available for the re-optimization.
As seen in Section 6.2, SuSPen allows us to dive
deeply towards a good objective value. Being able to
unblock some nodes after the initial iterations would
likely result in allowing the solution to keep improv-
ing, after the initial boost. In case some of the time
budgeted for re-optimization is available, instead of
limiting us to solve a single SP, one can consider the
option of solving more SP’s, eventually in parallel,
integrating the information derived from the resolu-
tion of previous SP into the learning framework. Fur-
thermore, in the case of exact BB-based approaches,
we find a natural prospective line of work in the inte-
gration of branching rules learned from static frame-
works (as seen in Section 2) into our problem-specific
approach.
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Zupanič, D. (1999). Values suggestion in mixed integer pro-
gramming by machine learning algorithm. Electronic
Notes in discrete Mathematics, 1:74–83.


